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Spectral gap optimization of order parameters (SGOOP) (Tiwary and Berne, Proc. Natl. Acad. Sci. 113
2839 (2016)) is a method for constructing the reaction coordinate (RC) in molecular systems, especially when
they are plagued with hard to sample rare events, given a larger dictionary of order parameters or basis
functions, and limited static and dynamic information about the system. In its original formulation, SGOOP
is designed to construct a 1-dimensional RC. Here we extend its scope by introducing a simple but powerful
extension based on the notion of conditional probability factorization where known features are washed out
to learn additional and possibly hidden features of the energy landscape. We show how SGOOP can be
used to proceed in a sequential and bottom-up manner to (i) systematically probe the need for extending
the dimensionality of the RC, and (ii) if such a need is identified, learn additional coordinates of the RC
in a computationally efficient manner. We formulate the method and demonstrate its usefulness through
three illustrative examples, including the challenging and important problem of calculating the kinetics of
benzene unbinding from the protein T4L99A lysozyme, where we obtain excellent agreement in terms of
dissociation pathway and kinetics with other sampling methods and experiments. In this last case, starting
from a larger dictionary of fairly generic and arbitrarily chosen 11 order parameters, we demonstrate how
to automatically learn a 2-dimensional RC, which we then use in the infrequent metadynamics protocol to
obtain 16 independent unbinding trajectories. We believe our method will be a big step in increasing the
usefulness of SGOOP in performing intuition-free sampling of complex systems. Finally, we believe that the
usefulness of our protocol is amplified by its applicability to not just SGOOP but also other generic methods
for constructing the RC.

I. INTRODUCTION

Finding reaction coordinates (RC) and mechanistic
pathways in complex systems and processes is a problem
of great theoretical and practical interest for which over
the decades numerous theoretical and numerical schemes
have been proposed.1–4 The problem becomes especially
complicated in rare event systems, aptly summarized by
Chandler and co-workers in their review as the problem
of “throwing ropes over rough mountain passes, in the
dark”.2 Spectral Gap Optimization of Order Parame-
ters (SGOOP) is one such method to construct a RC
as a function of candidate order parameters for a given
molecular system.5,6 This RC encapsulates the most rele-
vant degrees of freedom in the system whose fluctuations
must be enhanced in order to accurately sample the ther-
modynamics and kinetics of metastable states during bi-
ased molecular dynamics (MD) simulations such as meta-
dynamics or umbrella sampling.7 SGOOP was designed
keeping rare event systems in mind, where one progres-
sively improves the quality of the RC through rounds
of biased simulations performed using it. SGOOP has

a)These two authors contributed equally.

been demonstrated to be useful for a range of systems
such as small peptides and protein–ligand systems, and
falls in the broad family of many such related methods
that attempt to learn RC for enhanced sampling from
sub-optimally biased simulations, such as Ref. 8 and
9. The reason these methods work is at least two fold:
(a) irrespective of system complexity, it has been rig-
orously demonstrated that there exists an optimal one-
dimensional RC, given by the normal direction to the
isocommittor surfaces,10–12 and (b) for the purpose of
enhancing the sampling, there is anecdotal evidence that
any RC suffices as long as it has sufficient overlap with the
true RC.7,13 The condition (b) can be rephrased in terms
of the timescale separation between slow and fast modes
in the system. Namely, the timescales for any process not
captured by the RC must be much faster than the slow
processes that the RC does encapsulate. SGOOP screens
through various putative RCs attempting to maximize
this timescale separation, also called spectral gap. In or-
der to do so it uses a maximum path entropy (or Caliber)
model that combines any known static or dynamic infor-
mation about the system,6,14,15 and build transition rate
matrices along different putative RCs which then directly
yield the spectral gap.

SGOOP constructs a one–dimensional reaction coor-
dinate (RC) as a linear or non-linear combination of
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pre-selected candidate order parameters, which can be
thought of as a set of basis functions using which we
are trying to describe our problem. Naturally, by con-
sidering sufficiently complex combinations of the order
parameters (think neural networks) or by making the or-
der parameters themselves sufficiently complex, it should
be possible in principle to construct a one–dimensional
RC for any given complex process. However for many
biomolecular systems of practical relevance that consist
of multiple metastable conformations possibly with nu-
merous interconnecting pathways, it might be more desir-
able to extend the dimensionality of the RC itself. That
is, instead of trying to make the 1-d RC more and more
sophisticated, it might be computationally cheaper and
also physically more interpretable to add a second or even
more components to the RC, while still keeping the fi-
nal dimensionality of the RC much lower than the space
of order parameters considered. These other RC com-
ponents could serve to lift the degeneracy in the first
component, and could directly be interpreted in terms
of the different pathways or metastable states that they
correspond to. A natural question then is how should
one go about finding these extra components. The origi-
nal SGOOP framework could directly be applied to con-
struct a multi-dimensional RC simply by attempting to
construct a transition rate matrix on a multi-dimensional
grid. This is not very practical since firstly, the dimen-
sionality of the rate matrices scale as Nd×Nd, where d is
the RC-dimensionality and N is the number of bins along
each RC-component. Secondly, SGOOP involves calcu-
lating the number of barriers discernible in a projection
along a given putative RC. This is trivial in 1-d but can
become tricky and prone to noise related instabilities in
higher dimensions.

