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Abstract 
To enable the application of deep learning in biology, we present Selene 

(https://selene.flatironinstitute.org/), a PyTorch-based deep learning library for fast and easy 
development, training, and application of deep learning model architectures for any biological 
sequences. We demonstrate how Selene allows researchers to easily train a published 
architecture on new data, develop and evaluate a new architecture, and use a trained model to 
answer biological questions of interest. 
 
Main 

Deep learning describes a set of machine learning techniques that use stacked neural 
networks to extract complicated patterns from high-dimensional data1. These techniques are 
widely used for image classification and natural language processing and have led to very 
promising advances in the biomedical domain, including genomics and chemical synthesis1–3. In 
regulatory genomics, networks trained on high-throughput sequencing data (e.g. ChIP-seq), or 
“sequence-based models,” have become the de facto standard for predicting regulatory and 
disease impact of mutations4–7. While deep-learning related publications are often accompanied 
by the associated pre-trained model6,8,9, a key challenge in both developing new deep learning 
architectures and training existing architectures on new data is the lack of a comprehensive, 
generalizable, and user-friendly deep learning library for biology.  

Beyond regulatory genomics, sequence-level deep learning models have broad promise in 
a wide range of research areas, including recent advances on prediction of disease risk of 
missense mutations in proteins10 and potential applications to, for example, predicting target site 
accessibility in genome editing. We must enable the adoption and active development of deep 
learning-based methods in biomedical sciences. For example, a biomedical scientist excited by a 
publication of a model capable of predicting the disease-associated effect of mutations should be 
able to train a similar model on their own ChIP-seq data focused on their disease of interest. A 
bioinformatician interested in developing new model architectures should be able to experiment 
with different architectures and evaluate all of them on the same data. Currently, this requires 
advanced knowledge specific to deep learning2,11, substantial new code development, and 
associated time investment far beyond what most biomedical scientists are able to commit. 

Here we present Selene, a framework for developing sequence-level deep learning 
networks, that provides biomedical scientists with comprehensive support for model training, 
evaluation, and application across a broad range of biological questions. Sequence-level data 
refers to any type of biological sequence such as DNA, RNA, or protein sequences and their 
measured properties (e.g. TF binding, DNase sensitivity, RBP binding). Selene contains modules 
for (1) data sampling and training for model development (Fig. 1a), and (2) prediction and 
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visualization for analyses using the trained model (Fig. 1b, c). With Selene, researchers can run 
model development and analysis workflows out-of-the-box. For more advanced use cases, 
Selene provides templates for extending modules within each workflow so that users can adapt 
the library to their particular research questions.  

There has been recent work to make deep learning in biology more accessible: DragoNN 
is a toolkit for teaching deep learning in regulatory genomics; pysster12 is a Python package for 
training convolutional neural networks on biological sequence data; and Kipoi13 is a framework 
to archive, use, and build on published predictive models in genomics. These resources constitute 
the nascent software ecosystem for sequence-level deep learning. Selene is our contribution to 
this ecosystem. Selene supports general model development not constrained to a particular 
architecture (in contrast to pysster) or task (in contrast to DragoNN) and is designed for users 
with different levels of computational experience. Users are supported in tasks ranging from 
simply applying an existing model, to retraining it on new data (tasks also supported by Kipoi), 
to developing new model architectures (a task that is challenging to do with any other tool). The 
models developed using Selene can be shared and used through the Kipoi framework. 
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Figure 1. Overview of functionality provided in Selene. (a) Selene enables users to train and 
evaluate new deep learning models with very few lines of code. As input, the library accepts 
(left) the model architecture, dataset, and (mid) a configuration file that specifies the necessary 
input data paths and training parameters; Selene automatically splits the data into training and 
validation/testing, trains the model, evaluates it, and (right) generates figures from the results. (b) 
Selene also supports the use of trained models to interpret variants. In addition to being able to 
run variant effect prediction with the same configuration file format, Selene includes a 
visualization of the variants and their difference scores as a Manhattan plot, where a user can 
hover over each point to see variant information. (c) Users interested in finding informative 
bases that contribute to the binding of a certain protein can run Selene to get mutation effect 
scores and visualize the scores as a heatmap.  

