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Abstract

Real-time, closed-loop experiments can uncover causal relationships between specific neural
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activity and behavior. An important advance in realizing this is the marked point process

filtering framework which utilizes the ”mark” or the waveform features of unsorted spikes, to

construct a relationship between these features and behavior, which we call the encoding

model. This relationship is not fixed, because learning changes coding properties of individual

neurons, and electrodes can physically move during the experiment, changing waveform

characteristics. We introduce a sequential, Bayesian encoding model which allows

incorporation of new information on the fly to adapt the model in real time. A possible

application of this framework is to the decoding of the contents of hippocampal ripples in rats

exploring a maze. During physical exploration, we observe the marks and positions at which

they occur, to update the encoding model, which is employed to decode contents of ripples

when rats stop moving, and switch back to updating the model once the rat starts moving

again.

Introduction

Neuroscience experiments are increasingly focused on the coordinated activity of neural

populations and how it represents information about biological and behavioral signals.

Statistical models of the population neural code allow information about these biological or

behavioral signals to be inferred from the simultaneously observed spiking activity of the

population. Neural population activity is typically observed extracellularly, with electrodes

picking up multi-unit activity whose neural identities are unknown a priori. Knowing or

estimating the neural identity of spikes is generally important for understanding the coding

properties of individual neurons, but there has been increasing interest in statistical models of
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the coding properties of populations that do not require a spike estimation, or sorting, step.

If the nearby neurons code for similar features [1], a simple statisical model may be created

directly from unsorted multi-unit activity that can decode nearly as well as models using

sorted single units [2, 1, 3, 4, 5, 6], making real-time decoding with spikes feasible. However,

in cases where nearby neurons do not encode similar features, simple models based on

multi-unit activity perform poorly compared to separate models for each neuron, requiring a

computationally expensive spike sorting step [7], before fitting a model that collectively

describe the population activity. For example, hippocampal activity recorded on a single

tetrode will often yield multiple place cells whose place fields do not overlap at all, requiring

spike sorting to extract spatial information from population data. New experimental designs

that require closed-loop estimation and stimulation necessitates a new approach toward

modeling population activity in a real-time setting.

The point process framework has been used extensively to model the activity of individual

neurons [8, 9, 10, 11] once spikes have been sorted, requiring two independent steps. For

population activity, modeling each spike train as separate point processes and including

spiking history of other neurons in the population as covariates allows the modeling of the

dependencies in the population [11, 12, 13], though cannot account for biologically relevant

instantaneous joint spiking events [14, 15, 16]. An extension of the point process framework

being increasingly applied to neural data analysis, the marked point process model [17],

which can account for instantaneous joint spiking events [18], and has also allowed

characterization of spikes according to waveform and the modeling of the populations to be

done in single, integrated step. This approach, sometimes known as clusterless encoding and

decoding [19, 20, 21, 22], where a joint model for the firing intensity dependent on waveform
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and stimulus features, behavioral variables or in hippocampal recordings, spatial position, the

joint mark intensity function (JMIF) is estimated simultaneously in one step, allowing a

streamlined real-time analysis pipeline.

While spike sorting methods have also improved in speed and accuracy [23], there are

other advantages the clusterless method might have for modeling and decoding applications.

Sorting introduces decoding errors when neural identities are determined by hard decision

boundaries, and spikes with ambiguous waveforms may be classified incorrectly, in contrast

to probabilistic assignment of spikes [24, 25, 19, 20]. Ambiguous waveforms in the

clusterless method are automatically less informative to the decoder [20], making them less

likely to cause large errors, and more suited to real-time decoding applications.

However, there are still practical issues which must be addressed with the clusterless

method. First, the class of models typically used for the JMIF have been non-parameteric,

resulting in an ever-increasing model size as new data becomes available. When tens to

hundreds of thousands of spikes from a population are available, the computational cost of

computing the model estimates may preclude real-time and closed-loop analyses. Second,

neural firing properties are generally non-stationary; this may be due to changes in the spike

waveforms from individual neural due to mechanical instability of electrodes or changes in

background noise statistics, or due to biologically relevant changes in tuning properties of

individual neurons or the population as with learning and plasticity [26].

For models of sorted spike train, a number of approaches for these issues have been

addressed in part by spike sorting and clusterless algorithms. In online, real-time settings,

spiking and behavioral data arrive as they become available, and non-parametric estimation

methods like the kernel density estimate, linearly increase in size with additional data.
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Sodkomkham et al [21] have added heuristic rules for merging new spikes to existing clusters

in the position-mark space based on the Mahalanobis distance between them to keep model

size from growing as more spikes arrive, making decoding possible in real time even when

training data is large. However, the fitting procedure treats space and waveform features

equally without accounting for nonuniform sampling of space, making accommodation for

nonstationarity of the JMIF more challenging. Nonstationarity of spike waveforms due to the

mean waveform changing over longer timescales, possibly due to sometimes abrupt electrode

drift and/or biological or background noise changes [26], can cause sometimes drastic

changes in the statistics of the signal. Spike sorting algorithms account for nonstationarity of

waveform features and can accommodate appearance and disappearance of

neurons [27, 28, 29], but do not support online update of the model. Nonstationarity manifests

also in non-spike sorted brain computer interface applications, and investigators have

automated the recalibration by taking advantage of the relatively invariant low-dimensional

manifold for which the neural spiking noisely codes for [5] or by taking advantage of very

long histories of neural-to-kinematic mappings by using nonlinear multiplicative recursive

neural networks [6]. Our contribution, the joint mark intensity function is sequentially updated

mixture of Gaussians (JOYFULMoGs), builds on the marked point process framework by

addressing these disparate issues using an adaptive mixture of Gaussians structure for the

JMIF model, with time-varying parameters estimated under a comprehensive Bayesian

framework. The mixture of Gaussians is a parsimonious choice for the model class, which

requires much fewer parameters than an alternative model class such as multidimensional

splines, particularly with each additional mark and spatial dimension. One application area

for JOYFULMoGs is for real-time estimation of hippocampal replay events during navigation
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tasks. Hippocampal replay involves the reactivation of patterns of spiking activity during rest

periods that occurred previously during active exploration, and the informational content of

this activity likely changes throughout the course of an experiment, necessitating the need for

models that can be estimated, updated and adapted in a computationally efficient manner in

real time. Under JOYFULMoGs, the encoding model would be updated through each period

of active exploration, and the resulting model would be used to estimate replay content during

the rest periods. Note that these rest periods could be periods of sleep between experimental

epochs or they could be brief pauses between exploration within an experimental epoch.