Here, inspired by Ref. 16 and 17, we develop a simple
but powerful extension to SGOOP that makes it pos-
sible to sequentially extend the dimensionality of the
RC in a straightforward manner. Our approach also
makes it possible to quantify when adding further di-
mensions to the picture is no longer needed. Each ad-
ditional component is constructed in such a way that it
captures features not discernible in the previous com-
ponents. In this communication, we first develop the
key ideas behind our method, which is in fact more gen-
erally applicable than SGOOP (see 16 for an illustra-
tive application in the context of deep learning based
RC identification), followed by its specific implementa-
tion through SGOOP. We then demonstrate the useful-
ness of our method through different examples of varying
complexity, including with model potentials and disso-
ciation of benzene from T4L99A lysozyme in all-atom
resolution including explicit TIP3P water. The last sys-
tem is a popular yet challenging test-case. Here we start
with a dictionary of 11 generic order parameters such
as protein-ligand and protein-protein distances, and use
our automatically learned two-dimensional RC in an in-
frequent metadynamics framework7,18,19 to calculate its
dissociation rate constant and dominant unbinding path-

way, in excellent agreement with previous studies and
experiments.20–24 We thus believe our method should be
of considerable use to the enhanced sampling and molec-
ular simulation communities.

II. THEORY

A. Multi–dimensional reaction coordinates through
conditional probability factorization

Many previous strategies have been introduced in the
past to solve this challenging problem of systematically
learning additional hidden variables. For example, in-
spired by the Marcus theory of electron transfer, Yang
and co-workers introduced a method based on consid-
ering the generalized force defined by the gradient of
the free energy25 with respect to the RC. Later, Noe
and co-workers introduced a framework inspired by the
variational principle in quantum mechanics which con-
structs a family of RC components. Here we introduce
a new framework based on looking at factorized condi-
tional probabilities. In the next sub-section we elaborate
the practical implementation of this framework in the
context of SGOOP, but it is valid much more generally.

Our starting point is a collection of d given candi-
date order parameters s = (s1, s2, ..., sd), and a trial RC
ψ0
1 =

∑
i c

0
i si. Here the subscript 1 in ψ0

1 indicates that
it is the 1st component of the RC, and the superscript
0 indicates the 0th iteration i.e. starting choice for the
same. By following the protocol of Ref. 5 and 26 or
any other methods for constructing a 1-d RC, we learn
an optimized version of this first component, with dif-
ferent weights {ci}, which we call ψ1 without any su-
perscripts. Our intention now is to learn a second (and
if needed, more) component ψ2 of the RC that can de-
scribe any relevant slow, hidden degrees of freedom, if
present, that were not captured by the first component
ψ1. In order to learn ψ2, we shift our attention from
the unbiased or Boltzmann probability distribution P0 to
an auxiliary probability distribution P1(s1, ..., sd) that is
conditional upon what we know about the 1st RC com-
ponent. This distribution thus enhances the features in
(s1, ..., sd) space not captured by ψ1. It is defined by the
conditional probability:

P1(s1, ..., sd) ≡ P0(s1, ..., sd|ψ1(s1, ..., sd))

=
P0(s1, ..., sd, ψ1)

P0(ψ1)

=
P0(s1, ..., sd)

P0(ψ1)
(1)

In reaching the last line we have taken into account that
given the values of {si} and a set of coefficients {ci},
ψ1 = ψ1(

