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Abstract 16 

Advancing age is the dominant risk factor for most of the major killer diseases in 17 

developed countries. Hence, ameliorating the effects of ageing may prevent multiple 18 

diseases simultaneously. Drugs licensed for human use against specific diseases have 19 

proved to be effective in extending lifespan and healthspan in animal models, 20 

suggesting that there is scope for drug repurposing in humans. New bioinformatic 21 

methods to identify and prioritise potential anti-ageing compounds for humans are 22 

therefore of interest. In this study, we first used drug-protein interaction information, to 23 

rank 1,147 drugs by their likelihood of targeting ageing-related gene products in 24 
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humans. Among 19 statistically significant drugs, 6 have already been shown to have 25 

pro-longevity properties in animal models (p < 0.001). Using the targets of each drug, 26 

we established its association with ageing at multiple levels of biological actions 27 

including pathways, functions and protein interactions. Finally, combining all the data, 28 

we calculated a comprehensive ranked list of drugs that predicted tanespimycin, an 29 

inhibitor of HSP-90, as the top-ranked novel anti-ageing candidate. We experimentally 30 

validated the pro-longevity effect of tanespimycin through its HSP-90 target in 31 

Caenorhabditis elegans. 32 

 33 

keywords: human ageing, drug-protein interactions, drug repurposing, anti-ageing, 34 

longevity, lifespan, heat shock protein inhibitor, tanespimycin. 35 

 36 

Author Summary 37 

Human life expectancy is continuing to increase worldwide, as a result of successive 38 

improvements in living conditions and medical care. Although this trend is to be 39 

celebrated, advancing age is the major risk factor for multiple impairments and chronic 40 

diseases. As a result, the later years of life are often spent in poor health and lowered 41 

quality of life. However, these effects of ageing are not inevitable, because very long-42 

lived people often suffer rather little ill-health at the end of their lives. Furthermore, 43 

laboratory experiments have shown that animals fed with specific drugs can live longer 44 

and with fewer age-related diseases than their untreated companions. We therefore need 45 

to identify drugs with anti-ageing properties for humans. We have therefore used 46 

computers to search for drugs that affect components and processes known to be 47 

important in human ageing. This approach worked, because it was able to re-discover 48 

several drugs known to increase lifespan in animal models, plus some new ones, 49 
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including one that we tested experimentally and validated in this study. These drugs are 50 

now a high priority for animal testing and for exploring effects on human ageing. 51 

 52 

Introduction 53 

Increasing life expectancy in developed countries is revealing advancing age as the 54 

primary risk factor for numerous diseases [1]. Thus, identifying interventions that can 55 

ameliorate the effects of ageing, and consequently delay, prevent or lessen the severity 56 

of age-related conditions, are needed. Extensive research in laboratory animals has 57 

demonstrated that the ageing process is malleable and that dietary, genetic and 58 

pharmacological interventions can improve health during ageing, extend lifespan and 59 

combat pathologies [2]. Furthermore, humans who lived to advanced ages show lower 60 

late-life morbidity (disease burden) than those who die earlier, indicating that 61 

compression of morbidity is achievable [3]. 62 

 63 

Although pharmacological interventions may prove to ameliorate the effects of ageing 64 

in humans, development of new drugs for this purpose would present significant 65 

difficulties, because of the need to treat healthy individuals in clinical trials over long 66 

periods for multiple outcomes. For this reason, it is more feasible to repurpose drugs 67 

already approved for specific diseases than to target ageing itself with new drugs [4,5]. 68 

With this goal in mind, researchers have begun to conduct human clinical trials to assess 69 

the anti-ageing properties of drugs approved to treat human medical conditions, and that 70 

extend lifespan and healthspan in animal models. Some examples include the anti-71 

diabetic drugs metformin (National Clinical Trial (NTC) number: NCT02432287) [6] 72 

and acarbose (NCT02953093), the immunosuppressant sirolimus (NCT02874924) and 73 

related compounds [7,8], and the natural compound resveratrol (NCT01842399). Two 74 
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natural metabolites, the NAD precursors nicotinamide riboside (NCT02950441) and 75 

nicotinamide mononucleotide [9] are also being investigated. The development of 76 

computational methods to complement and accelerate this approach, by prioritising 77 

approved drugs that could ameliorate human ageing, is needed.  78 

 79 

Several bioinformatic methods have been developed to identify potential geroprotective 80 

drugs.  For instance, caloric restriction (CR) mimetics have been identified, by 81 

comparing genes differentially expressed in rat cells exposed to sera from CR rats and 82 

rhesus monkeys with gene expression changes caused by drugs in cancer cell lines [10].  83 

Structural and sequence information on ageing-related proteins have been combined 84 

with experimental binding affinity and bioavailability data to rank chemicals by their 85 

likelihood of modulating ageing in the worm Caenorhabditis elegans and the fruit fly 86 