While building the full real-time decoder of hippocampal replay and deploying it in

experiment is beyond the scope of this paper, we illustrate the application of JOYFULMoGs

to real offline data from rat hippocampus by addressing a simpler problem to illustrate the

framework. We will divide an extended period of active exploration into a sequence of shorter

epochs, and alternate between adapting the encoding model in the first half of the epoch, and

using that model to decode the actual movement of the rat in the second half of the epoch.

The halves need not be of equal temporal duration. We call the nth encoding/decoding epoch

In, which contains an encoding Ie
n, followed by a decoding Id

n, period. Both the spike

waveforms (the marks) and behavior observed during Ie
n are used to update the model at the

end of Ie
n, and the marks observed from during Id

n will be decoded at the end of Id
n and

compared with actual movements the animal made. Our model is able to handle ”appearance”

and ”disappearance” of neurons and receptive fields, as well as drifts in receptive field

location, firing rate and tuning widths and changes to the spike waveforms. The estimated

posterior from Ie
n is incorporated as a prior for the same parameters in Ie

n+1. Decoding with

this model is computationally inexpensive as there are only a small number of parameters, and
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model size is kept constant even as new data arrives. Uncertainty can be added to the posterior

distribution when it is carried over as a prior in to the next Ie
n+1, to accommodate statistical

changes in receptive fields and recording quality as the experiment progresses [30, 31].

The paper is organized as follows. In the Methods section, we motivate sequential updating

of the encoding model, and introduce notation used throughout the paper. We then describe

the 2-step Gibbs sampling procedure, and derive the conditional posterior distributions for

each of the model parameters. We also describe how uncertainty is added to the estimated

posteriors when they are used as priors for the next epoch, and also how the number of

clusters is updated. After describing the model, we describe a simulation of a rat running

though a circular maze and simulated place field activity, before demonstrating

JOYFULMoGs on dynamic simulated place fields and on actual experimental data,

comparing how our method works in data settings where the data is likely to be very dynamic

with changing neural representation during the experiment, and a setting where the

representation is not expected to change as much.

Methods

Real-time decoders of neural activity must incorporate continually arriving new data into the

encoding model, as refitting the model from scratch every time new data arrives would be

computationally expensive. Further, during the experiment, changes to the neural activity

might cause some features of the encoding properties to disappear, while new features may

appear, and signal and noise statistics of the spike waveforms on the electrodes may change as

electrodes physically move. Fitting without regards to time would overestimate variability in
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the signal due to these sorts of longer-timescale trends. We propose to address these two

concerns using sequential Bayesian updates to the JMIF. Since the experimental design

involves interleaved periods of encoding and decoding, instead of updating with each new

spike, we accumulate spikes over a period of continuous physical movement. All of the data

that have arrived by the nth epoch, Y n = {Y1, Y2, ...Yn}, come in packets, and at the end of

each Ie
n, we combine the likelihood from the spikes and trajectory, Yn, observed during Ie

n,

with the summary of the current state of the encoding model, the posterior from Ie
n−1,

p(Θ|Y n−1), interpreted as a prior, to sequentially update the encoding model, Fig. 1. The

posterior distribution at the end of Ie
n is then, by Bayes Rule,

p(Θ|Y ) ∝ p(Yn|Θ, Y n−1)p(Y n−1|Θ)p(Θ) ∝ p(Yn|Θ)p(Θ|Y n−1). (1)

New data is combined with the prior knowledge p(Θ) for the first epoch or p(Y n|Θ)p(Θ) for

the nth epoch, allowing a continual update of our estimate of Θ by incorporating new data Y

as it becomes available in real time. The posterior from Ie
n−1 may be used as a prior for Ie

n

without change, or we may systematically add variance to this prior to keep the prior variance

from becoming so small that new evidence provided by the most recent spikes, fails to allow

the model to follow longer time-scale non-stationarities in the data.

We seek to characterize the place-specific firing of electrophysiologically recorded cells on

K channels from rat hippocampus while it explores a maze with a trajectory xt. Because

individual neurons with 1 or more distinct place fields presumably generated the neural

activity, position and K-dimensional mark of spikes often appear clustered when plotted

simultaneously, Fig. 2. Previous work used a non-parametric kernel density estimation to
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estimate this λ(t,m) [19, 20]. Here, we approximate it as a mixture of C Gaussians

λ(t,m) =
∑C

c λc(t,m), with Gaussian components

λc(t,m) =
λ0,c√

(2π)K+1σ2
c |Σc|

exp

[
−(xt − fc)

2

2σ2
c

− 1

2
(m− µc)

TΣ−1
c (m− µc)

]
. (2)

The hyperparameters for the centers are µfc , σ2
fc

, µµc , and Σµc , for the widths are ασ2
c
, βσ2

c
,

νΣc and ΨΣc , and those for the intensities are αλ0,c and βλ0,c

position

time

“marks”

I I1 1
e d I I2 2

e d I I3 3
e d

Figure 1: Schematic of experimental design with alternating episodes of encoding and decod-
ing. Ticks at the top represent unsorted spikes or ”marks”, whose varying lengths represent a
waveform feature, e.g. spike amplitude. Below the marks, trajectory in blue is plotted, with
solid lines representing physical movement, and dotted lines representing physical or replayed
movement. Straight black lines beneath the trajectory represent time periods. Initial encod-
ing model is created at the time point represented by the open circle, with prior information
provided by the experimenter, using accumulated spikes and physical trajectory observed in
Ie
1, Y1. Movements or contents of hippocampal replays (sharp wave ripple as orange squiggle)

occurring during Id
1 can be decoded by plugging the spikes occurring during replay into the

initial encoding model. When the animal starts moving again during Ie
2, once again, spikes and

physical trajectory observed during Ie
2, Y2, are used to the update the initial encoding model at

the time point represented by the open circle, by using the initial model, p(Θ|Y 1) as a prior to
be combined with the likelihood of the data observed during Ie

2. The encoding model is used
again to decode movements or hippocampal replay contents occuring during Id

2.