∑
i cisi) is known exactly. Hence the two joint

probability distributions in the numerators of the second
and third lines of Eq. 1 are equal. Eq. 1 essentially cal-
culates the probability distribution P1 of the dictionary
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of order parameters conditional on what we already know
about the first component of the RC. In other words, it
amounts to sampling the {s1, s2, ...} space as per Boltz-
mann distribution P0, but inverting their weights as per
P0(ψ1). Given this knowledge, we can now perform a 1-d
RC analysis on the probability distribution P1. If there
are no slow, hidden variables, then the probability distri-
bution P1 should have no additional, orthogonal features
on top of what is encapsulated already by the RC ψ1.
We demonstrate this later in Sec. III through numerical
examples. However, if there are indeed additional slow
variables that were not captured by ψ1 they will now be
expressed through the RC ψ2 obtained by treating the
probability distribution P1. This reflects the most in-
formative degree of freedom conditional on knowledge of
the degrees of freedom captured by ψ1, and is our second
component of the RC. Similar to Eq. 1, the probabil-
ity distribution for the third component of the RC can
be obtained by considering the probability distribution
P2(s1, ..., sd) defined through:

P2(s1, ..., sd) ≡ P1(s1, ..., sd|ψ2(s1, ..., sd))

=
P1(s1, ..., sd)

P1(ψ2)
(2)

By then repeating this protocol on Pi−1(s1, ..., sd)
where i ≥ 1 we obtain a sequential set of conditional
probability distributions on which we can perform 1-d
RC optimization for example in the fashion of Ref. 5
and 26:

Pi(s1, ..., sd) =
P0(s1, ..., sd)

P0(ψ1)...Pi−1(ψi)
(3)

The number of components we choose to identify
through this procedure will eventually depend on the
problem and sampling method at hand – for example, if
the intention is to perform umbrella sampling or metady-
namics with the RC, going beyond 2 or 3 components will
probably be futile. However for other sampling methods
such as Ref. 27 and 28 where in principle one can handle
many more biasing variables at the same time, further
rounds of the procedure developed here may be applied.
A heuristic benchmark for when an additional compo-
nent ψi+1 is redundant given the components 1, 2, ..., i is
to examine the correlations between ψi+1 and ψ1, ..., ψi.
As shown in Sec. III, the usefulness in adding ψi+1 can
be best judged from examining how correlated or orthog-
onal are the features in ψi+1 to the previous components.
Let’s say that one judges that components {i+ 1, ...} do
not add any extra information about the slow processes
to the representation, and decides to stop the procedure
after round i. At this point, we can use Eq. 3 to write
the full high-dimensional unbiased probability distribu-
tion as follows:

P0(s1, ..., sd) = P0(ψ1)P1(ψ2)...Pi−1(ψi)P
′(ζ)

∝ P0(ψ1)P1(ψ2)...Pi−1(ψi) (4)

where P ′(ζ) is featureless noise in terms of some more
hidden variables ζ that we do not care about and

thus treat as a constant of proportionality. Thus we
have factorized the high-dimensional Boltzmann proba-
bility distribution P0(s1, s2, ..., sd) as a product of one-
dimensional conditional probabilities. This factoriza-
tion establishes that (i) these variables ψ1, ψ2, ... and
their conditional probability distributions can be learned
in a sequential and independent manner as proposed
here, and that (ii) these variables together are sufficient
to describe the slow modes in the system. We would
like to emphasize that Eq. 4 does not imply indepen-
dence of these variables, i.e. the following is not true:
P0(s1, ..., sd) = P0(ψ1)P0(ψ2)...P0(ψi). These variables
are not independent components and must be treated
together.

B. Multi–dimensional reaction conditional probability
factorization through SGOOP

We now describe how the formalism of Sec. II A can
be implemented in practice using SGOOP.5,6 Following
the notations of Sec. II A, the inputs to SGOOP are a bi-
ased simulation performed using a trial RC ψ0

1 =
∑
i c

0
i si,

and a short unbiased MD run that gives a time-series of
the order parameters s = (s1, s2, ..., sd). Alternatively,
the short unbiased MD run could be replaced with esti-
mates of the position-dependent diffusivity tensor.26 The
biased trajectory is used to obtain estimates of the sta-
tionary probability density along various putative RCs,
distinguished through values of {ci}, through a post-
processing reweighting procedure29, while the unbiased
trajectory is used to obtain dynamical constraints needed
by the Maximum Caliber framework on which SGOOP is
based.6,14,15 In SGOOP5,26 one spatially discretizes the
putative RC ψ by defining a grid {n} along it, where n
takes integral values. Let kmn be the time-independent
unbiased rate of transition from grid point m to n per
unit time ∆t. Further, let p0n denote the stationary prob-
ability of being at any grid point n obtained by reweight-
ing the free energy along the respective putative RC5,6,
and 〈N〉0 represent a dynamic observable which we take
here as the average number of first-nearest neighbor tran-
sitions in the putative RC grid observed in time ∆t.
SGOOP5,26 uses the following equation to calculate the
transition rate for moving from grid point m to grid point
n along any putative RC ψ1:

kmn =

{
〈N〉0∑√
p0np

0
m

}√
p0n
p0m

(5)