Drosophila melanogaster [11]. Drug-protein interaction information has also been used 87 

to predict novel pro-longevity drugs for C. elegans, by implementing a label 88 

propagation algorithm based on a set of effective and ineffective lifespan-extending 89 

compounds and a list of ageing-related genes [12]. A similar approach used a random 90 

forest algorithm and chemical descriptors of ageing-related compounds from the 91 

DrugAge database [13] together with gene ontology (GO) terms related to the drug 92 

targets [14]. Enrichment of drug targets has been assessed for a set of human 93 

orthologues of genes modulating longevity in animal models to identify new anti-ageing 94 

candidates [15].  95 

 96 

Despite the increasing interest in drug-repurposing for human ageing, research has 97 

tended to focus on predicting life-extending drugs for animal models. However, the 98 

translation from non-mammalian species to humans is still a challenge, and certain 99 
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aspects of ageing may be human-specific. Only a few studies have focused on data from 100 

humans. For instance, Aliper et al. (2016) [16] applied the GeroScope algorithm [17] to 101 

identify drugs mimicking the signalome of young human subjects based on differential 102 

expression of genes in signalling pathways involved in the ageing process. Another 103 

study by Dönertas et al. (2018) [18] correlated a set of genes up- and down-regulated 104 

with age in the human brain with drug-mediated gene expression changes in cell lines 105 

from the Connectivity Map [19]. 106 

 107 

In the present study, we rank-ordered drugs according to their probability of affecting 108 

ageing, by measuring whether they targeted more genes related with human ageing than 109 

expected by chance, by calculating the statistical significance of the overlap between the 110 

targets of each drug and a list of human ageing-related genes using a Fisher’s exact test 111 

[20]. Additionally, to enhance the power of the approach, we mapped the drugs’ gene 112 

targets and ageing-related genes to pathways (KEGG, Reactome), gene ontology terms 113 

(biological processes, cellular components, molecular functions) and protein-protein 114 

interactions, and repeated the analysis. We found that, independently of the data source 115 

used, the analysis resulted in a list of drugs significantly enriched for compounds 116 

previously shown to extend lifespan in laboratory animals. We integrated the results of 117 

7 ranked lists of drugs, calculated using the different data sources, into a single list, and 118 

we experimentally validated the top compound, tanespimycin, an HSP-90 inhibitor, as a 119 

novel pro-longevity drug.  120 
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Results 121 

Defining a dataset of drug-protein interactions and ageing-related genes 122 

The drug-ageing association was inferred by comparing drug-gene interactions with 123 

gene-ageing associations. Fig 1 presents an overview of the procedure to prioritise the 124 

compounds. A dataset containing the interactions between drugs and proteins was built 125 

based on data from the STITCH database [21]. Only drugs targeting human proteins and 126 

successfully mapped to the DrugBank database [22] using the UniChem resource [23] 127 

were kept (Fig 1A). The dataset was composed of 18,393 interactions between 2,495 128 

drugs and 2,991 proteins. More than half of the drugs (51.1%) in the dataset are 129 

approved for human use, 18.6% are in some phase of the approval process and 28.4% 130 

have been shown to bind to disease targets in experiments.  131 

 132 

We obtained a set of ageing-related genes from the Aging Clusters resource [24]. A 133 

total of 1,216 ageing-related genes discovered in at least 2 among 4 categories of studies 134 

were selected. These 4 categories are human genes: i) changing expression with age or 135 

CR in different tissues ii) whose DNA methylation levels changes with age iii) 136 

associated with age-related diseases and iv) in manually curated databases of genes 137 

linked with longevity in genetic studies [25], associated with cellular senescence [26] or 138 

showing ageing-related effects in animal models in addition to evidence for a causative 139 

role in human ageing [27].  140 

 141 

Gene-based inference of drug-ageing associations 142 

We determined if there was evidence supporting an association between drugs and 143 

ageing-related genes by calculating the statistical significance of the overlap between 144 

the gene targets of each drug and the ageing-related genes (Fig 1B). From the 1,147 145 
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drugs analysed, 19 were statistically enriched for ageing-related targets after multiple 146 

testing correction (Table 1, S1 tables). To assess the capability of the method to 147 

prioritise pro-longevity compounds, we compared the list of top-ranked compounds 148 

with the DrugAge database [13]. Six out of the 19 drugs have already been reported to 149 

significantly extend the lifespan of at least one model organisms (S2 text), while only 1 150 

was expected by chance (p < 0.001). Additionally, using literature mining, we identified 151 

studies showing the association with longevity of cAMP analogues [28], selenium 152 

[29,30] and tanespimycin [31,32]. In contrast, we also found evidence for the DNA-153 

mediated, pro-ageing (anti-longevity) effects of doxorubicin [33], cisplatin [34] and 154 

hydrogen peroxide [35]. We performed an interaction-based similarity analysis and 155 

found that the genotoxic compounds cluster separately from the other drugs, suggesting 156 

that they have a similar mechanism of action (S2 text). Similarities were also identified 157 

regarding the mechanisms of action of sorafenib and regorafenib, bexarotene and GW-158 