Fitting procedure: Gibbs sampling

In Ie
n, we observe Yn = {∆N,M,x} in T discrete time bins. ∆N is a vector of size T

indicating how many spikes ≥ 0, are observed in each of the T time bins. M is a vector of
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size T , whose tth entry is a matrix of size ∆Nt ×K containing the ∆Nt ≥ 0 marks of

dimension K of the observed spikes. x is a vector of size T , and is the trajectory of the animal

during this epoch. Initially when n = 0, a guess is made as to the number MG and locations of

(spatial-mark) clusters that are present in the data, to initialize the Gibbs sampler. We

initialize with M components slightly larger than MG, and for the clusters with indices

> MG, we randomly set their centers and widths to be random values. For the other

components c, we use sample statistics for Θc as starting parameter values. However, we

leave the priors for all the Θ broad to express our uncertainty in their values.

The Gibbs sampling involves repeating two steps: the stochastic allocation of all spikes

into clusters given current parameter values, followed by the conditionally independent

sampling of the parameters of each cluster given the assignments in the previous step [32].

Typically in Gibbs sampling in a model with parameters Θ and data Y , the θ ∈ Θ are sampled

sequentially in each Gibbs iteration, from the conditional posterior p(θ|Y, Θ\θ). The

conditional posterior is obtained by combining the likelihood p(Y |θ, Θ\θ) with all Θ\θ

regarded as constant, and a prior conjugate to this likelihood. After a large number of

iterations (we choose 15,000) to sample an empirical posterior distribution, model parameter

values are commonly read off using the empirical mean, mode or median. Here we choose the

empirical median. JOYFULMoGs then uses the empirical posterior distribution as a prior for

Θ when updating the model with new data in the next epoch. In order to do this, we fit the

marginal empirical distributions of each parameter θ with the distribution conjugate to the

likelihood with all Θ\θ constant, using maximum likelihood to find its hyperparameters. This

approximation of the posterior distribution by marginalization is reasonable, because when

samples of a parameter pair (x, y) are examined from the marginalized empirical distribution
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p(x, y) =
∫

p(Θ)dΘ\(x,y)), the samples often appear to have little correlation, suggesting that

the joint distribution of the parameters Θ are nearly independent and the product of the

marginal posteriors should be a good approximation to the joint posterior distribution1. We

also note that not all of the parameters used in mixture of Gaussians JMIF have a likelihood

with such a conjugate prior (notably fc and
√

σ2
c ). In those cases, we explain our choice of

prior in the following section.

Stochastic allocation into clusters

Conditioned on fixed parameter values Θ, a stochastic assignment of S =
∑T

t=0 ∆Nt

observed marks into C clusters is performed. Because more than 1 spike may be observed in a

time bin, we introduce notation #(t, w), which maps the time bin number and the spike index

within that bin to a single integer index ∈ [0, S]. A single row of the indicator matrix Z has 0s

in C − 1 columns, and a 1 in the column corresponding to the cluster to which this mark

belongs, so Sc =
∑

t

∑∆Nt

w z#(t,w),j=c is the number of marks assigned to cluster c. The

probability of assignment of the wth mark in time bin t to the 1st cluster is

p(z#(t,w) = [1, 0, 0...]|Θ, xt,mt,w) =
λ0,1N(xt,mt,w|f1, σ

2
1, µ1,Σ1)∑

λ0,jN(xt,mt,w|fj, σ2
j , µj,Σj)

. (3)

1A notable exception occurs when a cluster’s
√

σ2
c is wider than the width of the sampled

trajectory, W . σ2
c strongly constrains the conditional posterior for λc, yet for widths much larger

than W , the shape of the cluster in that observable space is barely affected by any particular
choice of value of

√
σ2

c � W , inducing a strong correlation between the samples of
√

σ2
c and

lambda0,c. However, most informative clusters have
√

σ2
c � W than the whole of sampled

space, and this correlation with the intensity is not observed.
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Once z is assigned, fitting the parameters of each individual cluster can proceed

independently of all other clusters.

A B

position position

ch
1 

am
p

ch
2 

am
p

ch
2 

am
p

ch1 amp

-6.0 0.0 6.0
0.0

3.31

6.62

-6.0 0.0 6.0
-0.62

2.63

5.89

0.0 3.31 6.62
-0.62

2.63

5.89

Figure 2: A) The trajectory of a simulated rat over a circular track, x parameterized from [−6 :
6]. Orange dots overlayed are the time and location where an unsorted spike was observed.
Rat traverses track in stops and starts. B) Top 2 rows, position vs. channel 1 or 2 and bottom
row, channel 1 vs. channel 2 plot of observed marks plotted on top of marginalized JMIF.
Note that the center of the scattered marks does not coincide with the fitted clusters due to the
non-uniformity of the trajectory.

Sampling the parameters Θ

Conditioned on the assignments Z made in the previous step, parameters Θ are sampled. The

likelihood of observing ∆Nt marks at time t is

P (∆Nt,mt|xt, Θ,Z) ∝


exp[−∆Λ(xt)], ∆Nt = 0

∏∆Nt

i λc(xt,mt,i)∆ exp[−∆Λ(xt)] ∆Nt ≥ 1

(4)

where

Λ(xt) =

∫
λ(xt,m)dm =

∑
c

Λc(xt) =
∑

c

∫
λc(xt,m)dm (5)
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is the marginalized JMIF. We wish to estimate the parameters Θ = {λ0,c, fc, σ
2
c , µc,Σc}. The

likelihood of observing the marks {∆N,M} given the trajectory xt and cluster assignments Z

is

P (∆N,M|Θ,x,Z) ∝

 BS∏
b=1

∆Nsb∏
w=1

∆λ(xsb
,mbw)

 T∏
j=1

exp[−∆Λ(xj)] (6)

∝

 BS∏
b=1

∆Nsb∏
w=1

∑
z#(b,w)

∏
c

[λc(xsb
,m)]z#(b,w),c

∏
c

exp

[
−∆

T∑
j

Λc(xj)

]
.

For the last exponential term, we exchange order of the product of terms evaluated at multiple

timepoints (and positions) with the sum over all the Gaussian components, to obtain the last

line. Rewritten, we see each component in the product can be approximated as

exp
[
−∆

∑T
j Λc(xj)

]
≈ exp [−∆

∑
i N(xi|fc, σ

2
c )hi]

λ0,c , whose argument is a roughly a

convolution of a Gaussian with mean fc and variance σ2
c with the spatial occupation density.

