

Selene: a PyTorch-based deep learning library for biological sequence-level data

Kathleen M. Chen1,*, Evan M. Cofer2,3,*, Jian Zhou1,2, Olga G. Troyanskaya1,2,4,†

1Flatiron Institute, Simons Foundation, New York City, New York, United States of America
2Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey,
United States of America
3Graduate Program in Quantitative and Computational Biology, Princeton University, Princeton,
New Jersey, United States of America
4Department of Computer Science, Princeton University, Princeton, New Jersey, United States of
America

* These authors contributed equally to this work.
† To whom correspondence should be addressed.

Olga G. Troyanskaya, email: ogt@cs.princeton.edu

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 14, 2018. ; https://doi.org/10.1101/438291doi: bioRxiv preprint

https://doi.org/10.1101/438291
http://creativecommons.org/licenses/by-nd/4.0/

1

Abstract
To enable the application of deep learning in biology, we present Selene

(https://selene.flatironinstitute.org/), a PyTorch-based deep learning library for fast and easy
development, training, and application of deep learning model architectures for any biological
sequences. We demonstrate how Selene allows researchers to easily train a published
architecture on new data, develop and evaluate a new architecture, and use a trained model to
answer biological questions of interest.

Main

Deep learning describes a set of machine learning techniques that use stacked neural
networks to extract complicated patterns from high-dimensional data1. These techniques are
widely used for image classification and natural language processing and have led to very
promising advances in the biomedical domain, including genomics and chemical synthesis1–3. In
regulatory genomics, networks trained on high-throughput sequencing data (e.g. ChIP-seq), or
“sequence-based models,” have become the de facto standard for predicting regulatory and
disease impact of mutations4–7. While deep-learning related publications are often accompanied
by the associated pre-trained model6,8,9, a key challenge in both developing new deep learning
architectures and training existing architectures on new data is the lack of a comprehensive,
generalizable, and user-friendly deep learning library for biology.

Beyond regulatory genomics, sequence-level deep learning models have broad promise in
a wide range of research areas, including recent advances on prediction of disease risk of
missense mutations in proteins10 and potential applications to, for example, predicting target site
accessibility in genome editing. We must enable the adoption and active development of deep
learning-based methods in biomedical sciences. For example, a biomedical scientist excited by a
publication of a model capable of predicting the disease-associated effect of mutations should be
able to train a similar model on their own ChIP-seq data focused on their disease of interest. A
bioinformatician interested in developing new model architectures should be able to experiment
with different architectures and evaluate all of them on the same data. Currently, this requires
advanced knowledge specific to deep learning2,11, substantial new code development, and
associated time investment far beyond what most biomedical scientists are able to commit.

Here we present Selene, a framework for developing sequence-level deep learning
networks, that provides biomedical scientists with comprehensive support for model training,
evaluation, and application across a broad range of biological questions. Sequence-level data
refers to any type of biological sequence such as DNA, RNA, or protein sequences and their
measured properties (e.g. TF binding, DNase sensitivity, RBP binding). Selene contains modules
for (1) data sampling and training for model development (Fig. 1a), and (2) prediction and

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 14, 2018. ; https://doi.org/10.1101/438291doi: bioRxiv preprint

https://doi.org/10.1101/438291
http://creativecommons.org/licenses/by-nd/4.0/

2

visualization for analyses using the trained model (Fig. 1b, c). With Selene, researchers can run
model development and analysis workflows out-of-the-box. For more advanced use cases,
Selene provides templates for extending modules within each workflow so that users can adapt
the library to their particular research questions.

There has been recent work to make deep learning in biology more accessible: DragoNN
is a toolkit for teaching deep learning in regulatory genomics; pysster12 is a Python package for
training convolutional neural networks on biological sequence data; and Kipoi13 is a framework
to archive, use, and build on published predictive models in genomics. These resources constitute
the nascent software ecosystem for sequence-level deep learning. Selene is our contribution to
this ecosystem. Selene supports general model development not constrained to a particular
architecture (in contrast to pysster) or task (in contrast to DragoNN) and is designed for users
with different levels of computational experience. Users are supported in tasks ranging from
simply applying an existing model, to retraining it on new data (tasks also supported by Kipoi),
to developing new model architectures (a task that is challenging to do with any other tool). The
models developed using Selene can be shared and used through the Kipoi framework.