501516, and sirolimus and ECGC, in agreement with previous studies [36]. 159 

 160 

Although drugs interact directly with proteins, proteins do not act alone and interact 161 

with other proteins within pathways to perform different functions. Anti-ageing effects 162 

are likely to be mediated through altered pathway activity and function, and we 163 

therefore investigated if we could enhance the prediction of pro-longevity drugs using 164 

other biological annotations as comparators. Therefore, we calculated the pathways and 165 

gene functions enriched in ageing-related genes, together with the proteins that interact 166 

with them. A total of 82 KEGG and 54 Reactome pathways were enriched in this set of 167 

genes, as well as 1,177 biological processes, 69 cellular components and 103 molecular 168 

functions. In addition, we calculated that 676 proteins interacted with the set of ageing-169 

related genes. These terms, mapped at different biological levels, were defined as the set 170 
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of ageing-related terms (Fig 1C – left). Equivalently, drugs were then associated with 171 

these terms through association with their targets using the list of genes defining each 172 

term according to the DAVID knowledgebase [37] and the biological database network 173 

[38]. This mapping procedure resulted in a set of terms from each data source related to 174 

each drug (drug-related terms) (Fig 1C – right). 175 

 176 

Drug-ageing association based on protein-protein interactions, gene ontology and 177 

pathways 178 

Analogously to the gene-based association analysis, we calculated for each level if the 179 

overlap between ageing-related terms and drug-related terms was statistically significant 180 

using a Fisher’s exact test. This procedure generated 6 lists of ranked compounds in 181 

addition to the gene-based analysis (S1 tables). Notably, when we evaluated the 182 

correlation between the ranking of compounds in the different lists (Fig 2A), we 183 

observed a moderate correlation (Kendall’s coefficient of concordance W = 0.58, p-184 

value = 1.02E-266). The highest correlations were observed between the results from 185 

biological processes and cellular components (Kendall’s tau = 0.51, p-value < 2.2E-16), 186 

while the lowest was observed between cellular components and genes (Kendall’s tau = 187 

0.16, p-value = 3.289E-11).  188 

 189 

Because in any enrichment analysis there is a potential for research bias, we performed 190 

random permutations to simulate the enrichment of each drug for a different set of terms 191 

on each level. None of the top-ranked drugs on each list ranked higher than in the 192 

analysis in more than 1.7% of the simulations (Table A in S2 text). We also quantified 193 

the capability of the strategy to prioritise pro-longevity compounds by calculating for 194 

each list the fraction of known pro-longevity compounds (ranked by p-value) among the 195 
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fraction of drugs considered in each analysis (Fig 2B). The enrichment for pro-longevity 196 

compounds was quantified by calculating the area under the curve (AUC) generated by 197 

plotting these two variables. The maximum AUC was obtained when biological 198 

processes or molecular functions (AUC = 0.69) was used as the comparator (Table B in 199 

S2 text). The use of genes showed the lowest enrichment when non-statistically 200 

significant drugs are considered (AUC = 0.59), which suggests that the use of higher 201 

biological levels to calculate the inference improves the prediction capabilities, and that 202 

the use of genes leads to a loss power to rank drugs targeting a low proportion of 203 

ageing-related genes, which is observed in Fig 2B a loss of enrichment after 25% of the 204 

drugs were ranked. We evaluated if the AUCs were statistically significant by 205 

calculating the AUC from the simulations generated to quantify the research bias. The 206 

p-value for each curve was calculated by determining the number of simulated results 207 

with an AUC equal or higher than the analysis. All lists showed a higher enrichment 208 

than expected by chance (AUC > 0.5 and p-value < 0.05, Table B in S2 text). When we 209 

only considered the first 20 top-ranked drugs, we observed that using biological 210 

processes or cellular components to perform the comparison showed the highest 211 

proportion of pro-longevity drugs (45%), while only 2 pro-longevity drugs (10%) were 212 

found among the top 20 drugs when KEGG pathways are used. 213 

 214 

Considering the lack of overlap between the ranked lists using the different data 215 

sources, we decided to integrate the results into a single list accounting for the 216 

complexity of multitiered effect of drugs by calculating their ranking average in the 217 

different analyses. The combination generated a list equally enriched as the maximum 218 

AUC obtained by the previous analysis (AUC = 0.69). Among the top 10 drugs with the 219 

best average ranking (Table 2, S1 tables), we found 3 drugs that have extended lifespan 220 
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in animal models (trichostatin [39], geldanamycin [10] and celecoxib[40]). Half of these 221 

10 drugs are classified as kinase inhibitors, while 8 are indicated as anti-cancer drugs 222 

and 7 are approved for human use.  223 

 224 

The HSP-90 inhibitor tanespimycin as a novel pro-longevity drug 225 

Leading the joint ranking was tanespimycin, also known as 17-AAG, a well-226 

characterized HSP-90 inhibitor that has been shown to activate the transcription factor 227 