Convolutions are expensive to calculate at every Gibbs iteration, but this simple rearrangement

allows us to approximate this term by calculating the convolution over a 2-dimensional grid of

means and variances once before the start of Gibbs sampling, and doing lookups for specific

values of f and σ2. To emphasize our computational approach, we write this term as

exp [−Ve(fc, σ
2
c )]

λ0,c , with the e emphasizing that, while this function changes each epoch, its

evaluation is generic across all C clusters once the path traversed in the epoch is given. This

term takes into account the nonuniform animal trajectory, Fig. 2. Absent this term, if the

animal moved very slowly through a region on the outskirts of a place field of a place cell, but

quickly moved through the center of a place field of the same cell, the estimate of the place

13

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 13, 2018. ; https://doi.org/10.1101/438440doi: bioRxiv preprint 

https://doi.org/10.1101/438440
http://creativecommons.org/licenses/by-nc-nd/4.0/


field center would be biased to the outskirts. The z#(b,w) in the exponent in Eq. 6 groups terms

by cluster assignment of the spikes, so that the expressions for the C conditional likelihoods

for each cluster only involve spikes assigned to those clusters. Thus once an assignment is

made, the sampling for each of the C cluster parameters can proceed independently.

Samples for a parameter θ are drawn from the conditional posterior distribution for θ,

which can be calculated by multiplying by the likelihood and the prior that are both calculated

at fixed values of all parameters except θ. In what follows, we will simply write p(Yp|θ,x) as

a shorthand for the likelihood in which all other parameters except θ, are fixed, and will

assume the joint posterior to be multiplicatively separable. The sequential updating scheme

depends on using conjugate priors in order that the posterior will have the same form as the

prior, Fig. 3, so we parametrically characterize the marginal posteriors of each parameter

using the distribution class of its conjugate prior, which in practice is often a good assumption.

Not all parameters have likelihoods with a conjugate prior due to the presence of the

exponential term, and for these, we will use the conjugate prior of the other term, under the

assumption that the exponential term does not alter the shape of the distribution very much.

Sampling cluster intensity λ0,c

Treating all other parameters besides λ0,c as constants, the likelihood Eq. 6 is

P (∆N|λ0,c,x) ∝ λSc
0,ce

−λ0,cβ , where β = Ve(fc, σ
2
c ). The conjugate prior is the Gamma

distribution Gamma(αλ0,c , βλ0,c), where αλ0,c , βλ0,c are the posterior hyperparameters from the

previous epoch. The conditional posterior from which we sample is then the Gamma

distribution Gamma(Sc + 1 + αλ0,c , β + βλ0,c), and the resulting posterior samples of λ0,c, are

well fit by a Gamma distribution, Fig. 3, middle column.

14

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 13, 2018. ; https://doi.org/10.1101/438440doi: bioRxiv preprint 

https://doi.org/10.1101/438440
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3: 3 selected chains of spatial and intensity parameters (fc, λc, σ2
c )from 3 typical clus-

ters. The parameters are shown as samples from the chain from the start of the Gibbs procedure
(grey), with samples deemed to be drawn from stationary distribution overlayed in black, start-
ing at iteration Sc. Histograms of the stationary samples are shown to the right, with a fit by
the model class of the conjugate prior (red). The assessment for stationary samples is done on
a cluster by cluster basis.

Sampling cluster spatial center fc

The likelihood Eq. 6 with terms involving fc is

P (∆N|fc,x) ∝

exp

−
(
fc − 1

Sc

∑
t∈{ts} ∆Ntxt

)2

2(σ2
c/Sc)


 exp

[
−λ0,cVe(fc, σ

2
c )

]
, (7)

where {ts} = {t|∆Nt ≥ 1}

There is no conjugate prior. However, we find that the sampled marginal posterior often is

very close to a Gaussian, left column Fig. 3, which would become the prior to combine with

the likelihood, so we use a Gaussian prior N(µfc , σ
2
fc

) here, and obtain for the conditional
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posterior

P (fc|∆N,x, λ0,c, σ
2
c ) ∝ exp

[
−(fc −Mc)

2

2Σ2
s

]
exp

[
−λ0,cVe(fc, σ

2
c )

]
(8)

where

f̄c =
1

Sc

∑
t∈{ts}

∆Ntxt, σ̄2
c =

σ2
c

Sc

Mc =
f̄cσ

2
fc

+ µfcσ̄
2
c

σ2
fc

+ σ̄2
c

, Σ2
c =

σ2
fc

σ̄2
c

σ2
fc

+ σ̄2
c

(9)

Eq. 8 is not of a known distributional class, but fc can be sampled from the numerically

computed cumulative distribution function, which can be done efficiently by

variable-resolution sampling at selected values of fc, Fig. 4, and the samples fitted with a

Gaussian. The variable-resolution sampling assumes the probability mass is concentrated, but

not necessarily unimodal.

Sampling cluster spatial width σ2
c

The conditional likelihood is

P (∆N|σ2
c ,x) ∝

{
(2πσ2

c )
−Sc

2 exp

[
−

∑
t∈{ts} (fc − xt)

2

2σ2
c

]}
exp

[
−λ0,cVe(fc, σ

2
c )

]
(10)

There is no conjugate prior. However, we find that the sampled marginal posterior often is

very close to a inverse Gamma distribution, right column Fig. 3, so we use an inverse Gamma

16

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 13, 2018. ; https://doi.org/10.1101/438440doi: bioRxiv preprint 

https://doi.org/10.1101/438440
http://creativecommons.org/licenses/by-nc-nd/4.0/


prior IG(ασ2
c
, βσ2

c
) here, and obtain for the conditional posterior

P (σ2
c |∆N,x) ∝

{
(2πσ2

c )
−α exp

[
− β

σ2
c

]}
exp

[
−λ0,cVe(fc, σ

2
c )

]
(11)

where

α ≡
(

ασ2
c
+

Sc

2

)
β ≡ βσ2

c
+

Sc∑
i

(xsi
− fc)

2

2
(12)

Once again, Eq. 11 is not of known distributional class, but σc can be sampled using

variable-resolution sampling as used for fc. Here, the grid on which σ2 is defined should itself

be non-uniformly spaced, but rather scaled to be wider for larger values of σ2, and

variable-resolution applied to this non-uniformly spaced grid.