Equivalently, the above equation can be written in a re-
lated form by mapping a Smoluchowski equation along ψ1

term-by-term into a master equation along the same grid,
and using diffusion coefficient along ψ1 instead of MaxCal
constraints (see Ref. 26 for details of the mapping). With
either form, we can now calculate the eigenvalues of the
full transition matrix K, where Knm = −kmn for m 6= n
and Kmm =

∑
m6=n kmn. These eigenvalues directly give
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(a) (b)

(c) (d)

FIG. 1: (a) Potential energy contours for Eq. 7. The grey line shows the optimal RC 1st component ψ1,
demarcated through the rotation θ=120◦ measured counter-clockwise from x−axis. (b) Spectral gap as a function of
θ for this potential. (c) Free energy along ψ1 for this potential. (d) Unbiased free energy (i.e. -kBT log P0(ψ1, ψ2)).
All energies are in units of kBT , while the spectral gap is in arbitrary units since only its relative values concern us.

us the spectral gap for that RC, and by optimizing for
the maximal spectral gap by varying the trial coefficients
{ci} we learn the best RC, given the static and dynamic
information at hand. This optimization can be carried
out through a simulated annealing protocol, and gives us
an optimized first component of the RC, denoted ψ1.

So far in this sub-section we have simply summarized
SGOOP. This is where we start to extend the proto-
col. At this point we have an estimate of ψ1 using
which we perform a second metadynamics run biasing ψ1.
Obtaining the probability distribution P1(s1, ..., sd) =
P0(s1,...,sd)
P0(ψ1)

of Eq. 1 from this metadynamics run is em-

barrassingly trivial: it is the unreweighted, biased prob-
ability distribution sampled here. Similar to Eq. 5 we
now write down a rate equation along any putative RC
ψ2:

kmn =

{
〈N〉1∑√
p1np

1
m

}√
p1n
p1m

(6)

Here p1n denotes the probability of being at any grid
point n along a trial 2nd component of the RC, obtained
by marginalizing out all other degrees of freedom from

P1(s1, ..., sd). This is a simple binning operation and
does not even need the reweighting procedure29 for the
1st component, which was needed there to reweight out
the effect of biasing along the trial RC 1st component
ψ0
1 . 〈N〉1 represents the average number of first-nearest

neighbor transitions in the putative RC grid observed in
a time-interval ∆t but this time as observed in the sim-
ulation performed by biasing ψ1.

If ψ1 was truly the only slow degree of freedom, then a
search for an RC on the P1(s1, ..., sd) probability distri-
bution would return no solutions, that is, the optimized
RC would be featureless, or even if any features were dis-
covered, they would not be new, and would be already
captured by ψ1 (see Sec. III for examples). However, if
indeed a non-trivial RC is found through optimizing the
spectral gaps from Eq. 6, we call this as the 2nd com-
ponent ψ2 of our RC. We now perform a metadynamics
run biasing both ψ1 and ψ2, and in principle can repeat
this procedure to add as many components as we wish.
We re-emphasize that in any successive round, exclud-
ing the starting one for ψ1, there is no need to perform
any reweighting, and that the respective biased run it-
self suffices fully for performing Maximum Caliber based
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estimates.

III. RESULTS

Here we first demonstrate our method on two illus-
trative simple model potentials through a combination
of which it can be clearly seen why a second compo-
nent to the RC might or might not be needed, and how
SGOOP can be used to identify the various components.
We then apply it to the very challenging test case of
benzene dissociation from T4L99A lysozyme in all-atom
resolution including explicit TIP3P water, where we are
able to accurately simulate the full dissociation process
which normally takes hundreds of milliseconds, and cal-
culate the dissociation rate constant koff , a quantity of
immense practical relevance in basic biochemistry and
drug design19,30–34. For the two model systems we con-
sidered Eq. 5 in its diffusion constant form as detailed in
Ref. 26, and assumed position-independent isotropic dif-
fusivity tensor with no off-diagonal terms. For benzene-
T4L99A we considered Eq. 5 directly with MaxCal con-
straints as detailed in Sec. III B.