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 14, 2018. ; https://doi.org/10.1101/438291doi: bioRxiv preprint

https://doi.org/10.1101/438291
http://creativecommons.org/licenses/by-nd/4.0/

3

Figure 1. Overview of functionality provided in Selene. (a) Selene enables users to train and
evaluate new deep learning models with very few lines of code. As input, the library accepts
(left) the model architecture, dataset, and (mid) a configuration file that specifies the necessary
input data paths and training parameters; Selene automatically splits the data into training and
validation/testing, trains the model, evaluates it, and (right) generates figures from the results. (b)
Selene also supports the use of trained models to interpret variants. In addition to being able to
run variant effect prediction with the same configuration file format, Selene includes a
visualization of the variants and their difference scores as a Manhattan plot, where a user can
hover over each point to see variant information. (c) Users interested in finding informative
bases that contribute to the binding of a certain protein can run Selene to get mutation effect
scores and visualize the scores as a heatmap.

a. Model training and evaluation
model architecture, e.g. DeepSEA

train.yml configuration file

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 14, 2018. ; https://doi.org/10.1101/438291doi: bioRxiv preprint

https://doi.org/10.1101/438291
http://creativecommons.org/licenses/by-nd/4.0/

4

To demonstrate Selene’s capabilities for developing and evaluating sequence-level deep
learning models, we use it to (1) train a published architecture on new data, (2) develop, train,
and evaluate a new model (improving a published model) and (3) apply a trained model to data
and visualize the resulting predictions.

Case 1: Training an existing (e.g. published) architecture on a different dataset
 In this case study, a researcher reads a manuscript about a deep learning model and wants
to train the model on different data. For illustration, we will use the DeepSEA model architecture
as a starting point in our case studies; however, Selene is completely general and a user can
easily use or specify any model of their choice using modules in PyTorch.

Suppose a cancer researcher is interested in modeling the regulatory elements of the
transcription factor GATA1, specifically focusing on proerythroblasts in bone marrow. This is a
tissue-specific genomic feature that DeepSEA does not predict. The researcher downloads peaks
data from Cistrome14 and a reference genome FASTA file. Once a researcher formats the data to
match the documented inputs (https://selene.flatironinstitute.org/overview/cli.html) and fills out
the necessary training parameters (e.g. batch size, learning rate), they can use Selene to train the
DeepSEA architecture on their data with no new lines of Python code. In this example, they find
that the model obtains an AUC of 0.942 on this feature (Fig. 2a).

Selene automatically generates training, testing, and validation samples from the
provided input data. The samples generated for each partition can be saved and used in
subsequent model development so that comparisons can be made across models with different
architectures and/or parameters. Further, Selene automatically evaluates the model on the test set
after training and, in this case, generates figures to visualize the model’s performance as receiver
operating characteristic and average precision curves.
 Now that the researcher has a trained model, they can use Selene to apply in silico
mutagenesis to a set of GATA1 sequences from the test set. In silico mutagenesis involves
“mutating” every position in the sequence to every other possible base4 (DNA and RNA) or
amino acid (protein sequences) and examining the consequences of these “mutations.” Selene
supports visualizing the outputs of in silico mutagenesis as a heatmap and/or motif plot. By
visualizing the log2 fold change for these sequences in a heatmap, the researcher can see that the
model detects disruptions in binding at the GATA motif (Fig. 2b).

We provide the code and results for this example in Selene’s GitHub repository
(https://github.com/FunctionLab/selene/tree/master/manuscript/case1). The case study
demonstrates that Selene enables researchers to quickly get started with sequence-based deep
learning; researchers can train and apply a model to their area of interest with minimal code and

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 14, 2018. ; https://doi.org/10.1101/438291doi: bioRxiv preprint

https://doi.org/10.1101/438291
http://creativecommons.org/licenses/by-nd/4.0/

5

deep learning knowledge. Without Selene, a researcher would need to dedicate substantial time
to preprocess their datasets and write code for training and evaluating their model.