HSF-1 and induce a heat shock response in multiple model organisms [26]. As a proof-228 

of-principle, we decided to investigate whether tanespimycin could activate HSF-1 and 229 

extend lifespan in the nematode worm C. elegans. To test the efficacy of tanespimycin 230 

dosing in C. elegans, we grew worms expressing mCherry under the control of an HSF-231 

1 responsive promoter [41] on solid media plates containing various doses of 232 

tanespimycin. Worms were exposed to tanespimycin continuously from the first larval 233 

stage (L1) of development, or exclusively from the first day of adulthood. Worms 234 

grown continuously on tanespimycin plates exhibited a dose-dependent activation of the 235 

HSF-1 transcriptional reporter, starting at 25 µM and peaking at 100 µM (Fig 3A-B). 236 

Similarly, exposure to tanespimycin plates exclusively in adulthood resulted in 237 

significant activation of the HSF-1 reporter at 50 and 100 µM concentrations. No 238 

markers of toxicity were observed in any treatment groups, except for the 100 µM larval 239 

group, which were developmentally delayed by 24 hours and had a significantly 240 

reduced brood size (data not shown), consistent with chronic HSP-90 inhibition [42]. 241 

Together, these data demonstrate that tanespimycin activates HSF-1 in C. elegans and 242 

that treatment exclusively in adulthood is not associated with overt toxicity. 243 

 244 
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We next sought to determine whether tanespimycin treatment could extend lifespan in 245 

C. elegans. To circumvent potential longevity effects arising from delayed development 246 

and reproduction, we exposed worms to 100 µM tanespimycin plates from the first day 247 

of adulthood. Tanespimycin treatment significantly extended median and maximal 248 

lifespan compared to vehicle-treated controls (Fig 3C). To determine whether the 249 

effects of tanespimycin on lifespan require hsp-90, we also exposed worms to 250 

tanespimycin treatment in the presence of hsp-90(RNAi). Consistent with previous 251 

reports, hsp-90(RNAi) significantly shortened C. elegans lifespan [43]. Furthermore, in 252 

the absence of HSP-90, tanespimycin treatment no longer increased lifespan compared 253 

to vehicle controls. These data suggest that tanespimycin treatment extends lifespan in 254 

an hsp-90 dependent manner, but that severe depletion of HSP-90 is toxic to animals, 255 

despite the activation of protective stress responses.  256 
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Discussion 257 

This study was designed to infer and rank drugs matched to ageing at multiple levels of 258 

biological activity using a simple statistical test. In an initial gene-centric analysis, 19 259 

drugs were identified as candidates expected to modulate ageing in humans. A major 260 

finding was that 6 of the statistically significant drugs, resveratrol, genistein, 261 

simvastatin, epigallocatechin gallate, celecoxib and sirolimus, have already shown 262 

lifespan-extending properties in experimental studies in model organisms. This 263 

statistically significant enrichment suggests that, despite its simplicity, the method is 264 

able to prioritise pro-longevity compounds. We then expanded the analysis to higher 265 

levels of biological complexity, and again found a statistically significant enrichment 266 

for pro-longevity drugs in all cases. The results of the analysis at different levels 267 

showed a moderate correlation. Compounds ranked high on average included 268 

trichostatin, geldanamycin and celecoxib, 3 drugs with pro-longevity effects in animal 269 

models [10,39,40]. The compound ranked highest on average was tanespimycin, an 270 

HSP-90 inhibitor, shown to acts as a senolytic agent by killing human senescent cells 271 

without affecting the viability of healthy cells [31] and to ameliorate disease phenotypes 272 

in Drosophila models of Huntington’s disease and spinocerebellar ataxia [32]. We 273 

found that tanespimycin treatment extended median (23%) and maximum (16%) 274 

lifespan in C. elegans, through its target HSP-90, possibly through the induction of 275 

cytoprotective pathways. Tanespimycin must act through more than one mechanism as 276 

a geroprotector, because cellular senescence has not been reported to occur in C. 277 

elegans. 278 

 279 

Evidence from the literature supports the anti-ageing action of other drugs that we 280 

identified as potentially geroprotective. Dasatinib, a kinase inhibitor ranked 7th on 281 
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average, has been reported to induce apoptosis in senescent but not non-senescent 282 

primary human umbilical vein endothelial cells and preadipocytes [44]. Combination of 283 

dasatinib and quercetin, which also inhibits HSP-90, induced apoptosis specifically in 284 

senescent murine and human cells in vitro, improved cardiovascular function in aged 285 

mice, and decreased bone loss, neurological dysfunction and frailty in progeroid mice 286 