Sampling cluster mark center of µc

The conditional likelihood is

p(∆N,M|µc) ∝ N

 ∑
t∈{ts}

∆Nt∑
w

mt,w,
1

SC

Σc

 , (13)

and the conjugate prior is N(µµc ,Σµc). The conditional posterior is

p(µc|∆N,M) = N

(
Σ−1

µc
+ ScΣ

−1
c

)−1

Σ−1
µc

µµc + Σ−1
c

∑
t∈{ts}

mt,w

 ,
(
Σ−1

µc
+ ScΣ

−1
c

)−1


(14)
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We approximate the posterior to be a multivariate normal, and estimate the hyperparameters

using the sample mean and covariance of the samples.

Sampling cluster mark width Σc

Rewriting the Gaussian in Eq. 13 using the cyclic permutation of the trace highlights the form

conditional likelihood

p(∆N,M|Σc) ∝ (2π |Σc|)−
Sc
2 exp

−1

2

 ∑
t∈{ts}

(mt,w − µc)
T (mt,w − µc)

Σ−1
c

 , (15)

has the form of an inverse Wishart distribution, and the conjugate prior is IW(νΣc , ΨΣc). The

conditional posterior is

p(Σc|µ) = (2π |Σc|)−
w+K+1

2 exp

[
−1

2
PΣ−1

c

]
, (16)

where

w = Sc + νΣc , P =

ΨΣc +
∑

t∈{ts}

(mt,w − µc)
T (mt,w − µc)

 (17)

Estimating the hyperparameters of an inverse Wishart distribution using maximum likelihood

is difficult, so just for Σc, its hyperparameters will be the means of the hyperparameters used

in the conditional posterior, Eq. 17.
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M1 M2
M3

A B C

� � �

Figure 4: Variable-resolution sampling of conditional posterior. We first create a grid on which
parameter θ is defined, and choose an integer L > 0, which determines how coarse the initial
sampling on the first pass is done. A) As a first pass, the conditional posterior is coarsely
sampled at every 2Lth grid point, purple dots, over the range of the parameter θ, with i′ =
arg maxi p(θi|Y ) and M1 = p(θi′|Y ). Starting at i′ and for r � 1, search for a contiguous
region of sampled values for is such that p(θi|Y ) > rM1 (black triangles). This is the region
where sampling at finer resolution should take place. B) Starting from left boundary of region
found, shift by 2L−1 grid points to the left (red triangle), and sample at every 2Lth grid points,
until we hit the red triangle on the right. We once again find new i′ = arg maxi p(θi|Y ) and
new limits. We repeat this process until we have a satisfactory number of sampled points within
the high probability region. Now a sample can be drawn from the conditional posterior as the
CDF can be easily calculated.

Updating number of clusters

Place fields can rapidly and dramatically change over the course of an experiment. Our

approach here is not to infer the statistically optimal number of clusters to use at any point in

the experiment, but ensure there is a high likelihood of observing the data, even at the expense

of more than the optimal number of clusters. However, we would still like to be as concise as

possible, so we use several heuristic criteria to assess whether to keep a cluster or not for the

next epoch. The 1st criteria is that, on average, at least 1 data vector is assigned to the cluster

throughout the Gibbs iterations. The 2nd is that the posterior distribution of the cluster center

is reasonably well concentrated relative to the width of the cluster. We also require that at

least 3000 iterations prior to the end of sampling be sufficiently stationary, to have some

confidence that this cluster represents a well-isolated local optimum.
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Updates of the encoding model

We suggested that the joint posterior to be approximately independent in its parameters.

Because of this, we implement the sequential updates by using the marginal empirical

posterior directly for each parameter as the prior for that parameter in the next epoch.

However, if the signal is not stationary, but its statistical properties change relatively slowly in

time, this will lead to an over-estimation of the variability. Absent predictions of how the

place field and mark properties may change, this is equivalent to increasing the uncertainty of

the posterior when we carry it over as a prior. For example, if Θ represented a place field

center, and we believe that it could change by up to 10cm in 1 minute, no matter how certain

we became of Θ at the nth time step, we could set a minimum width for p(Θ|Y n−1) that

reflects a minimum of 10cm of uncertainty added every minute. For convenience, we denote

the set of parameters that describe the cth mixture component by Θc. If the encoding step of

two consecutive epochs are separated by time epoch Te, at the end of each epoch, we modify

the hyperparameters as follows:

αλ0,c → αλ0,c

(
1− Te

τ

)
σ2

fc
→ σ2

fc
+ Teσ

2
a,f

ασ2
c
→ ασ2

c

(
1− Te

τ

)
Σ2

µc
→ Σ2

µc
+ TeΣ

2
a,µ

νΣc → νΣc

(
1− Te

τ

)
(18)

αλ0,c , ασ2
c
, νΣc , σ2

fc
and Σ2

µc
control the width of their respective prior distributions. τ controls

the timescale in which adaptation occurs, and the σ2
a,f and Σa,µ the amount of spread in the

uncertainty of the width of the place field and marks. For the normal distributions, the
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uncertainty and the centers can be adjusted independently, but for the other parameters,

modifying the above hyperparameters must be done in pairs, so that the mean or mode

remains unchanged.

Simulated place fields and task

Simulations of hippocampal activity of a rat moving at variable speeds on a circular track

were performed. Several neurons were defined, and their respective wave form features

(marks) were generated from multivariate normal distributions whose parameters are specific

to each neuron. Each neuron was then assigned one or more Gaussian place fields with

accompanying intensity. Epochs defining when new data is used to update the model were

either uniformly or randomly generated. We also defined low-amplitude spikes with broad

tuning, and a cut-off threshold to mimic neural data used for clusterless decoding [19, 33, 20].