 

a. Model training and evaluation 
model architecture, e.g. DeepSEA

train.yml configuration file
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To demonstrate Selene’s capabilities for developing and evaluating sequence-level deep 
learning models, we use it to (1) train a published architecture on new data, (2) develop, train, 
and evaluate a new model (improving a published model) and (3) apply a trained model to data 
and visualize the resulting predictions. 
 
Case 1: Training an existing (e.g. published) architecture on a different dataset 
 In this case study, a researcher reads a manuscript about a deep learning model and wants 
to train the model on different data. For illustration, we will use the DeepSEA model architecture 
as a starting point in our case studies; however, Selene is completely general and a user can 
easily use or specify any model of their choice using modules in PyTorch.  

Suppose a cancer researcher is interested in modeling the regulatory elements of the 
transcription factor GATA1, specifically focusing on proerythroblasts in bone marrow. This is a 
tissue-specific genomic feature that DeepSEA does not predict. The researcher downloads peaks 
data from Cistrome14 and a reference genome FASTA file. Once a researcher formats the data to 
match the documented inputs (https://selene.flatironinstitute.org/overview/cli.html) and fills out 
the necessary training parameters (e.g. batch size, learning rate), they can use Selene to train the 
DeepSEA architecture on their data with no new lines of Python code. In this example, they find 
that the model obtains an AUC of 0.942 on this feature (Fig. 2a). 

Selene automatically generates training, testing, and validation samples from the 
provided input data. The samples generated for each partition can be saved and used in 
subsequent model development so that comparisons can be made across models with different 
architectures and/or parameters. Further, Selene automatically evaluates the model on the test set 
after training and, in this case, generates figures to visualize the model’s performance as receiver 
operating characteristic and average precision curves. 
 Now that the researcher has a trained model, they can use Selene to apply in silico 
mutagenesis to a set of GATA1 sequences from the test set. In silico mutagenesis involves 
“mutating” every position in the sequence to every other possible base4 (DNA and RNA) or 
amino acid (protein sequences) and examining the consequences of these “mutations.” Selene 
supports visualizing the outputs of in silico mutagenesis as a heatmap and/or motif plot. By 
visualizing the log2 fold change for these sequences in a heatmap, the researcher can see that the 
model detects disruptions in binding at the GATA motif (Fig. 2b). 

We provide the code and results for this example in Selene’s GitHub repository 
(https://github.com/FunctionLab/selene/tree/master/manuscript/case1). The case study 
demonstrates that Selene enables researchers to quickly get started with sequence-based deep 
learning; researchers can train and apply a model to their area of interest with minimal code and 
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deep learning knowledge. Without Selene, a researcher would need to dedicate substantial time 
to preprocess their datasets and write code for training and evaluating their model.  

 

 
Figure 2. Figures generated by Selene. (a) Selene visualization of the performance of the 
model trained in case study 1. (b) Selene visualization of in silico mutagenesis on the case-study-
trained model for 20 randomly selected GATA1 sequences in the test set (2 representative plots 
displayed here, all heatmaps generated are displayed in the example Jupyter notebook: 
https://github.com/FunctionLab/selene/blob/master/manuscript/case1/3_visualize_ism_outputs.ip
ynb). Bases in the original sequence are distinguished by the gray stripes in the heatmap cells.  
 
Case 2: Developing a new architecture and comparing performance across architectures 

In another use case, a researcher may want to develop and train a new model architecture. 
For example, a bioinformatician might want to modify a published model architecture to see how 
that affects performance. First, the researcher uses modules in PyTorch to specify the model 
architecture they are interested in evaluating; in this case study, they try to enhance the DeepSEA 
architecture with batch normalization and three additional convolutional layers. The researcher 
specifies parameters for training and the paths to the model architecture and data in a 
configuration file and passes this as input to the library’s command-line interface. Training is 
automatically completed by Selene; afterwards, the researcher can easily use Selene to compare 
the performance of their new model to the original DeepSEA model on the same chromosomal 
holdout dataset.  

In this case study, the researcher finds that the deeper architecture achieves an average 
AUC of 0.938 (Fig. 3a) and an average AUPRC of 0.362, which is an improvement over the 
average AUC of 0.933 and AUPRC of 0.342 of the original 3-convolutional-layer model. The 
researcher can share this model with a collaborator (e.g. a human geneticist, see case study 3 
below) and upload it to the Kipoi13 model zoo, a repository of trained models for regulatory 

a bSelene-generated model performance In silico mutagenesis on GATA1 sequences (Selene-generated heatmaps)

original base at position
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genomics, with which Selene-trained models are fully compatible (see an example at 
https://github.com/FunctionLab/selene/tree/master/manuscript/case2/3_kipoi_export).  