A. Model systems

Both model potentials are represented through sum of
three gaussians, and an overall restraining potential, and
are in kBT units where kB is Boltzmann’s constant and
T is the temperature of the system. We use a numer-
ical approach for these two model potentials using an-
alytical/numerical estimates of different reweighted free
energies and probability distributions. We did perform
MD as well on these potentials (hence the need for re-
straining potentials), using the full MaxCal version of
Eq. 5, and the results were indistinguishable from those
reported here.

1. When a 1-component RC is sufficient

The first model potential we considered (Fig. 1 ) is
given by:

U(x, y) = −12e−4.5(x+.75)
2−3(y+.5)2 − 16e−2x

2−2(y−1)2

− 12e−4.5(x−.75)
2−3(y+.5)2 + .05(x6 + y6) (7)

Here we first identified the first component of the RC,
defined as ψ1(x, y), as a linear combination of x and y
demarcated through the rotation θ measured counter-
clockwise from x−axis. Performing SGOOP here yields
spectral gap versus θ profile shown in Fig. 1(b) with two
clear maxima at θ=60◦ and θ=120◦. The two RC solu-
tions are equivalent due to the symmetry of the problem
and lead to an identical free energy profile along the RC
given in Fig. 1(c). Finally in Fig. 1(d) we have provided
the unbiased free energy (i.e. -kBT logP0(ψ1, ψ2)), where

ψ2 was calculated to be θ=20◦ by performing SGOOP
on P0(x, y|ψ1). We will revisit Fig. 1(d) in Sec. III A 2.

2. When a 1-component RC is not sufficient

The second model potential is given by:

U(x, y) = −12e−4.5(x+.55)
2−3(y+.5)2 − 16e−2x

2−2(y−1)2

− 12e−4.5(x−.55)
2−3(y+.5)2 + .05(x6 + y6) (8)

The potential shown in Fig. 2(a) is a modification of
the previous potential with the two bottom wells moved
closer together as can be seen from Eq. 8. This simple
change will cause the overlap between the two wells to be
indistinguishable to a single-component linear RC. The
spectral gap was optimized as shown in Fig. 2(b) yielding
a RC ψ1 at θ = 90◦ with corresponding unbiased free en-
ergy shown in figure Fig. 2(c). ψ1 was unable to capture
all the three energy wells showing that there are hidden
degrees of freedom. The conditional probability distri-
bution P1(x, y) = P0(x, y|ψ1(x, y)) shown in Fig. 2(d)
through its associated free energy, was calculated and
the spectral gap for the 2nd RC component (Fig. 2(e))
was optimized on this probability distribution. The sec-
ond component of the RC shown in Fig. 2(d) and given
by θ = 10◦ captures a new degree of freedom previously
invisible to the first component. Combined these two
components can account for both transitions in the x
and y directions despite the x−transitions being hidden
to ψ1.

In Fig. 2(f) we provide the unbiased free energy (i.e.
-kBT log P0(ψ1, ψ2)) for the potential of Fig. 2(a). This
is to be contrasted with the equivalent free energy profile
in Fig. 1(d) for the potential of Fig. 1(a). It can be seen
from Fig. 2(f) that the stable states demarcated by ψ2

lie orthogonal to the ψ1 axis – i.e. they have the same
ψ1 value. However, in Fig. 1(d) this is not the case. The
stable states demarcated by ψ2 can already be distin-
guished through their ψ1 values directly. As such, while
adding the second component ψ2 helps in the potential
of Fig. 2(a), it does not add any extra information for
the potential of Fig. 1(a). This simple heuristic should
serve useful in deciding when to add extra components
to the RC, as we demonstrate for the next, significantly
harder example.

B. T4 Lysozyme dissociation rate and pathway through
infrequent metadynamics

The protocol for extending a RC to multiple compo-
nents is generally applicable and is expected to be useful
for more complex systems for a range of sampling meth-
ods. Here we illustrate this through its applicability to
infrequent metadynamics, a widely used scheme for re-
covering unbiased kinetics rates from biased metadynam-
ics simulations.6,18–21,35–39 The central idea in infrequent
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(a) (b) (c)

(d) (e) (f)

FIG. 2: (a) Potential energy contours for Eq. 8. The grey line shows the optimal RC 1st component ψ1,
demarcated through the rotation θ=90◦ measured counter-clockwise from x−axis. (b) Spectral gap as a function of
θ for various ψ1 choices. (c) Free energy along ψ1 for this potential. This reaction coordinate only captures the
movement between the top well and the bottom wells, and misses the sub-structure of the bottom two wells. (d)
Free energy −kBT log P1(x, y) after conditioning on the estimate of P0(ψ1) as per Eq. 1. In addition to the first
component to the RC, the second component is also illustrated given by θ=10◦. (e) Spectral gap as a function of θ
for P1(x, y). (f) Unbiased free energy (i.e. -kBT log P0(ψ1, ψ2)). All energies are in units of kBT , while the spectral
gap is in arbitrary units since only its relative values concern us.