[45]. 287 

 288 

Three of the top 10 compounds from the combined ranked list have been previously 289 

proposed as anti-ageing candidates for humans using bioinformatic analysis. 290 

Specifically, tanespimycin, geldanamycin and trichostatin were among the 24 drugs 291 

predicted by Dönertas et al. (2018)[18] and Calvert et al. (2016)[10]. In contrast, we did 292 

not observe any overlap with the top results from Fernandes et al. (2016)[15] possibly 293 

due to the use of a different drug-protein interaction database (DGIdb [46]) or source of 294 

ageing data.  295 

 296 

Similar enrichment-based methods that combine multiple levels of biological 297 

information have been used for drug-repurposing for Rheumatoid arthritis, Parkinson’s 298 

disease and Alzheimer’s disease [47,48], but not, to our knowledge, to identify anti-299 

ageing drugs. Using annotated databases, our method evaluated the enrichment for pro-300 

longevity of all compounds analysed, rather than only those with significant scores, and 301 

we observe that in all cases pro-longevity compounds are ranked higher than expected 302 

by chance. Although tanespimycin acts as a senolytic [31], and has been predicted to be 303 

geroprotective by two previous studies [10,18], we have demonstrated its effect on 304 

longevity experimentally.  305 

 306 
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A limitation of this study is that it is based on previous knowledge about drug-protein 307 

interactions, which for non-commonly studied drugs is incomplete. This may explain 308 

why we observed many anti-cancer and well-known drugs in our results. While we 309 

assessed this bias using permutations and we found no significant effect on our results, 310 

further research is needed to increase the drug-protein interactome data using, for 311 

example, high-throughput technologies like those currently available for kinases [49]. 312 

While we combined the results from the different data sources using a strategy based on 313 

ranks, we hypothesise that the integration of these results using other methods may lead 314 

to a list with a higher enrichment for pro-longevity drugs. Additionally, further 315 

experimental testing is required on the lists produced in this study, particularly those 316 

generated by using gene ontology terms, which presented the higher enrichment for pro-317 

longevity drugs. An inherent limitation of inferred associations is that they do not 318 

provide information about the directionality of the effect, which in this case means that 319 

it is unknown if the drugs will deaccelerate ageing or the opposite. While we indirectly 320 

assessed this using an interaction-based similarity analysis between the drugs, resulting 321 

in clusters or pairs of drugs with similar mechanism of action, experiments should be 322 

conducted to determine the effects of each drug on ageing. Finally, a practical limitation 323 

is that we validated the results of this study using experiments in animal models 324 

although we used human data to perform the analysis. Although testing the effects of 325 

drugs on human ageing is challenging, progress is starting to be made. A clinical trial 326 

conducted by Mannick et al. (2018)[8] showed that pharmacological inhibition of the 327 

mammalian target of rapamycin in humans by dactolisib plus everolimus reduces the 328 

rate of infections in elderly people. Moreover, a recent short-term clinical trial of 329 

sirolimus established its safety in healthy individuals [50]. Similarly, supplementation 330 

of nicotinamide ribose, identified as a possible CR mimetic, stimulated NAD+ 331 
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metabolism in healthy individuals aged 55 to 79 years [51]. Some mechanisms of 332 

ageing may be confined to humans and their near relatives, and ideally, the 333 

bioinformatic findings should be evaluated in humans, initially through genetic 334 

epidemiology and ultimately through clinical trials.  335 
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Methods 336 

Data sources 337 

Drug-protein interaction dataset: Chemical-protein interactions were extracted from 338 

the Search Tool for Interactions of Chemicals (STITCH) database 5.0 [21]. We chose 339 

this resource because it acts as a probabilistic network, by collecting interactions from 340 

multiple sources, including experiments, databases and a text-mining algorithm. 341 

Individual scores for each source are combined into an overall confidence score using a 342 

naive Bayesian formula defined as ����� � 1 � ∏ 
1 � ���� , where Si represents the 343 

confidence score for the source i. Later, because the Bayesian combination of scores can 344 

overestimate the effect of small individual contributions, the score is corrected for the 345 

probability of observing an interaction by chance. The overall confidence score ranges 346 

from 0 to 1, where a value of 0.4 or greater is considered as medium confidence, and a 347 

score equal to or higher than 0.7 is regarded as high confidence. To obtain a reliable set 348 

of interactions, we removed all interactions with a confidence score lower than 0.7. The 349 

database also maps the direction of each interaction, i.e. whether chemical acts on the 350 

protein or if the protein modifies the chemical (e.g. transformation of the chemical 351 

during a catalytic reaction). To confine the analysis to the actions of chemicals on 352 

proteins, only the cases where the chemical activates or inhibits a protein were retained. 353 