Using Selene, researchers can substantially reduce the amount of work needed to 
develop, train, and compare new models. Researchers are able to focus on experimenting with 
various model architectures rather than writing all new code for model training and evaluation.  
 
Case 3: Applying a new model to variants 
 In this case study, a human geneticist studying Alzheimer’s wants to apply the model 
developed in case study 2 above, so they first assess its ability to prioritize potential disease-
associated variants. Specifically, they use Selene to make variant effect predictions for nominally 
significant variants (p-value < 0.05) and nonsignificant variants (p-value > 0.50) in the 
International Genomics of Alzheimer’s Project15 Alzheimer’s disease GWAS16. The researcher 
finds that the predicted effect is significantly higher for GWAS nominally significant variants 
versus non-significant variants, indicating that the new model is indeed able to prioritize 
potential disease-associated variants (one-sided Wilcoxon rank-sum test, most significant feature 
H3K36me3 in K562 cells has an adjusted p-value, by Benjamini—Hochberg correction, of 3.89 
✕ 10-67) (Fig. 3b). 
 

 
Figure 3. (a) Selene visualization of the performance of the trained model from case-study 2. (b) 
The trained model, on average, predicts greater differences for nominally significant variants (p-
value < 0.05) in the IGAP early onset Alzheimer’s GWAS study compared to those that are 
nonsignificant (p-value > 0.50). Here we visualize the mean and 95% confidence intervals of the 
quantile-normalized (against the Gaussian distribution) predicted effect scores of the 2 variant 
groups for the genomic feature H3K36me3 in K562 cells, the feature in the model with the most 

a bSelene-generated model performance Mean difference between SNP groups
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significant difference (one-sided Wilcoxon rank-sum test, adjusted p-value using Benjamini—
Hochberg of 3.89 ✕ 10-67). After applying the multiple testing correction, 914 of the 919 features 
the model predicts showed a significant difference (ɑ < 0.05) between the groups.  
 

Selene’s modeling capability extends far beyond case studies shown above. The library 
can be applied to not only DNA, but also RNA and protein sequences; and not only chromatin 
data, but any current genome-, transcriptome-, or even proteome-wide measurements. We 
developed Selene to increase the accessibility of deep learning in biology and facilitate the 
creation of reproducible workflows and results. Furthermore, Selene is open-source software that 
will continue to be updated and expanded based on community and user feedback.  

 
Methods 
Overview of Selene 

Selene consists of two components: a Python library for developing sequence-level 
neural networks, and a command line interface for prototypical use cases of the library (i.e. 
training a new model, evaluating an existing model, and analyzing sequence data and variants 
with a trained model). We herein refer to these components as the software development kit 
(SDK) and the command line interface (CLI) respectively.  Importantly, all functionality 
provided by the CLI is also available to the user through the SDK. Rather than supplanting the 
SDK, the CLI is intended to maximize code reuse and minimize user time spent learning SDK by 
heavily reducing the configuration tasks left to the user (e.g. when GPU usage is specified, the 
CLI ensures all appropriate computations are performed on the GPU). When appropriate, the 
SDK does deliver functionality beyond that of the CLI. For instance, the SDK includes several 
data visualization methods that would be too unwieldy as executables run from the command 
line.  

Thorough documentation for the SDK is available at https://selene.flatironinstitute.org, 
and tutorials for both the CLI and SDK can be found at 
https://github.com/FunctionLab/selene/tree/master/tutorials. Notably, one tutorial demonstrates 
how to use Selene to train a deep neural network regression model 
(https://github.com/FunctionLab/selene/blob/master/tutorials/regression_mpra_example/regressi
on_mpra_example.ipynb). This tutorial illustrates Selene’s use outside of the models of 
transcriptional regulation shown in the case studies.  
 
Selene software development kit 

The Selene SDK, formally known as selene_sdk, is an extensible Python package 
intended to ease development of new programs that leverage sequence-level models through 
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code reuse. The Selene CLI is built entirely upon the functionality provided by the SDK, but it is 
likely that users will use the SDK outside this context. For example, after training a new 
sequence-level model with the CLI, one could use the SDK in conjunction with a Python-based 
web application framework (e.g. Flask, Django) to build a web server so that other researchers 
can submit sequences or variants and get the trained model’s predictions as output. 