Figure 2. Figures generated by Selene. (a) Selene visualization of the performance of the
model trained in case study 1. (b) Selene visualization of in silico mutagenesis on the case-study-
trained model for 20 randomly selected GATA1 sequences in the test set (2 representative plots
displayed here, all heatmaps generated are displayed in the example Jupyter notebook:
https://github.com/FunctionLab/selene/blob/master/manuscript/case1/3_visualize_ism_outputs.ip
ynb). Bases in the original sequence are distinguished by the gray stripes in the heatmap cells.

Case 2: Developing a new architecture and comparing performance across architectures

In another use case, a researcher may want to develop and train a new model architecture.
For example, a bioinformatician might want to modify a published model architecture to see how
that affects performance. First, the researcher uses modules in PyTorch to specify the model
architecture they are interested in evaluating; in this case study, they try to enhance the DeepSEA
architecture with batch normalization and three additional convolutional layers. The researcher
specifies parameters for training and the paths to the model architecture and data in a
configuration file and passes this as input to the library’s command-line interface. Training is
automatically completed by Selene; afterwards, the researcher can easily use Selene to compare
the performance of their new model to the original DeepSEA model on the same chromosomal
holdout dataset.

In this case study, the researcher finds that the deeper architecture achieves an average
AUC of 0.938 (Fig. 3a) and an average AUPRC of 0.362, which is an improvement over the
average AUC of 0.933 and AUPRC of 0.342 of the original 3-convolutional-layer model. The
researcher can share this model with a collaborator (e.g. a human geneticist, see case study 3
below) and upload it to the Kipoi13 model zoo, a repository of trained models for regulatory

a bSelene-generated model performance In silico mutagenesis on GATA1 sequences (Selene-generated heatmaps)

original base at position

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 14, 2018. ; https://doi.org/10.1101/438291doi: bioRxiv preprint

https://doi.org/10.1101/438291
http://creativecommons.org/licenses/by-nd/4.0/

6

genomics, with which Selene-trained models are fully compatible (see an example at
https://github.com/FunctionLab/selene/tree/master/manuscript/case2/3_kipoi_export).

Using Selene, researchers can substantially reduce the amount of work needed to
develop, train, and compare new models. Researchers are able to focus on experimenting with
various model architectures rather than writing all new code for model training and evaluation.

Case 3: Applying a new model to variants
 In this case study, a human geneticist studying Alzheimer’s wants to apply the model
developed in case study 2 above, so they first assess its ability to prioritize potential disease-
associated variants. Specifically, they use Selene to make variant effect predictions for nominally
significant variants (p-value < 0.05) and nonsignificant variants (p-value > 0.50) in the
International Genomics of Alzheimer’s Project15 Alzheimer’s disease GWAS16. The researcher
finds that the predicted effect is significantly higher for GWAS nominally significant variants
versus non-significant variants, indicating that the new model is indeed able to prioritize
potential disease-associated variants (one-sided Wilcoxon rank-sum test, most significant feature
H3K36me3 in K562 cells has an adjusted p-value, by Benjamini—Hochberg correction, of 3.89
✕ 10-67) (Fig. 3b).

Figure 3. (a) Selene visualization of the performance of the trained model from case-study 2. (b)
The trained model, on average, predicts greater differences for nominally significant variants (p-
value < 0.05) in the IGAP early onset Alzheimer’s GWAS study compared to those that are
nonsignificant (p-value > 0.50). Here we visualize the mean and 95% confidence intervals of the
quantile-normalized (against the Gaussian distribution) predicted effect scores of the 2 variant
groups for the genomic feature H3K36me3 in K562 cells, the feature in the model with the most

a bSelene-generated model performance Mean difference between SNP groups

G
au

ss
ia

n-
tra

ns
fo

rm
ed

 p
re

di
ct

ed
 e

ffe
ct

 s
co

re
s Feature K562|H3K36me3|None (q-value=3.89e-67)

GWAS nominally significant GWAS nonsignificant

-0.20

-0.21

-0.22

-0.23

-0.24

Feature ROC curves

tru
e

po
si

tiv
e

ra
te

false positive rate

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 14, 2018. ; https://doi.org/10.1101/438291doi: bioRxiv preprint

https://doi.org/10.1101/438291
http://creativecommons.org/licenses/by-nd/4.0/

7

significant difference (one-sided Wilcoxon rank-sum test, adjusted p-value using Benjamini—
Hochberg of 3.89 ✕ 10-67). After applying the multiple testing correction, 914 of the 919 features
the model predicts showed a significant difference (ɑ < 0.05) between the groups.