To focus on drugs in development or approved for human use, we filtered the chemicals 354 

in STITCH by the drugs in DrugBank 5.0 [22] using UniChem [23]. The InChi key for 355 

each drug was retrieved from PubChem (http://pubchemdocs.ncbi.nlm.nih.gov/pug-rest) 356 

and used to obtain the DrugBank identifiers via UniChem 357 

(https://www.ebi.ac.uk/unichem/info/webservices). The names of the drugs were 358 

obtained from the DrugBank vocabulary file, and the development status was acquired 359 

using the structure external links file. Finally, we mapped the Ensembl identifiers for 360 
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each protein into HUGO Gene Nomenclature Committee (HGNC) approved gene 361 

names using Ensembl Biomart (version 91) [52]. All the chemicals included in this 362 

dataset will be referred as “drugs” or “compounds” throughout this article.  363 

 364 

Drug-related terms: We mapped the targets of each drug in the drug-protein 365 

interaction dataset to multiple biological levels by using the information about the genes 366 

that define each level analysed. We downloaded the gene-centric definitions of GO 367 

terms and Reactome pathways from the DAVID knowledgebase [37]. Genes on each 368 

KEGG pathways were obtained using the biological database network (https://biodbnet-369 

abcc.ncifcrf.gov/db/db2db.php)[38]. Protein-protein interactions were mapped directly 370 

using the STRING database [53]. Only proteins interacting with the set of ageing-371 

related genes with a confidence equal of higher than 0.9 were considered. 372 

 373 

Ageing-related genes: Genes present in manually-curated databases are more 374 

susceptible to research and reporting bias than those found in objective searches. Instead 375 

of selecting a set of ageing-related genes from a particular study or database, we used 376 

genes linked with ageing from the Ageing Clusters resource 377 

(https://gemex.eurac.edu/bioinf/age/). This repository contains the results of a network-378 

based meta-analysis of human ageing genes [24] that considered 35 different datasets. 379 

The author classified the genes into the following 4 categories: curated ageing-related 380 

genes from databases such as GenAge [27], LongevityMap [25] and CSGene [26]; 381 

genes differentially expressed with age, regimes of CR or healthy ageing; age-related 382 

changes in the methylation of cytosine guanidine dinucleotides (CpGs) in the DNA; and 383 

genes associated with age-related diseases from databases such as the Human Gene 384 

Mutation [54] or the Human Phenotype Ontology [55]. To improve the reliability of the 385 
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set of ageing-related genes and reduce research bias we considered only the genes 386 

present in at least two categories.  387 

 388 

Ageing-related terms: Using the set of ageing-related genes we performed gene-based 389 

enrichment analysis to infer the function and pathways associated with ageing. Gene 390 

Ontology (BP, CC, MF) terms were calculated using the enrichGO function from the 391 

clusterProfiler package [56], using the Benjamini and Yekutieli [57] method for 392 

adjustment, a conservative correction that does not rely on the assumption that the test 393 

statistics are independent. P-value and q-value cutoff were set to 0.5 and for biological 394 

processes we consider the top 500 terms enriched. Enriched KEGG pathways were 395 

determined using the enrichKEGG function from the clusterProfiler package, using the 396 

same parameters used for the gene ontology enrichment. Reactome pathways were 397 

calculated using the function enrichPathway from the ReactomePA package [58]. 398 

Protein-protein interactions, were obtained using STRING [53] database.  399 

 400 

Statistical analysis to rank the drugs 401 

Independently of the biological level, the drug-ageing associated was inferred by 402 

calculating the statistical significance of the drug-related terms and ageing-related terms 403 

using a Fisher’s exact test. Drugs were associated with ageing at the following 404 

biological levels: gene, pathways (KEGG, Reactome), functions (GO:BP, GO:CC, 405 

GO:MF) and indirect protein interactions. The universe was defined as all the terms on 406 

each level associated with at least one drug. Thus, drugs with a lower p-value modulate 407 

a higher proportion of ageing-related terms than that expected by chance. To control for 408 

the false discovery rate, we used the Benjamini and Yekutieli adjustment [57]. A p-409 

value lower than 0.05 after multiple testing correction was considered significant. 410 
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 411 

Measuring the impact of research bias 412 

Some drugs have been more studied than others, which could bias the results towards 413 

drugs with a higher proportion of discovered targets. To evaluate the impact of this 414 

research bias, we randomly selected the same number of terms that were used as ageing-415 

related terms 1,000 times, and we repeated the statistical analysis. Then we counted the 416 

times the statistically significant drugs appeared on the same or lower ranking. We 417 

expected that drugs associated with many terms would rank higher independently of the 418 

random set generated. 419 

 420 

Enrichment for pro-longevity drugs 421 

Each of the drug lists generated were ranked by the p-values obtained from the 422 

statistical analysis. Then, we transformed the ranking of the drug into a value ranging 423 

from 0 to 1. A set of 142 pro-longevity drugs present in the DrugAge and DrugBank 424 

databases were used to determine the occurrence and ranking of pro-longevity 425 

compounds in the lists. The ranking was then scaled into a value between 0 to 1. The 426 