Leveraging the SDK in a user Python project is no different from using any other Python 
module. That is, one only needs to import the selene_sdk module or any of its members, and 
supply them with the correct parameters. The runtime behavior of each component of 
selene_sdk, as well as the required parameters for all members of selene_sdk, is described in 
detail in the online documentation (https://selene.flatironinstitute.org/overview/overview.html). 
 
Selene command line interface 

The Selene CLI is a usable program to be run from the command line by the user. It 
encapsulates the configuration, execution, and logging of Selene’s most common use cases. Said 
use cases are embodied by the CLI’s three commands: train, evaluate, and analyze. These 
commands are used to train new models, evaluate the performance of trained models, and 
analyze model predictions (perform in silico mutagenesis or variant effect prediction) 
respectively. Each command configures its specific runtime environment with a combination of 
command line arguments and parameters drawn from user-provided configuration files. The 
flexibility of these configuration files allows them to leverage user-developed code as well, and 
further extends the usability of the CLI. We provide a step-by-step tutorial that describes the CLI 
configuration file format and shows some example configuration keys and values at 
https://github.com/FunctionLab/selene/blob/master/tutorials/getting_started_with_selene/getting
_started_with_selene.ipynb. Additional examples of CLI configuration files are available at 
https://github.com/FunctionLab/selene/tree/master/config_examples as well. Finally, 
comprehensive documentation detailing all possible configurations supported by Selene can be 
found at https://selene.flatironinstitute.org/overview/cli.html. Users can reference any of these 
resources when creating their own configuration files.  
 
Model Architectures 
 DeepSEA architecture used in case 1 (from the supplementary note in the DeepSEA 
publication4):   

1. Convolutional layer (320 kernels, window size = 8, step size = 1) 
2. Pooling layer (window size = 4, step size = 4) 
3. Convolutional layer (480 kernels, window size = 8, step size = 1) 
4. Pooling layer (window size = 4, step size = 4) 
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5. Convolutional layer (960 kernels, window size = 8, step size = 1) 
6. Fully connected layer (919 genomic features) 
7. Sigmoid output layer 

 
       Dropout proportion (proportion of outputs randomly set to 0): 
  Layer 2: 20% 
  Layer 4: 20% 
      Layer 5: 50% 
  All other layers: 0% 
 
 Architecture used in cases 2 and 3: 

1. Convolutional layer (320 kernels, window size = 8, step size = 1) 
2. Convolutional layer (320 kernels, window size = 8, step size = 1) 
3. Pooling layer (window size = 4, step size = 4) 
4. Convolutional layer (480 kernels, window size = 8, step size = 1) 
5. Convolutional layer (480 kernels, window size = 8, step size = 1) 
6. Pooling layer (window size = 4, step size = 4) 
7. Convolutional layer (960 kernels, window size = 8, step size = 1) 
8. Convolutional layer (960 kernels, window size = 8, step size = 1) 
9. Fully connected layer (919 genomic features) 
10. Sigmoid output layer 

  
      Dropout proportion: 
  Layer 5: 20% 
  Layer 8: 50% 
      Batch normalization applied after layers 2, 5, and 8 and before dropout.  
 
Both architectures use the binary cross-entropy loss function and stochastic gradient descent 
optimizer (momentum = 0.9, weight decay = 10-6). 
 
Reproducing the case studies 

Below, we have described the steps taken for each of the case studies.  The code required 
to reproduce each case study is included in the GitHub repository 
(https://github.com/FunctionLab/selene/tree/master/manuscript). We have also created Zenodo 
records for each case that contain all the input data, data processing scripts, and outputs files 
generated from Selene: 
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• Case 1. doi:10.5281/zenodo.1442433 
• Case 2. doi: 10.5281/zenodo.1442437 
• Case 3. doi: 10.5281/zenodo.1445555 

 
Case 1: Training a state-of-the-art architecture on a different dataset 
Steps to train DeepSEA on new data. 