Selene’s modeling capability extends far beyond case studies shown above. The library
can be applied to not only DNA, but also RNA and protein sequences; and not only chromatin
data, but any current genome-, transcriptome-, or even proteome-wide measurements. We
developed Selene to increase the accessibility of deep learning in biology and facilitate the
creation of reproducible workflows and results. Furthermore, Selene is open-source software that
will continue to be updated and expanded based on community and user feedback.

Methods
Overview of Selene

Selene consists of two components: a Python library for developing sequence-level
neural networks, and a command line interface for prototypical use cases of the library (i.e.
training a new model, evaluating an existing model, and analyzing sequence data and variants
with a trained model). We herein refer to these components as the software development kit
(SDK) and the command line interface (CLI) respectively. Importantly, all functionality
provided by the CLI is also available to the user through the SDK. Rather than supplanting the
SDK, the CLI is intended to maximize code reuse and minimize user time spent learning SDK by
heavily reducing the configuration tasks left to the user (e.g. when GPU usage is specified, the
CLI ensures all appropriate computations are performed on the GPU). When appropriate, the
SDK does deliver functionality beyond that of the CLI. For instance, the SDK includes several
data visualization methods that would be too unwieldy as executables run from the command
line.

Thorough documentation for the SDK is available at https://selene.flatironinstitute.org,
and tutorials for both the CLI and SDK can be found at
https://github.com/FunctionLab/selene/tree/master/tutorials. Notably, one tutorial demonstrates
how to use Selene to train a deep neural network regression model
(https://github.com/FunctionLab/selene/blob/master/tutorials/regression_mpra_example/regressi
on_mpra_example.ipynb). This tutorial illustrates Selene’s use outside of the models of
transcriptional regulation shown in the case studies.

Selene software development kit

The Selene SDK, formally known as selene_sdk, is an extensible Python package
intended to ease development of new programs that leverage sequence-level models through

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 14, 2018. ; https://doi.org/10.1101/438291doi: bioRxiv preprint

https://doi.org/10.1101/438291
http://creativecommons.org/licenses/by-nd/4.0/

8

code reuse. The Selene CLI is built entirely upon the functionality provided by the SDK, but it is
likely that users will use the SDK outside this context. For example, after training a new
sequence-level model with the CLI, one could use the SDK in conjunction with a Python-based
web application framework (e.g. Flask, Django) to build a web server so that other researchers
can submit sequences or variants and get the trained model’s predictions as output.

Leveraging the SDK in a user Python project is no different from using any other Python
module. That is, one only needs to import the selene_sdk module or any of its members, and
supply them with the correct parameters. The runtime behavior of each component of
selene_sdk, as well as the required parameters for all members of selene_sdk, is described in
detail in the online documentation (https://selene.flatironinstitute.org/overview/overview.html).

Selene command line interface

The Selene CLI is a usable program to be run from the command line by the user. It
encapsulates the configuration, execution, and logging of Selene’s most common use cases. Said
use cases are embodied by the CLI’s three commands: train, evaluate, and analyze. These
commands are used to train new models, evaluate the performance of trained models, and
analyze model predictions (perform in silico mutagenesis or variant effect prediction)
respectively. Each command configures its specific runtime environment with a combination of
command line arguments and parameters drawn from user-provided configuration files. The
flexibility of these configuration files allows them to leverage user-developed code as well, and
further extends the usability of the CLI. We provide a step-by-step tutorial that describes the CLI
configuration file format and shows some example configuration keys and values at
https://github.com/FunctionLab/selene/blob/master/tutorials/getting_started_with_selene/getting
_started_with_selene.ipynb. Additional examples of CLI configuration files are available at
https://github.com/FunctionLab/selene/tree/master/config_examples as well. Finally,
comprehensive documentation detailing all possible configurations supported by Selene can be
found at https://selene.flatironinstitute.org/overview/cli.html. Users can reference any of these
resources when creating their own configuration files.