AUC between the variables describing the pro-longevity drugs and drugs analysed was 427 

calculated using the function AUC from the DescTools package (https://cran.r-428 

project.org/package=DescTools).  To measure its statistical significance, we calculated 429 

the AUC of the lists previously generated to measure the research bias, and we counted 430 

the number of simulations with an equal or higher AUC.  431 

 432 

Experimental procedure 433 

Worm husbandry and lifespan 434 
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N2 and TJ3002 (zSi3002[hsp-16.2p::mCherry::unc-54; Cbr-unc-119(+)] II) ]  435 

hermaphrodite worms were maintained as previously described [59] at 20°C on 60 mm 436 

NGM plates. Plates were seeded with Escherichia coli (OP50) grown overnight in LB 437 

media. RNAi was essentially performed as previously described [60] with the slight 438 

modifications that bacterial cultures were induced with 5 mM IPTG for 3 hours 439 

following overnight growth in LB, and tetracycline was not included in plates or 440 

bacterial cultures.  441 

 442 

Tanespimycin dose-response test 443 

Tanespimycin (Fisher Scientific) was solubilized in DMSO to stock concentrations of 1, 444 

10, 25, 50, and 100 mM. 1 ml of DMSO or tanespimycin solutions were added to each 445 

litre of NGM media just prior to plate pouring to reach final concentrations of 1, 10, 25, 446 

50, and 100 µM in plates. Plates were kept away from light, stored at 4°C, and used 447 

within 2 weeks of pouring. TJ3002 reporter worms were synchronised by bleaching and 448 

added to 0.1% DMSO or tanespimycin plates as L1s or as day 1 adults. Worms were 449 

transferred to fresh plates every day and then imaged on day 6 of adulthood using a 450 

Zeiss Apotome fluorescent microscope and Hamamatsu Orca Flash 4.0 camera. 451 

Brightness and contrast were adjusted linearly, and equally, for all images, using Adobe 452 

Photoshop CS6. Fluorescence intensity was measured under different conditions using 453 

ImageJ. Significance testing of differences in fluorescence intensity were calculated by 454 

ONE-WAY ANOVA with Tukey pair-wise comparison of groups using GraphPad 455 

Prism.  456 

 457 

Lifespan assays 458 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 8, 2018. ; https://doi.org/10.1101/438234doi: bioRxiv preprint 

https://doi.org/10.1101/438234
http://creativecommons.org/licenses/by/4.0/


 21

Gravid N2 adults were bleached to release eggs, and L1 larvae were allowed to hatch 459 

overnight in M9 buffer without food. L1 worms were then added to plates seeded with 460 

bacteria expressing an RNAi control vector (L4440) and containing 0.1% DMSO. 461 

Worms were added to plates at a density of approximately 50 worms per plate. On the 462 

first day of adulthood (50h post plating L1s), worms were transferred to new 0.1% 463 

DMSO plates or 100 µM tanespimycin plates, seeded with L4440 or bacteria expressing 464 

dsRNA against hsp-90 (hsp-90(RNAi)). Worms were transferred to fresh plates every 465 

day during the first 7 days of adulthood and every other day thereafter. Worms were 466 

scored for survival every two days by gently prodding animals repeatedly with a 467 

platinum wire. Animals that failed to exhibit signs of movement or pharyngeal pumping 468 

were scored as dead. Animals that displayed internal hatching of progeny (“bagging”) 469 

or prolapse of intestine through the vulva (“rupturing”) were censored from our 470 

analysis. Median lifespans and significance testing between lifespans of different 471 

treatment groups were performed in GraphPad Prism using a Log-rank (Mantel-Cox) 472 

test. 473 

 474 
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Figures 677 

Fig 1. Overview of the methods used in this study to prioritise compounds likely to 678 

ameliorate ageing in humans. A) STITCH chemicals were mapped into DrugBank 679 

drugs using the UniChem resource programmatically. B) The significance of the drug-680 

ageing inference was calculated using a Fisher’s exact test, which calculates the 681 

probability that the overlap between two samples (ageing-related genes and drug 682 
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targets) drawn from the same universe is due to chance. This comparison was made at 683 

different biological tiers. C) Diagram of the procedure to expand the “gene” information 684 

into multiple biological levels. Ageing-related genes were mapped to other levels using 685 

an enrichment analysis, while the drugs’ targets were cross-referenced with the list of 686 

genes defining each annotation. 687 

 688 

Fig 2. Comparison between the results using different data sources. A) Correlation 689 

between the ranked list of compounds. Boxes are coloured by the Kendall’s correlation 690 

coefficient. B) Enrichment curves for pro-longevity drugs. The results of each data 691 

source are displayed in lines with different colours. The enrichment expected by chance 692 

is shown as a diagonal line with AUC = 0.5.  693 
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Fig 3. Pro-longevity effect of tanespimycin in C. elegans. A) Representative 694 

fluorescent images of day 6 adult, hsp-16.2p::mCherry transcriptional reporter worms, 695 

grown on plates containing 0.1% DMSO (vehicle) or different concentrations of 696 

tanespimycin (17-AAG) continuously from the first larval stage, or exclusively from the 697 

first day of adulthood onward. B) The relative fluorescent intensity of hsp-698 

16.2p::mCherry worms grown on plates containing 0, 1, 10, 25, 50, or 100 µM 699 

tanespimycin (17-AAG) continuously from the first larval stage or exclusively from the 700 

first day of adulthood onward. Values plotted are the mean of at least 5 animals, and 701 

error bars represent the standard deviation from the mean. Statistical significance 702 

relative to the DMSO control group was calculated by ONE-WAY ANOVA with Tukey 703 

post analysis pairwise comparison of groups. * = p < 0.05, ** = p < 0.01, *** = p < 704 