Hippocampal recordings and task

Extracellular data from 12 tetrodes in CA1 and CA2 of rat hippocampus was recorded while

the rat traversed a W-shaped maze. Spikes were detected at a lower threshold than for

preprocessing for traditional spike sorting [7, 34], as our goal is not necessarily clean isolation

of individual units, but extraction of as much information as possible from the data [35], and

all above-threshold spikes were used for decoding, even if they may be a mixture of noise and

spiking from sources far from the tetrode [19, 33, 20]. However, lowering the threshold at

which spikes are detected leads to rapid increase in the number of spikes. This has several

undesirable consequences. The stochastic allocation into clusters requires calculating the
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Mahalanobis distance from every data point to every cluster, so the number of computations

required grows like M ×N , linearly with N , the number of spikes identified and used for

fitting. With the larger N , deviations of the cluster shape from Gaussian become easier to

detect, and our fitting procedure may assign multiple Gaussian components to the hash

cluster. Because these ”spikes” may not even be of neuronal origin, investing too much time

capturing the shapes of low-amplitude clusters may provide very little additional information

about the physical position. However, past work suggests that these low-amplitude clusters

are somewhat informative [20], so removing them entirely is undersirable, and requires us to

set an arbitrary threshold for the hash, which might be difficult to do in a real-time setting. As

such, we may also treat the threshold detailed in [34] as stochastic, and allow randomly allow

some spikes lower than the threshold be allowed into our data. There tends to be more

lower-amplitude spikes than high amplitude spikes, and this thinning allows us to keep some

of these which might contain some information, without overwhelming the analysis with too

many spikes that do not contribute as much information.

Rats moved through the maze in bouts of movement, interspersed with rest. The content of

the hippocampal activity during movement is markedly different than during rest, with awake

hippocampal replay events present in the latter [36, 37]. Because the spiking during rest may

reflect not only reflect the current physical location, but internal states not accessible through

monitoring of behavior, we built an encoding model using hippocampal activity and spatial

location only when the animal was moving. Concatenating the periods of movement, we

artificially constructed neural data of a rat in perpetual motion to test our decoder. epochs

defining when new data is used to update the model were randomly generated.

The W-shaped maze is a 2-dimensional space, and the trajectory of the animal was
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linearized according to a scheme suggested by Deng (unpublished), so that a path going from

home well H to the choice point (C), to the left (right) arm L (R) and back through C to home

well H, was mapped to numerical position 0 to 1(-1) to 3(-3) to 5(-5) to 6(-6)(1, 5) and (2, 4).

This mapping assigns different numbers to the same location depending on direction of

movement, and requires some future information when mapping movement of animal as it

leaves H, because whether the coordinates are negative or positive requires knowledge of

whether it will eventually turn left or right.

Assessment of the encoding models

We assess JOYFULMoGs by using them to decode subsequent data. We decode neural

activity using the marked point process filtering algorithm described in Deng et al [20], and

assess the decode utilizing 2 metrics, the root mean squared error, calculated by taking the

mean of the squared difference of between the maximum a posterior of the inferred filter

position and the actual trajectory, and the time under 95% posterior, t95, which is the time the

actual trajectory is within the highest 95% posterior density regions.

Results

Sequentially accumulating evidence

JOYFULMoGs needs to solve 2 practical issues in real-time encoding and decoding. The first

is the sequential estimation of a model as new data arrives, and the second is to adapt the

model in cases where the underlying structure in the data changes throughout the experiment.
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We assess JOYFULMoGs for these 2 criteria using simulations of a rat with a single tetrode

implanted in the hippocampus navigating a circular track.

In the first set of simulations, the generative models for the place fields are static, and 12

epochs all of equal duration. 8 realizations for a recording scenario with 7 neurons being

recorded are generated, Fig. 5. Encoding models for each realization are built in 2 ways: first

where model parameters are estimated using only data from the most recent epoch (DSCRD),

discarding all past information about the model, and second where sequential updating is

performed (SQUP), and the past information about the model is carried over as a prior as

described in Methods. The decode performance is compared for both approaches, and also

with the performance of a model using ground truth parameters (GT) the data was generated

with. The DSCRD strategy produces relatively constant decode errors over successive epochs,

while the SQUP strategy approaches the performance of the GT after several epochs, and

outperforms DSCRD, which is not surprising as it benefits from effectively a larger amount of

training data, Fig. 5. Fig. 5A-C) right, show that for stationary data, whether a model is built

using all the data at once or sequentially, the resulting model is essentially the same, as

expected.

We note that the decode accuracy is a combination of how well our encoding model

describes the JMIF, as well as how completely the place fields tile the space and how well the

movement model describes actual movement. We have purposely simulated the rat’s

movement to alternate between randomly occurring bouts of slow and fast walking to create

regions of high spiking that are due to high occupation (slow walking) rather than place field

firing, to check that our method still models the place fields correctly. Our movement model

however only captures the average movement speed, and is not well matched to the alternating

24

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 13, 2018. ; https://doi.org/10.1101/438440doi: bioRxiv preprint 

https://doi.org/10.1101/438440
http://creativecommons.org/licenses/by-nc-nd/4.0/


speeds, leading to relatively large decoding errors.

Tracking changes in neural representation

Both biological changes, such as rapid changes in the neural representation [38, 39] and

experimental changes, such as tetrode drift, may occur during the experiment. In the second

simulation, we simulate place field and electrode drift, as well as more rapid changes over

short timescales, such as new place fields appearing or disappearing over the course of the

simulation. We will be comparing the SQUP to using a stale SQUP from several epochs

previous. The stale encoding models should decode poorly near epochs where the neural

representation is rapidly changing.

Fig. 6B shows the SQUP tracking the changing structure of the JMIF, as new place fields

shift, appear or disappear, subjectively matching the changing features as compared to GT.

Fig. 7A shows that SQUP decoder is able to keep up with rapid changes in the neural

representation, and shows little difference in decode compared to the GT decoder, while the 7

epoch-old SQUP decoder shows rapid deterioration in decode quality as soon as there is rapid

change in neural activity around epoch 10, Fig. 7B. We also see a gradual improvement in

decode performance towards the later epochs, Fig. 7B and C, in agreement with Fig. 5,

indicating that our method is able to accumulate evidence by sequential updates, while also

keeping track of rapid changes present in the data.
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Decoding physical movements

We sequentially decode the movement of a rat in the W-track on 2 different days, one an

earlier and the other a later exposure to the track, Fig. 8. The trajectory through the track is

visibly different for these 2 days, with the early exposure being more variable, and sometimes

deviating greatly from the sequence the arms that must be visited for a reward. For example,

in Fig. 8B on the left, a correct sequence should see the animal moving through the landmarks

as H-C-L-C-H-C-R-C-H-C-L-C-H..., but this is violated around times

t = 150, 195, 310, 320, 390. Fig. 8B on the right shows the sequence being visited correctly. A

cursory examination of the mark-space raster plots for the early exposure suggest that on

several tetrodes, neural representation appears to be changing, while for the late exposure,

noticeable changes in the neural representation are not obvious looking at the mark-space

raster plots. We show that JOYOUSMoGs indeed captures the changes in neural

representation when present, and sequential updates to the model leads to significant

improvements in decoding.