Model Architectures
 DeepSEA architecture used in case 1 (from the supplementary note in the DeepSEA
publication4):

1. Convolutional layer (320 kernels, window size = 8, step size = 1)
2. Pooling layer (window size = 4, step size = 4)
3. Convolutional layer (480 kernels, window size = 8, step size = 1)
4. Pooling layer (window size = 4, step size = 4)

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 14, 2018. ; https://doi.org/10.1101/438291doi: bioRxiv preprint

https://doi.org/10.1101/438291
http://creativecommons.org/licenses/by-nd/4.0/

9

5. Convolutional layer (960 kernels, window size = 8, step size = 1)
6. Fully connected layer (919 genomic features)
7. Sigmoid output layer

 Dropout proportion (proportion of outputs randomly set to 0):
 Layer 2: 20%
 Layer 4: 20%
 Layer 5: 50%
 All other layers: 0%

 Architecture used in cases 2 and 3:

1. Convolutional layer (320 kernels, window size = 8, step size = 1)
2. Convolutional layer (320 kernels, window size = 8, step size = 1)
3. Pooling layer (window size = 4, step size = 4)
4. Convolutional layer (480 kernels, window size = 8, step size = 1)
5. Convolutional layer (480 kernels, window size = 8, step size = 1)
6. Pooling layer (window size = 4, step size = 4)
7. Convolutional layer (960 kernels, window size = 8, step size = 1)
8. Convolutional layer (960 kernels, window size = 8, step size = 1)
9. Fully connected layer (919 genomic features)
10. Sigmoid output layer

 Dropout proportion:
 Layer 5: 20%
 Layer 8: 50%
 Batch normalization applied after layers 2, 5, and 8 and before dropout.

Both architectures use the binary cross-entropy loss function and stochastic gradient descent
optimizer (momentum = 0.9, weight decay = 10-6).

Reproducing the case studies

Below, we have described the steps taken for each of the case studies. The code required
to reproduce each case study is included in the GitHub repository
(https://github.com/FunctionLab/selene/tree/master/manuscript). We have also created Zenodo
records for each case that contain all the input data, data processing scripts, and outputs files
generated from Selene:

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 14, 2018. ; https://doi.org/10.1101/438291doi: bioRxiv preprint

https://doi.org/10.1101/438291
http://creativecommons.org/licenses/by-nd/4.0/

10

• Case 1. doi:10.5281/zenodo.1442433
• Case 2. doi: 10.5281/zenodo.1442437
• Case 3. doi: 10.5281/zenodo.1445555

Case 1: Training a state-of-the-art architecture on a different dataset
Steps to train DeepSEA on new data.

1. Download the data from Cistrome. In this case, we are only working with 1 dataset for 1
specific genomic feature.
 Cistrome ID: 33545, measurements from GSM970258 (Xu et al., 2012):
http://dc2.cistrome.org/api/downloads/eyJpZCI6IjMzNTQ1In0%3A1fujCu%3ArNvWLC
NoET6o9SdkL8fEv13uRu4b/

2. Format the data. We use tools from Samtools17 (specifically, tabix18 and bgzip from
HTSlib, https://www.htslib.org/). Create a .bed file of chromosome, start, end, and the
genomic feature name (useful when there is more than 1 feature). Sort this file and
compress it into a .gz file. Tabix-index this file. Specific commands:

a. Only use the columns [chr, start, end]:
 cut -f 1-3 <peaks-file> > <peak-coordinates-file>
Note: Eventually, we will add support for parsing BED files with strand specific
features and/or continuous values that quantify these features.

b. Add the genomic feature name as the 4th column of the file:
 sed -i "s/$/\t<feature-name>/” <peak-coordinates-
file>

c. Sort the file by [chr, start, end]:
 sort -k1V -k2n -k3n <peak-coordinates-file> >
<sorted-coordinates-file>

d. Compress the file:
 bgzip <sorted-coordinates-file>
This compresses the file to a .gz file in-place. To separately generate the .gz file,
run
 bgzip -c <sorted-coordinates-file> > <sorted-
coordinates-file>.gz

e. Tabix index the file:
 tabix -p bed <sorted-coordinates-file>.gz

3. Create a file of distinct features that the model will predict, where each feature is a single
line in the file. This can easily be created from the .bed file in step 2 by running:

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 14, 2018. ; https://doi.org/10.1101/438291doi: bioRxiv preprint

https://doi.org/10.1101/438291
http://creativecommons.org/licenses/by-nd/4.0/

11

 cut -f 4 <peak-coordinates-file> | sort -u > <distinct-
features>

4. Download the GRCh38/hg38 FASTA file. We downloaded the reference sequences
GRCh37/hg19 and GRCh38/hg38 used in our analyses from ENCODE:
https://www.encodeproject.org/data-standards/reference-sequences/.

5. Specify the model architecture, loss, and optimizer as a Python file. This is done for you
in the case of DeepSEA:
https://github.com/FunctionLab/selene/blob/master/models/deepsea.py

6. Fill out the configuration file with the appropriate file paths and training parameters. We
recommend starting from one of the example training files in the tutorials (e.g.
https://github.com/FunctionLab/selene/blob/master/tutorials/getting_started_with_selene/
getting_started_with_selene.ipynb) or in the “config_examples” directory
(https://github.com/FunctionLab/selene/tree/master/config_examples). You can also
review the documentation for the configuration parameters on Selene’s website
(https://selene.flatironinstitute.org/overview/cli.html).

7. Run Selene.

Steps to apply and visualize the results of in silico mutagenesis.

1. Collect sequences you want to visualize as a FASTA file. For this particular case, we
provide a script to do so (https://zenodo.org/record/2214130/files/data.tar.gz).

2. Fill out the configuration file with the appropriate file paths (path to the FASTA file,
information about the trained model).

3. Run Selene. You will get the raw predictions and the log2 fold change scores as output
files.

4. Follow one of the Jupyter notebook tutorials for in silico mutagenesis
(https://github.com/FunctionLab/selene/tree/master/tutorials) to generate visualizations
for the sequences. We have done this in
https://github.com/FunctionLab/selene/blob/master/manuscript/case1/3_visualize_ism_ou
tputs.ipynb.

Case 2: Developing a new architecture and making model comparisons
Steps to train “deeper DeepSEA” on the same exact data as DeepSEA.

1. Download the code and data bundle from the DeepSEA website
(http://deepsea.princeton.edu/media/code/deepsea_train_bundle.v0.9.tar.gz). You only
need the .mat files in this directory. We also include a file listing the 919 genomic
features that the model predicts. This is from the resources directory in the standalone

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 14, 2018. ; https://doi.org/10.1101/438291doi: bioRxiv preprint

https://doi.org/10.1101/438291
http://creativecommons.org/licenses/by-nd/4.0/

12

version of DeepSEA (http://deepsea.princeton.edu/media/code/deepsea.v0.94b.tar.gz).
Zenodo record: https://zenodo.org/record/2214970/files/DeepSEA_data.tar.gz.

2. Fill out the configuration file for Selene’s MultiFileSampler
(https://selene.flatironinstitute.org/overview/cli.html#multiple-file-sampler) and specify
the path to each .mat file for training, validation, and testing.

3. Run Selene.
Please see the DeepSEA publication for details about data processing and training:
https://www.nature.com/articles/nmeth.3547#methods.
In the main text, we report test performance for the model trained using the online sampler.
When training on the same exact data (the .mat files) as DeepSEA, we achieve an average AUC
of 0.934 and an average AUPRC of 0.361.

Steps to download and format all the peaks data from ENCODE and Roadmap
Epigenomics.

1. Download all chromatin feature profiles used for training DeepSEA, specified in
Supplementary Table 1 of the DeepSEA manuscript
(https://media.nature.com/original/nature-
assets/nmeth/journal/v12/n10/extref/nmeth.3547-S2.xlsx). We have done this for you
(https://zenodo.org/record/2214970/files/chromatin_profiles.tar.gz).

2. For each file, keep the chromosome, start, and end columns. In addition, create a fourth
column with the feature’s name. Concatenate all these files and create the distinct
features file. We provide a Python script for this step
(https://github.com/FunctionLab/selene/blob/master/manuscript/case2/1_train_with_onlin
e_sampler/data/process_chromatin_profiles.py).