metadynamics is to perform periodic but infrequent bi-
asing of a low-dimensional RC in order to increase the
escape probability from metastable states where the sys-
tem would ordinarily be trapped for extended periods
of time. Provided that the chosen RC displays timescale
separation and can demarcate all relevant stable states of
interest, and if the time interval between biasing events
is infrequent compared to the time spent in the transi-
tion state (TS) regions, then one increases the likelihood
of not adding bias in the TS regions and thereby keep-
ing unbiased the dynamics during barrier crossing itself.
This preserves the sequence of transitions between sta-
ble states that the unbiased trajectory would have taken.
Finally, the acceleration of transition rates through bias-
ing, which directly yields the true unbiased rates, can be
calculated through a simple acceleration factor detailed
in Ref. 7 and 36. Whether the conditions for the ap-
plicability of infrequent metadynamics were met or not
can be verified a posteriori by checking if the cumulative
distribution function for the transition times is Poisson
through a Kolmogorov-Smirnoff test developed in Ref.
40. Here one calculates a p-value for the the quality of
Poisson fit, and traditionally achieving a value greater
than 0.05 is considered safe for reliability.

Using SGOOP we demonstrate how the process of RC
selection for infrequent metadynamics can be made al-
most automatic, starting from a larger dictionary of fairly
generic and arbitrarily chosen 11 order parameters. The
specific problem considered here is benzene dissociation
from the protein T4L99A lysozyme (Fig. 3(a)). This
is a well-studied but extremely hard to simulate process
due to the debilitating long timescales of milliseconds to
seconds, and thus has been studied through different spe-
cialized sampling methods. Given the rare event nature
of this problem and complex, coupled movements of pro-
tein, ligand and even solvent, learning a RC on-the-fly
is not a trivial task. We study the process in all-atom
resolution using CHARMM22* force field35 for protein,
TIP3P water model and CGenFF force field36 for the
ligands. Infrequent metadynamics as well has been ap-
plied to study this system using exactly the same force-
field and MD set-up as we used here. However these and
other previous attempts involved putting special effort
and fine-tuning into the design of the reaction coordinate
to bias during infrequent metadynamics.

Our 11 order parameters {si} where i ranges from 1
to 11 comprise 8 protein-ligand contacts and 3 protein-
protein contacts, implemented through simple centre-of-
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FIG. 3: Various details for the benzene-T4L99A system studied here. (a) Secondary structure of the protein, with
helices 1, 2, 3 and 4 from Table I shown in colors red, green, yellow and purple respectively. Superimposed is the
trajectory of the ligand as it unbinds along the dominant pathway. The trajectory here correspond to 42 ns of MD
simulation time, with the ligand shown every 10 ps, and colored from red to white to blue as a function of
simulation time. 3 clear clusters of states can be seen – bound, metastable and unbound. In the inlay, we have
highlighted the residue F114 which acts as a gatekeeper before the ligand reaches the metastable state. (b) A visual
depiction of the order parameter weights as tabulated in Table I. (c) Cumulative distribution function (CDF) for
the reweighted18 unbiased dissociation times (black dashes) obtained from independent infrequent metadynamics
simulations, along with a Poisson fit (solid red line). Various statistics indicating the reliable quality of the fit are
provided in the inlay. (d) Unbiased free energy (i.e. -kBT log P0(ψ1, ψ2)) in units of kJ/mol.

mass to centre-of-mass distances (Table I). Note that
we can easily deal with an even higher number of order
parameters than 11 without a significant slow-down in
the algorithm or the code. This is due to use of simulated
annealing protocol for optimization to identify the RC,
which is known to scale well with dimensionality.41

We now provide further details of the implementation
as well as results so obtained. We first performed a meta-
dynamics run using trial RC ψ0