1. Download the data from Cistrome. In this case, we are only working with 1 dataset for 1 
specific genomic feature. 
    Cistrome ID: 33545, measurements from GSM970258 (Xu et al., 2012): 
http://dc2.cistrome.org/api/downloads/eyJpZCI6IjMzNTQ1In0%3A1fujCu%3ArNvWLC
NoET6o9SdkL8fEv13uRu4b/ 

2. Format the data. We use tools from Samtools17 (specifically, tabix18 and bgzip from 
HTSlib, https://www.htslib.org/). Create a .bed file of chromosome, start, end, and the 
genomic feature name (useful when there is more than 1 feature). Sort this file and 
compress it into a .gz file. Tabix-index this file. Specific commands: 

a. Only use the columns [chr, start, end]: 
    cut -f 1-3 <peaks-file> > <peak-coordinates-file> 
Note: Eventually, we will add support for parsing BED files with strand specific 
features and/or continuous values that quantify these features. 

b. Add the genomic feature name as the 4th column of the file: 
    sed -i "s/$/\t<feature-name>/” <peak-coordinates-
file> 

c. Sort the file by [chr, start, end]: 
    sort -k1V -k2n -k3n <peak-coordinates-file> > 
<sorted-coordinates-file> 

d. Compress the file: 
    bgzip <sorted-coordinates-file> 
This compresses the file to a .gz file in-place. To separately generate the .gz file, 
run 
    bgzip -c <sorted-coordinates-file> > <sorted-
coordinates-file>.gz 

e. Tabix index the file: 
    tabix -p bed <sorted-coordinates-file>.gz 

3. Create a file of distinct features that the model will predict, where each feature is a single 
line in the file. This can easily be created from the .bed file in step 2 by running: 
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    cut -f 4 <peak-coordinates-file> | sort -u > <distinct-
features> 

4. Download the GRCh38/hg38 FASTA file. We downloaded the reference sequences 
GRCh37/hg19 and GRCh38/hg38 used in our analyses from ENCODE: 
https://www.encodeproject.org/data-standards/reference-sequences/.  

5. Specify the model architecture, loss, and optimizer as a Python file. This is done for you 
in the case of DeepSEA: 
https://github.com/FunctionLab/selene/blob/master/models/deepsea.py 

6. Fill out the configuration file with the appropriate file paths and training parameters. We 
recommend starting from one of the example training files in the tutorials (e.g. 
https://github.com/FunctionLab/selene/blob/master/tutorials/getting_started_with_selene/
getting_started_with_selene.ipynb) or in the “config_examples” directory 
(https://github.com/FunctionLab/selene/tree/master/config_examples). You can also 
review the documentation for the configuration parameters on Selene’s website 
(https://selene.flatironinstitute.org/overview/cli.html). 

7. Run Selene. 
 
Steps to apply and visualize the results of in silico mutagenesis. 

1. Collect sequences you want to visualize as a FASTA file. For this particular case, we 
provide a script to do so (https://zenodo.org/record/2214130/files/data.tar.gz). 

2. Fill out the configuration file with the appropriate file paths (path to the FASTA file, 
information about the trained model). 

3. Run Selene. You will get the raw predictions and the log2 fold change scores as output 
files. 

4. Follow one of the Jupyter notebook tutorials for in silico mutagenesis 
(https://github.com/FunctionLab/selene/tree/master/tutorials) to generate visualizations 
for the sequences. We have done this in 
https://github.com/FunctionLab/selene/blob/master/manuscript/case1/3_visualize_ism_ou
tputs.ipynb.  

 
Case 2: Developing a new architecture and making model comparisons 
Steps to train “deeper DeepSEA” on the same exact data as DeepSEA. 

1. Download the code and data bundle from the DeepSEA website 
(http://deepsea.princeton.edu/media/code/deepsea_train_bundle.v0.9.tar.gz). You only 
need the .mat files in this directory. We also include a file listing the 919 genomic 
features that the model predicts. This is from the resources directory in the standalone 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 14, 2018. ; https://doi.org/10.1101/438291doi: bioRxiv preprint 

https://doi.org/10.1101/438291
http://creativecommons.org/licenses/by-nd/4.0/


12 

version of DeepSEA (http://deepsea.princeton.edu/media/code/deepsea.v0.94b.tar.gz). 
Zenodo record: https://zenodo.org/record/2214970/files/DeepSEA_data.tar.gz.  

2. Fill out the configuration file for Selene’s MultiFileSampler 
(https://selene.flatironinstitute.org/overview/cli.html#multiple-file-sampler) and specify 
the path to each .mat file for training, validation, and testing. 