3. Format the data according to the instructions in the “Getting started” tutorial:
a. Sort the file by [chr, start, end]:

 sort -k1V -k2n -k3n <peak-coordinates-file> >
<sorted-coordinates-file>

b. Compress the file:
 bgzip <sorted-coordinates-file>
This compresses the file to a .gz file in-place. To separately generate the .gz file,
run
 bgzip -c <sorted-coordinates-file> > <sorted-
coordinates-file>.gz

c. Tabix index the file:
 tabix -p bed <sorted-coordinates-file>.gz

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 14, 2018. ; https://doi.org/10.1101/438291doi: bioRxiv preprint

https://doi.org/10.1101/438291
http://creativecommons.org/licenses/by-nd/4.0/

13

https://github.com/FunctionLab/selene/blob/master/manuscript/case2/1_train_with_onlin
e_sampler/data/process_data.sh

4. Download the hg19 FASTA file
(https://www.encodeproject.org/files/male.hg19/@@download/male.hg19.fasta.gz).

5. Specify the model architecture, loss, and optimizer as a Python file:
https://github.com/FunctionLab/selene/blob/master/selene_sdk/utils/example_model.py

6. Fill out the configuration file with the appropriate file paths and training parameters. We
set the training parameters (number of steps, batches, etc.) so that they matched how
DeepSEA was originally trained.

7. Run Selene.

Case 3: Applying a new model to variants

1. Download the SNPs from the International Genomics of Alzheimer’s Project.
(https://www.niagads.org/igap-age-onset-survival-analyses-p-value-only)

2. Group the variants into those with p-values below 0.05 (significant) and those with p-
values above 0.50 (nonsignificant).

3. Fill out the configuration file with the paths to the two variants files and the trained
model weights file from Case 2.

4. Run Selene.
5. Follow the script provided for this case to analyze the variant predictions

(https://github.com/FunctionLab/selene/blob/master/manuscript/case3/2_variant_groups_
comparison.sh).

Code and Data Availability
Code
Project homepage: https://selene.flatironinstitute.org
GitHub: https://github.com/FunctionLab/selene
Archived version: https://github.com/FunctionLab/selene/archive/0.2.0.tar.gz

Data sources
Cistrome14
Cistrome file ID: 33545, measurements from GSM970258 (Xu et al., 2012)
http://dc2.cistrome.org/api/downloads/eyJpZCI6IjMzNTQ1In0%3A1fujCu%3ArNvWLCNoET6
o9SdkL8fEv13uRu4b/

ENCODE19 and Roadmap Epigenomics20 chromatin profiles

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 14, 2018. ; https://doi.org/10.1101/438291doi: bioRxiv preprint

https://doi.org/10.1101/438291
http://creativecommons.org/licenses/by-nd/4.0/

14

Files listed in https://media.nature.com/original/nature-
assets/nmeth/journal/v12/n10/extref/nmeth.3547-S2.xlsx

IGAP age at onset survival15,16
https://www.niagads.org/datasets/ng00058 (p-values only file)

Processed datasets from these sources are available at the following Zenodo links:

Cistrome:
 https://zenodo.org/record/2214130/files/data.tar.gz
ENCODE and Roadmap Epigenomics chromatin profiles:
 https://zenodo.org/record/2214970/files/chromatin_profiles.tar.gz

 IGAP age at onset survival:
 https://zenodo.org/record/1445556/files/variant_effect_prediction_data.tar.gz

Acknowledgements
The authors acknowledge all members of the Troyanskaya lab for helpful discussions. In
addition, the authors thank Dylan Simon for setting up the website and automating updates to the
site. The authors are pleased to acknowledge that this work was performed using the high-
performance computing resources at Simons Foundation and the TIGRESS computer center at
Princeton University. This work was supported by NIH grants R01HG005998, U54HL117798,
R01GM071966, and T32HG003284, HHS grant HHSN272201000054C, and Simons Foundation
grant 395506. O.G.T. is a CIFAR fellow.

Contributions
K.M.C and J.Z. conceived the Selene library, K.M.C. and E.M.C. designed, implemented, and
documented Selene, K.M.C. performed the analyses described in the manuscript, K.M.C.,
E.M.C., and O.G.T wrote the manuscript.