In the early exposure, our method tracked newly appearing place fields and possibly new

neurons. The raster plot in Fig. 8 shows the activity visibly changing around time t = 270,

and the epoch 1 and 4 JMIFs shown in Fig. 8D shows JOYFULMoGs capturing the newly

appeared clusters at later epoch. On a later date, the data from the tetrodes look relatively

stationary in both waveform marks and place field structure throughout the experiment,

Fig. 8C right.

Example decoded trajectories are shown in Fig. 8E for the early and late exposures. In each

day, an example decode using only 1 of the 15 tetrodes is shown above the decode when all 15
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tetrodes are combined. Not surprisingly, combining tetrodes improves decode performance.

We note that decodes shown are obtained by folding the map and the obtained densities,

collapsing the the left and right distinction and the movement direction, so that the

coordinates are now just H-C-LR, and represent only the linear displacement from home well.

We do this because in the discontinuous scheme we used to build the encoding model, decode

metrics like RMSE make little sense.

Fig. 9 shows a comparison between decodes in the early and late exposures. In each row of

Fig. 9A), a comparison is made between using 1 tetrode versus combining all tetrodes, with a

summary of the spread for 15 individual single tetrode decodes being represented by the error

bars. We can see that in the early exposures, decode performance of the single tetrodes

increases as more data is accumulated, while in the late exposure, performance remains

relatively constant. This effect disappears when combining the tetrodes in this example,

suggesting that perhaps only a few tetrodes are becoming more informative later on in the

experiment. Fig. 9B) shows a comparison between using an up-to-date SQUP (age of EM=1)

versus using a stale SQUP (age of EM=7). For the early exposure, there is a noticeable

difference improvement in decoding when the up-to-date decoder is used, while in the late

exposure, this difference is less pronounced. These results support the notion that neural

representation is less stable earlier in an experience, and that neural representation can also

change in relatively short timescales of seconds to minutes.
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Discussion

We presented a Bayesian framework for a population model of neural spiking,

JOYFULMoGs, that models the joint firing intensity dependent on waveform features and

position, bypassing the need for spike sorting and fitting of place fields for each sorted neuron.

JOYFULMoGs allows sequential updates to the model so it can incorporate the most recently

observed data into the previous estimate of the model parameters, which also allows the

model to track changes in the spatial and mark structure of the data, including appearances

and disappearances of neurons and place fields. We demonstrated the method on simulated

experimental data, showing increasingly accurate parameter estimation in later encoding

epochs whether the data is stationary or dynamically changing. We also analyzed recordings

from tetrodes placed in the CA3 region of hippocampus of a rat traversing a W-shaped

environment, performing a continuous alternation task, and compared performance of early

and late periods in training. We observed clear evidence of rapidly changing neural

representation in early periods, and our model was clearly able to track and keep the

population encoding model up-to-date. In addition, recent work on goodness of fit tests for

marked point process models has shown JOYFULMoGs to produce models of activity that fit

the data well [Long et al, accepted]. There are, however several outstanding issues that we

need to address in order for JOYFULMoGs to be useful in a real-time experimental setting.

First, JOYFULMoGs is still not real-time for most datasets. The most computationally

intensive part of our method is the stochastic allocation of spikes into clusters. For data with a

relatively small number of spikes, estimation of JOYFULMoGs parameters can be done in

real- or nearly real-time on a laptop. However, with larger number of spikes and putative
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clusters, the calculation of Mahalanobis distances between all spikes and clusters becomes a

major bottleneck. This calculation involves M ×N calculations of a distance, which can

easily be broken into M independent calculations. After all the distances are calculated and

spikes assigned to clusters, cluster parameter estimation can all proceed independently. A

GPU implementation of Gibbs sampling of Gaussian mixture models has demonstrated [40]

over an order of magnitude increase in performance over standard CPU implementations as

we have done, suggesting that JOYFULMoGs can be similarly accelerated. Another approach

to increasing performance, might be moving to an approximate Bayesian approach like the

variational Bayes method to estimate the posterior distributions [41]. This may also allow a

more optimal number of clusters to be inferred, or allow us to forgo our batch mode approach

to estimation in favor continuous updates may prove more efficient [28, 29].

Second, complicated maze geometries are difficult to represent in 1-dimension, as

JOYFULMoGs as presented requires. We presented the results of decoding on a W-maze

using a simple linearization scheme, which discontinuously mapped 2-dimensional

coordinates onto a 1-dimensional line. This approach may not be satisfactory for more

complicated mazes with more than 1 choice point. Further, mazes that combine open areas

with narrow maze segments cannot be meaningfully represented in 1-dimension.

JOYFULMoGs is easily extensible to accommodate 2-dimensional spatial representations

without a substantial increase in computing cost. Decoding using the non-linearized

2-dimensional coordinates of the W-maze have been demonstrated using JOYFULMoGs[in

preparation]. There, we assume the spatial covariances of clusters are diagonal so the x and y

components decouple, allowing fitting of the directions one at a time. Because the maze

leaves many spatial locations unexplored, it is possible that place fields extend outside the
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accessible maze locations. However, without observation of such locations, conclusions

cannot be drawn about the full extent of the place fields. Therefore, we only concern

ourselves with the visible portion of place fields by including dummy trajectory data outside

the visible maze, but without any spiking activity. This limits the Gibbs sampler from

sampling cluster parameters that would make place fields extend far outside the maze. These

simple modifications should extend to more complicated mazes, and mazes that combine

narrow segments with wide open areas, allowing real-time analysis of more realistic

environments. Future work will explore the use of JOYFULMoGs in such scenarios.
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Figure 5: Assessment of sequentially-built encoding model on simulated, stationary data. For
A-C), summary of performance metric of decode from 10 simulated experiments are plotted.
Metrics are A) fraction of time actual path is under the 95% highest posterior density (HPD)
area, B) the width of the 95% HPD area and C) the root mean-squared error (RMSE). Black,
orange and blue lines show mean and standard deviation of decode metric for each epoch.
Colors correspond to encoding model GT (ground truth parameter values at each epoch), SQUP
(models built and updated sequentially) and DSCRD (no update, models built by discarding
data more than 1 epoch old). Right panels show a comparison of mean decode performance of
epoch 7 using model where data from all previous 6 epochs were used at once (condition 1),
and the corresponding performance when model at epoch 7 was obtained by SQUP (condition
S).