3. Run Selene. 
Please see the DeepSEA publication for details about data processing and training: 
https://www.nature.com/articles/nmeth.3547#methods. 
In the main text, we report test performance for the model trained using the online sampler. 
When training on the same exact data (the .mat files) as DeepSEA, we achieve an average AUC 
of 0.934 and an average AUPRC of 0.361. 
 
Steps to download and format all the peaks data from ENCODE and Roadmap 
Epigenomics. 

1. Download all chromatin feature profiles used for training DeepSEA, specified in 
Supplementary Table 1 of the DeepSEA manuscript 
(https://media.nature.com/original/nature-
assets/nmeth/journal/v12/n10/extref/nmeth.3547-S2.xlsx). We have done this for you 
(https://zenodo.org/record/2214970/files/chromatin_profiles.tar.gz).  

2. For each file, keep the chromosome, start, and end columns. In addition, create a fourth 
column with the feature’s name. Concatenate all these files and create the distinct 
features file. We provide a Python script for this step 
(https://github.com/FunctionLab/selene/blob/master/manuscript/case2/1_train_with_onlin
e_sampler/data/process_chromatin_profiles.py).  

3. Format the data according to the instructions in the “Getting started” tutorial: 
a. Sort the file by [chr, start, end]: 

    sort -k1V -k2n -k3n <peak-coordinates-file> > 
<sorted-coordinates-file> 

b. Compress the file: 
    bgzip <sorted-coordinates-file> 
This compresses the file to a .gz file in-place. To separately generate the .gz file, 
run 
    bgzip -c <sorted-coordinates-file> > <sorted-
coordinates-file>.gz 

c. Tabix index the file: 
    tabix -p bed <sorted-coordinates-file>.gz 
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https://github.com/FunctionLab/selene/blob/master/manuscript/case2/1_train_with_onlin
e_sampler/data/process_data.sh 

4. Download the hg19 FASTA file 
(https://www.encodeproject.org/files/male.hg19/@@download/male.hg19.fasta.gz).  

5. Specify the model architecture, loss, and optimizer as a Python file: 
https://github.com/FunctionLab/selene/blob/master/selene_sdk/utils/example_model.py 

6. Fill out the configuration file with the appropriate file paths and training parameters. We 
set the training parameters (number of steps, batches, etc.) so that they matched how 
DeepSEA was originally trained. 

7. Run Selene.  
 
Case 3: Applying a new model to variants 

1. Download the SNPs from the International Genomics of Alzheimer’s Project. 
(https://www.niagads.org/igap-age-onset-survival-analyses-p-value-only) 

2. Group the variants into those with p-values below 0.05 (significant) and those with p-
values above 0.50 (nonsignificant). 

3. Fill out the configuration file with the paths to the two variants files and the trained 
model weights file from Case 2. 

4. Run Selene. 
5. Follow the script provided for this case to analyze the variant predictions 

(https://github.com/FunctionLab/selene/blob/master/manuscript/case3/2_variant_groups_
comparison.sh).  

 
Code and Data Availability 
Code 
Project homepage: https://selene.flatironinstitute.org 
GitHub: https://github.com/FunctionLab/selene 
Archived version: https://github.com/FunctionLab/selene/archive/0.2.0.tar.gz  
 
Data sources 
Cistrome14  
Cistrome file ID: 33545, measurements from GSM970258 (Xu et al., 2012) 
http://dc2.cistrome.org/api/downloads/eyJpZCI6IjMzNTQ1In0%3A1fujCu%3ArNvWLCNoET6
o9SdkL8fEv13uRu4b/ 
 
ENCODE19 and Roadmap Epigenomics20 chromatin profiles 
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Files listed in https://media.nature.com/original/nature-
assets/nmeth/journal/v12/n10/extref/nmeth.3547-S2.xlsx 
  
IGAP age at onset survival15,16 
https://www.niagads.org/datasets/ng00058 (p-values only file) 
 
Processed datasets from these sources are available at the following Zenodo links:  

Cistrome: 
      https://zenodo.org/record/2214130/files/data.tar.gz  
ENCODE and Roadmap Epigenomics chromatin profiles: 
      https://zenodo.org/record/2214970/files/chromatin_profiles.tar.gz  

       IGAP age at onset survival:  
      https://zenodo.org/record/1445556/files/variant_effect_prediction_data.tar.gz  
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