0.001. C) – Lifespan at 20 ºC of N2 worms grown on plates containing 0.1% DMSO or 705 
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100 µM Tanespimycin (17-AAG) from the first day of adulthood onward in the 706 

presence or absence of hsp-90(RNAi). Statistical significance was calculated by Log-707 

rank (Mantel-Cox) text. *** = p < 0.001. Treatment groups: 0.1% DMSO (n = 102, 14 708 

censored, median lifespan = 17 days), 100 µM tanespimycin (n=107, 9 censored, 709 

median lifespan 21 days), 0.1% DMSO + hsp-90(RNAi) (n = 69, 30 censored, median 710 

lifespan = 15 days), 100 µM tanespimycin + hsp-90(RNAi) (n = 92, 22 censored, 711 

median lifespan = 15 days). 712 

 713 

Tables 714 

Table 1. Drugs significantly enriched for ageing-related targets. The names of the 715 

drugs previously shown to extend lifespan in animal models are in bold and genotoxic 716 

molecules are in italic. The columns k(l) and m(n) are consistent with the diagram in 717 

Fig 1B. OR stands for odd-ratios and adj.p-value is the p-value adjusted for multiple 718 

testing. 719 

 720 

Drug name Status k(l) m(n) OR p-value adj.p-value 
Resveratrol Approved 66(150) 388(2221) 2.52 2.09E-08 1.82E-04 
Sunitinib Approved 18(12) 436(2359) 8.11 4.92E-08 2.15E-04 
Genistein Investigational 41(80) 413(2291) 2.84 6.40E-07 1.86E-03 
Simvastatin Approved 39(77) 415(2294) 2.80 1.53E-06 3.35E-03 
Tanespimycin Investigational 15(12) 439(2359) 6.71 2.64E-06 4.62E-03 
Regorafenib Approved 12(7) 442(2364) 9.16 4.43E-06 6.45E-03 
Epigallocatechin gallate Investigational 42(93) 412(2278) 2.50 5.96E-06 7.44E-03 
Doxorubicin Approved 34(67) 420(2304) 2.78 7.20E-06 7.87E-03 
Selenium Approved 14(12) 440(2359) 6.25 9.44E-06 9.17E-03 
Celecoxib Approved 23(36) 431(2335) 3.46 1.58E-05 1.38E-02 
Indole-3-carbinol Investigational 13(11) 441(2360) 6.32 1.83E-05 1.46E-02 
Hydrogen peroxide Approved 59(165) 395(2206) 2.00 2.85E-05 2.07E-02 
GW-501516 Investigational 9(5) 445(2366) 9.56 6.23E-05 3.82E-02 
Bexarotene Approved 10(7) 444(2364) 7.60 6.98E-05 3.82E-02 
Dorsomorphin Experimental 10(7) 444(2364) 7.60 6.98E-05 3.82E-02 
Sorafenib Approved 23(41) 431(2330) 3.03 7.25E-05 3.82E-02 
Sirolimus Approved 37(88) 417(2283) 2.30 7.42E-05 3.82E-02 
Cisplatin Approved 34(78) 420(2293) 2.38 8.39E-05 4.07E-02 
cAMP Experimental 36(86) 418(2285) 2.29 1.00E-04 4.60E-02 
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Table 2. Top-ranked compounds using multiple levels of biological action. The 721 

names of the drugs previously shown to extend lifespan in animal models are in bold. 722 

The numeric values represent the ranking of the drugs when different sources of data 723 

(columns) are used. The last column is the ranking average (Avg.) for each drug in the 7 724 

ranked lists.  725 

 726 

Drug name Status Genes PPI 
Gene ontology  Pathways 

Avg. 
BP CC MF  KEGG Reactome 

Tanespimycin Investigational 5 26 57 43 44  39 9 31.86 
Imatinib Approved 63 3 21 34 12  66 38 33.86 
Sunitinib Approved 2 1 59 31 31  56 63 34.71 
Trichostatin Experimental 83 41 19 54 13  41 52 43.29 
Geldanamycin Investigational 32 37 87 76 47  13 21 44.71 
Sorafenib Approved 16 68 11 15 8  155 42 45.00 
Dasatinib Approved 41 12 43 81 62  49 35 46.14 
Erlotinib Approved 27 6 93 85 71  64 7 50.43 
Etoposide Approved 23 11 20 90 32  120 67 51.86 
Celecoxib Approved 10 2 33 42 34  180 70 53.00 
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