37

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 13, 2018. ; https://doi.org/10.1101/438440doi: bioRxiv preprint 

https://doi.org/10.1101/438440
http://creativecommons.org/licenses/by-nc-nd/4.0/


A

B

-6.0 0.0 6.0
-1.8

2.12

6.03

-6.0 0.0 6.0
-1.88

2.91

7.7

-1.8 2.12 6.03
-1.88

2.91

7.7

-6.0 0.0 6.0
-1.8

2.12

6.03

-6.0 0.0 6.0
-1.88

2.91

7.7

-1.8 2.12 6.03
-1.88

2.91

7.7

-6.0 0.0 6.0
-1.8

2.12

6.03

-6.0 0.0 6.0
-1.88

2.91

7.7

-1.8 2.12 6.03
-1.88

2.91

7.7

-6.0 0.0 6.0
-1.8

2.12

6.03

-6.0 0.0 6.0
-1.88

2.91

7.7

-1.8 2.12 6.03
-1.88

2.91

7.7

-6.0 0.0 6.0
-1.8

2.12

6.03

-6.0 0.0 6.0
-1.88

2.91

7.7

-1.8 2.12 6.03
-1.88

2.91

7.7

-6.0 0.0 6.0
-1.8

2.12

6.03

-6.0 0.0 6.0
-1.88

2.91

7.7

-1.8 2.12 6.03
-1.88

2.91

7.7

-6.0 0.0 6.0
-1.8

2.12

6.03

-6.0 0.0 6.0
-1.88

2.91

7.7

-1.8 2.12 6.03
-1.88

2.91

7.7

-6.0 0.0 6.0
-1.8

2.12

6.03

-6.0 0.0 6.0
-1.88

2.91

7.7

-1.8 2.12 6.03
-1.88

2.91

7.7

1 10

20 28

1 10 20 28

0 100 200 300 400 500 600 700
time (s)

−6

−3

0

3

6
p

o
si

ti
o
n

x

m
2

x

m
1

m
2

m1 x

m
2

x

m
1

m
2

m1

x

m
2

x

m
1

m
2

m1 x

m
2

x
m
1

m
2

m1

x

m
2

x

m
1

m
2

m1 x

m
2

x

m
1

m
2

m1

x

m
2

x

m
1

m
2

m1 x

m
2

x

m
1

m
2

m1

101 20 28

GT

SQUD

GT

SQUD

GT

SQUD

GT

SQUD

Figure 6: Encoding of simulated data with changing place fields. A) rat trajectory (black),
overlayed with time and location of spikes (orange), with randomly chosen epochs shown by
vertical, red dashed lines. The epoch numbers (1, 10, 20, 28) above trajectory correspond to
epochs where JMIF is displayed in B). For each of those 4 sampled epochs, B) shows 2 rows of
JMIF visualized by plotting 1 of 4 mark components against the position (left and middle), and
against each other (right), for the GT (top) and SQUP (bottom), are shown. The widely-tuned
component at the bottom represents hash spikes, which are low-amplitude spikes slightly above
the discard threshold. The contour line shows the contour at 5% the maximum mark intensity
of the first epoch, for comparison at the later epoch. 2 new place fields appear (near star), 1
place field disappears (near circle), and 1 place field rapidly shits (near arrow), around epoch
10.
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Figure 7: Decoding of simulated data with changing place fields. A) Decode of 1 epoch
of sample realization, physical position in orange, posterior probability in grey. Decoding
using SQUP (left), and stale SQUP (use model 7 epochs old). B) Summary of decodes of
9 realizations of simulated data with similar time course of changes as Fig. 6, with abrupt
appearances and disappearances of place fields around epoch 10. Scatter plot (grey dots) of
the RMS and % time under 95% HPD region for decoded trajectory using SQUP for each
realization, while the black line is the average, the blue line the average using stale, 7 epoch-
old SQUP, and red line is the average obtained using GT. C) Similar figure for another set of
9 realizations of a dataset where changes are more gradual, showing how the SQUP decode
performance approaches decode performance using GT after many epochs.
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Figure 8: Decoding physical position of rat as it moves through a maze. A) Maze schematic, H:
home well, C: choice point, L,R: reward wells on left and right. B) Rat trajectory in a W-maze,
displayed in linearized 1-dimensional coordinates. Left and right show early and late exposure
to the maze, respectively. Dashed red lines demarcate epochs used for sequential encoding. C)
Marks recorded on each of the 4 channels of 1 example tetrode (out of 15) as a function of
time. D) The marginalized mark intensity functions at epoch 1 and 5, shown using electrodes 1
and 2 and position. E) Decode example using sequentially updated encoding model. Top row
is decoding result using the single tetrode shown above, and bottom row is decode combining
all tetrodes. Decoded path displayed by collapsing left and right arms and heading direction to
obtain linear displacement from home well.
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Figure 9: Quality of decode for the early and late exposures. A) From top, time within the
95% HPD region, the width of the HPD region and the RMSE of the physical location from
the maximum posterior density for the early and late exposure. 0.1 in RMSE and HPD width
corresponds to about 18 centimeters. Black lines are the mean values for the decodes done
individually for the 15 tetrodes, with error bars representing 1/4 standard deviation, and the
red line the results for decode combining likelihood from 15 tetrodes. B) Comparison of the
decoding quality using each of the 15 tetrodes individually of the last epoch, roughly between
405-450 seconds in early exposure and 248-270 seconds in late exposure, using SQUP (age of
EM=1), and using the encoding model obtained using data from only epoch 1 (age of EM=7),
which is roughly the first 150 seconds in early exposure, and the first 100 seconds in late
exposure. The black line is decoding quality using 15 tetrodes combined. C) ratios of the two
sets of scores shown in B).
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