1 = s3. This was done
using a relatively frequent and aggressive metadynam-
ics protocol, since the objective was to obtain an ap-
proximate estimate of the stationary probability density
for use in SGOOP. Specifically we used a well-tempered
metadynamics protocol,29,42 with initial hill height = 1.5,
biasfactor γ = 15, gaussian width σ = .02, and bias

added every 1 ns. The simulation was performed us-
ing GROMACS version 5.1 patch with PLUMED version
2.3.43,44 A short unbiased MD run of 18 ns was performed
in parallel that was used to construct the MaxCal dynam-
ical observable of average number of transitions in any
order parameter si in 200 fs. All simulations were per-
formed in NPT using isotropic Parrinello-Rahman baro-
stat with a time constant of 2 ps and modified Berend-
sen thermostat with a time constant of 0.1 ps. From
these two runs, we obtained an estimate of the 1st RC
component ψ1 (Table I). To identify the 2nd component
we perform metadynamics with similar parameters as for
the 1st component, but this time biasing ψ1 instead of
ψ0
1 . SGOOP is applied to the probability distribution
P1(s1, s2, ..., s11) = P0(s1, s2, ..., s11|ψ1). In practice this
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Order
parameter

Type Definition Weight c0i in trial
RC ψ0

1 =
∑
c0i si

Weight ci in opti-
mized ψ1 =

∑
cisi

Weight in opti-
mized ψ2 =

∑
cisi

s1 Protein-ligand Y88CA–ligand 0 0.1019 -0.5524
s2 Protein-ligand A99CA–ligand 0 1 -0.5068
s3 Protein-ligand L133CA–ligand 1 -0.4625 -0.1838
s4 Protein-ligand L118CA–ligand 0 -0.3011 -0.3698
s5 Protein-ligand V111CA–ligand 0 -0.9866 -0.0767
s6 Protein-ligand A130CA–ligand 0 -0.5829 0.5033
s7 Protein-ligand N140CA–ligand 0 0.0548 1
s8 Protein-ligand A146CA–ligand 0 -0.0376 -0.6962
s9 Protein-protein Helix 1 (A82-S90) – Helix

2 (T115-123Q)
0 0.1188 0.3192

s10 Protein-protein Helix 2 (T115-123Q) –
Helix 3 (W126-A134)

0 0.1113 0.0642

s11 Protein-protein Helix 3 (W126-A134) –
Helix 4 (K147-T155)

0 0.0527 0.0260

TABLE I: List of order parameters use to construct RC and their weights in different trial and optimized RC
components as learned through SGOOP. Note that no trial values are needed for the second RC-component.

amounts to ignoring the bias deposited as function of ψ1

and taking the metadynamics trajectory as is. The same
trajectory can also be used for calculating MaxCal con-
straints. From this we obtain the second component ψ2.
See Table I and Fig. 3(b) for weights of different order
parameters in ψ1 and ψ2. In principle we could add fur-
ther components to the RC. We however note that the
objective in this exercise is to perform infrequent meta-
dynamics biasing together the various components of the
RC. Since infrequent metadynamics and metadynamics
in general becomes extremely slow computationally if one
was to use three or more different biasing variables, we
stop at this point.

The two components of the RC ψ1 and ψ2 are then used
in the infrequent metadynamics protocol to construct a
two-dimensional bias as a function of these RCs. We
perform 16 independent unbinding simulations all start-
ing from the x-ray bound pose with different randomized
velocities at 298 K corresponding to Boltzmann distribu-
tion. These were performed using a well-tempered meta-
dynamics protocol29,42 with initial hill height 1.5 kJ , bi-
asfactor γ = 15, gaussian widths 0.1 for both ψ1 and ψ2,
and bias added every 8 ps. Each run is stopped when
s1 reaches 3 nm, at which point the ligand is fully sol-
vated and has started freely diffusing. This is our un-
bound state. From these 16 biased trajectories we find
the corresponding unbiased dissociation time estimates
through computing the respective acceleration factors,
which are in the range of five to seven orders of mag-
nitude. These are then subjected to the Kolmogorov-
Smirnov test of Ref. 40, where we obtain a p-value of
0.32, which is well above the recommended and normally
used threshold of 0.05, suggesting reliability of the kinet-
ics and associated pathways. Various associated metrics
demonstrating quality of Poisson fit are provided in Fig.
3(c). Finally from this fit we obtain a dissociation rate of
1.5±0.7s−1. This is within error bar agreement with pre-
vious infrequent metadynamics using path CVs with the

same force-field.20 In total our 16 full unbinding trajecto-
ries took around 700 ns for a process that actually takes
a few hundred ms. This reflects the tremendous compu-
tational speed-up achieved with respect to unbiased MD,
while still recovering unbiased rates well within order of
magnitude agreement with results using other methods
for an identical force-field parametrization.20,21