Competing Interests
The authors declare that no competing interests, financial or otherwise, exist.

References
1. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
2. Ching, T., et al. Opportunities and obstacles for deep learning in biology and medicine. J. R.

Soc. Interface 15, 20170387 (2018).
3. Segler, M. H. S., Preuss, M. & Waller, M. P. Planning chemical syntheses with deep neural

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 14, 2018. ; https://doi.org/10.1101/438291doi: bioRxiv preprint

https://doi.org/10.1101/438291
http://creativecommons.org/licenses/by-nd/4.0/

15

networks and symbolic AI. Nature 555, 604–610 (2018).
4. Zhou, J. & Troyanskaya, O. G. Predicting effects of noncoding variants with deep learning-

based sequence model. Nat. Methods 12, 931–934 (2015).
5. Alipanahi, B., Delong, A., Weirauch, M. T. & Frey, B. J. Predicting the sequence

specificities of DNA- and RNA-binding proteins by deep learning. Nat. Biotechnol. 33,
831–838 (2015).

6. Kelley, D. R., Snoek, J. & Rinn, J. Basset: Learning the regulatory code of the accessible
genome with deep convolutional neural networks. Genome Res. (2016).
doi:10.1101/gr.200535.115

7. Angermueller, C., Lee, H. J., Reik, W. & Stegle, O. DeepCpG: accurate prediction of single-
cell DNA methylation states using deep learning. Genome Biol. 18, 67 (2017).

8. Kelley, D. R., Reshef, Y., Bileschi, M., Belanger, D., McLean, C. Y. & Snoek, J. Sequential
regulatory activity prediction across chromosomes with convolutional neural networks.
Genome Res. (2018). doi:10.1101/gr.227819.117

9. Quang, D. & Xie, X. DanQ: a hybrid convolutional and recurrent deep neural network for
quantifying the function of DNA sequences. Nucleic Acids Res. 44, e107 (2016).

10. Sundaram, L., et al. Predicting the clinical impact of human mutation with deep neural
networks. Nat. Genet. 50, 1161–1170 (2018).

11. Min, S., Lee, B. & Yoon, S. Deep learning in bioinformatics. Brief. Bioinform. 18, 851–869
(2017).

12. Budach, S. & Marsico, A. pysster: Classification Of Biological Sequences By Learning
Sequence And Structure Motifs With Convolutional Neural Networks. Bioinformatics
(2018). doi:10.1093/bioinformatics/bty222

13. Avsec, Z., et al. Kipoi: accelerating the community exchange and reuse of predictive models
for genomics. Preprint at http://dx.doi.org/10.1101/375345 (2018).

14. Mei, S., et al. Cistrome Data Browser: a data portal for ChIP-Seq and chromatin
accessibility data in human and mouse. Nucleic Acids Res. 45, D658–D662 (2017).

15. Ruiz, A., et al. Follow-up of loci from the International Genomics of Alzheimer’s Disease
Project identifies TRIP4 as a novel susceptibility gene. Transl. Psychiatry 4, e358 (2014).

16. Huang, K.-L., et al. A common haplotype lowers PU.1 expression in myeloid cells and
delays onset of Alzheimer’s disease. Nat. Neurosci. 20, 1052–1061 (2017).

17. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis,
G., Durbin, R. & 1000 Genome Project Data Processing Subgroup. The Sequence
Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

18. Li, H. Tabix: fast retrieval of sequence features from generic TAB-delimited files.
Bioinformatics 27, 718–719 (2011).

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 14, 2018. ; https://doi.org/10.1101/438291doi: bioRxiv preprint

https://doi.org/10.1101/438291
http://creativecommons.org/licenses/by-nd/4.0/

16

19. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human
genome. Nature 489, 57–74 (2012).

20. Roadmap Epigenomics Consortium, Kundaje, A., et al. Integrative analysis of 111 reference
human epigenomes. Nature 518, 317–330 (2015).

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 14, 2018. ; https://doi.org/10.1101/438291doi: bioRxiv preprint

https://doi.org/10.1101/438291
http://creativecommons.org/licenses/by-nd/4.0/