In Fig. 3(a) we provide an overlaid depiction of a
typical dissociation trajectory seen in our simulations,
wherein the ligand moves through the crevice between
helices 2 and 3 (colored green and yellow respectively).
At least 3 distinct clusters can be seen corresponding to
the bound state, a metastable unbound state where the
ligand is stuck on the surface of the protein, and finally
the unbound state when the ligand is freely diffusing in
the solvent. In the inlay to Fig. 3(a) we have highlighted
the residue F114 which acts as a gatekeeper for the lig-
and to go from bound state to the metastable state. The
exit of the ligand is coupled to the breathing of these
helices with respect to each other which opens up space
for the ligand to exit. Fig. 3(b) gives the weights of
both the RC components, scaled so that every order pa-
rameter in Table I ranges between 0 and 1. Note that
the unscaled order parameter weights have however been
used for Fig. 3(d), since these are what we use while bi-
asing in metadynamics. We would like to highlight that
this same pathway has been reported to be the dominant
dissociation pathway in other works on this system.20,22

It is interesting to examine the weights of the different
order parameters in both RC components. The highest
weight in ψ1 is for s2 which corresponds to ligand sepa-
ration from the residue A99, which is in the interior of
the binding pocket. A roughly equal in magnitude but
opposite in sign weight is carried by s5, reflecting that
the ligand moves closer to V111 as it moves away from
A99. In ψ2 the highest weight is for s7 which corresponds
to ligand separation from the residue N140, which lies on
one of the two helices surrounding the final ligand exit
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pathway, and is quite distant from the A99 residue con-
tributing to s2 which is important for ψ1. Furthermore,
while the protein–protein separation order parameters
have non-zero weights in either RC component, these are
not the most dominant players. This reflects that the
protein breathing motion, while a critical slow process,
is not the main driver for dissociation.

Finally, in Fig. 3(d) we provide the unbiased free en-
ergy (i.e. -kBT log P0(ψ1, ψ2)) for this system. This is
again to be contrasted with the equivalent free energy
profiles in Fig. 1(d) and Fig. 2(f) for the potentials of
Fig. 1(a) and Fig. 2(a) respectively. It is more similar
to the latter: the escape from the barrier between bound
and metastable state, as well as out of the metstable state
are far better distinguished through their ψ2 values, and
have much more tightly spaced ψ1 values. As such, here
as well adding the second component ψ2 helps in lifting
the degeneracy of states demarcated by ψ1. Of course,
we could have added more components here, but since
the objective is to perform infrequent metadynamics, we
stopped at two components.

IV. DISCUSSION

In this work, we have introduced a conditional proba-
bility factorization scheme for extending the dimension-
ality of the reaction coordinate (RC) in a given molecu-
lar system. Specifically, here we developed and demon-
strated the algorithm in context of the RC optimization
method named “Spectral gap optimization of order pa-
rameters (SGOOP)”.5,26 Our motivation is that often
it might be desirable to prefer a multi-dimensional RC
with different simple components, over a one-dimensional
complex RC. To find such a multi-dimensional RC, the
central idea in this work is to progressively “wash out”
known features to learn additional and possibly hidden
features of the energy landscape. In a sense, this is
inspired by the approach of metadynamics7 where one
gradually builds a memory kernel as a function of a
given RC to revisit new parts of the landscape. Here
we do an analogous operation in a multi-dimensional
RC space, and by building memory of features already
learned, we explore additional, hidden low-dimensional
features themselves which then can be used to extend
the dimensionality of the RC. This higher dimensional
RC then gives a more accurate picture of the slow dy-
namics in the system, and could then also be used to
deposit a memory kernel as function thereof. We also
want to remark that for the purpose of forming reason-
ably accurate estimates of the RC {ψ1, psi2, ...}, we find
that poorly converged estimates of the marginal proba-
bilities P0, P1, ... etc. are already useful, as long as they
can be used to at least partially wash out the features
already captured. This is line with what has been been
reported previously for SGOOP.5,6

We demonstrated the usefulness of our approach
through three illustrative examples, including the prob-

lem of calculating kinetics of benzene unbinding from the
protein T4L99A lysozyme. In this last case, we started
from a larger dictionary of fairly generic and arbitrarily
chosen 11 order parameters, and demonstrated how to
automatically learn a 2-dimensional RC, which we then
used in the infrequent metadynamics protocol18,40 to ob-
tain 16 independent unbinding trajectories. This directly
gave us insight into dominant dissociation pathway, as
well as the dissociation kinetics.

We believe our method will be a big step in increas-
ing the usefulness of SGOOP in performing intuition-free
sampling of complex systems. We also believe that the
usefulness of our protocol is amplified by its applicabil-
ity to not just SGOOP or metadynamics but also other
generic methods for constructing the RC and sampling
energy landscapes in complex systems. A Python based
code implementing the method is available for public use
at GitHub.
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