
 

1 
 

Network organization of antibody interactions in sequence and structure space: the 

RADARS model 

 

 

József Prechl 

 

Diagnosticum zrt, Attila u. 126, Budapest, Hungary 

 

Correspondence: jprechl@gmail.com 

 

 

 

Keywords: antibody; network; sequence; structure; clonality; B cell; systems biology; 

quantitative biology; immunodominance; consecutive reactions; stationary non-equilibrium  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted April 11, 2019. ; https://doi.org/10.1101/438804doi: bioRxiv preprint 

https://doi.org/10.1101/438804


 

2 
 

Abstract 

 

Adaptive immunity in vertebrates represents a complex self-organizing network of protein 

interactions that develops throughout the lifetime of an individual. While deep sequencing of 

the antibody repertoire may reveal clonal relationships, functional interpretation of such data 

is hampered by the inherent limitations of converting sequence to structure to function. In this 

paper a novel model of antibody interaction space and network, termed radial adjustment of 

system resolution, or RADARS, is proposed. The model is based on the radial growth of 

interaction affinity of antibodies towards an infinity of directions representing molecular 

shapes. Levels of interaction strength appear as shells of the spherical system. B-cell 

development and immune responses are interpreted in the model and quantitative properties of 

the antibody network are inferred from the physical properties of a quasi-spherical system 

growing multi-radially. The concept of system equilibrium constant is introduced, which is the 

median of equilibrium constants in the system and serves to define probability of interactions. 

The thermodynamic system is described by a power-law distribution of antibody free energies 

with a network degree exponent of phi square, representing a scale-free network of antibody 

interactions. 

Thus, the RADARS model implies that an absolute sequence space is reduced to a 

thermodynamically viable structure space by means of a network of interactions, which control 

B-cell development. Understanding such quantitative network properties of the system should 

help the organization of sequence-derived structural data, offering the possibility to relate 

sequence to function in a complex, self-organizing biological system. 
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1. Introduction 

 

Appearance of complex multicellular life was accompanied by the evolution of a system that 

maintains cellular and molecular integrity in the host organism (1). The adaptive immune 

system is a complex system in the physical sense, being composed of a vast number of cells 

that engage in interactions, self-organize and - most impressively - adapt to the molecular and 

cellular environment. In fact, the host is more than an organism: a supraorganism (2,3) with 

microbial communities, and immunity maintains a continuity of interactions rather than simply 

discriminating self from non-self (4). Technological advances now allow us to measure and 

characterize this complexity in ever growing details, at the gene, transcript, protein and cellular 

levels, driving the field of systems immunology (5). The vast amount of data generated requires 

not only data storage and analysis capacity, but also theoretical frameworks, models that 

simplify data organization and systems level interpretation. 

Humoral adaptive immunity comprises the cells and mechanisms that lead to the production of 

antibodies. In human adults B-cells develop in the bone marrow throughout life and build up a 

system of effector and memory cells, which accumulate as a lifetime of immunological 

experiences. Continuously emerging naive B cells only differentiate further if selected for 

immunological actions based on their B-cell antigen receptor (BCR) specificity. Because this 

specificity is genetically coded in the individually rearranged immunoglobulin heavy and light 

chain sequences, it is possible to capture the antibody repertoire in a given sample of B cells. 

Deep sequencing or next generation sequencing (NGS) is capable of generating sequence data 

of antibody repertoires with varying resolution and length (6–10). 

It is also possible to profile the antibody repertoire functionally, based on the identification of 

antibodies binding to huge sets of potential targets (11,12). This approach is biased by the fact 

that a priori knowledge of targets is not always possible and only those antibodies that bind to 

the tested antigens are identified. Antigen microarray assays are useful for the focused analysis 

of antibodies related to allergy, autoimmunity, infection or cancer (13–17). Such functional 

analyses provide a more meaningful profile in the immunological sense and if carried out from 

blood it is less prone to sampling error than cell-based sequencing approaches. 

The relationship between antibody sequence and structure is on one hand like that of proteins 

in general: polypeptide chains of a given sequence fold into structures, which are responsible 

for function. In the enormous sequence space allowed by permutating amino acids only the 

thermodynamically stable structures materialize as proteins (18). Proteins capable of 

interacting with molecules in a way that improves chances of survival of the host organism will 
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themselves survive and evolve. Unlike proteins in general, antibodies evolve within the lifetime 

of the host. While thermodynamic constraints still hold, their “survival”, meaning the 

producing cell clone being selected into long-lived B-cell populations, is determined by 

interactions with self and foreign molecules, the antigens. Importantly, because there are so 

many more sequences than structures and because changing a few critical amino acids can 

result in different structures, mapping sequence space to structure space in far from trivial. The 

combined length of the complementarity determining regions (CDR) of heavy and light 

immunoglobulin chains is around 14-50 amino acids (IMGT definition (19)). By employing 

screening and selection mechanisms, coupled with cycles of random mutagenesis, targeting 

primarily these amino acids, the immune system is capable of developing high-affinity binders 

against most targets. Understanding these processes on the systems level preferably requires 

the prediction of structures from NGS data (20) because of the complex sequence-to-space 

relationship, as noted above. The architecture and functioning of complex systems can be 

assessed by network science, which in the case of antibodies identifies antibody-antigen 

interaction networks (21). The development of concepts of the immune system as a network 

were key steps in our current perception of immunity (22,23). Efforts are now under way to 

describe the immune system as a network (termed network systems immunology) using NGS 

data and network science (24). Since the system is organized by structure rather than sequence, 

the conceptualization of an antibody interaction network based on physical properties should 

help better definition of the system. 

In this paper, following a brief introduction to the sequence space of antibodies, a model for 

the molecular organization of antibody structure space or interaction space is proposed. The 

model builds on the generalized quantitative model of antibody homeostasis (25–27), thus 

approaches antibody function from the physico-chemical perspective: antibodies are organized 

into a network by binding affinity to cognate target.  The model also considers the architecture 

of B-cell development and hierarchy and provides a power law-based quantitative network 

description of the humoral immune system.  
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2. Antibody clonal network representation in sequence space 

 

Sequence space in the biological sense is a theoretical space comprising collections of nucleic 

acid or protein sequences of interest. We usually talk about protein sequence space and define 

what protein sets are involved (proteome of a given species, cells, etc.) and whether any 

restrictions hold (fully random, functional, identified, etc.). An amino acid sequence with a 

given length ‘d’ and full randomization with 20 amino acids occupies a sequence space 20^d 

(Fig 1A). An exact sequence with no ambiguity defines an exact position in sequence space; 

moves in this space are discrete steps along a given dimension. As the figure suggests, it is 

impossible to visualize high-dimensional protein space in 2D. Exponential growth is incredibly 

fast, leading to the generation of vast amounts of space in high dimensions. 

It is accepted that only a fraction of all theoretically possible sequences are thermodynamically 

stable and protein evolution can be interpreted as a search for acceptable and functional 

structures in sequence and structure space (18). Thinking along these lines, the evolution of 

antibody binding surface, the paratope, is a search for the thermodynamically stable sequences 

and the selection from among these the ones meeting immunological criteria for B-cell survival. 

The set of viable antibody sequences, functional antibody sequence space, lies much below the 

theoretically possible (28) and close to the already observed and annotated antibody sequence 

space (29). 

Collections of antibody protein sequences obtained by translating DNA or RNA of deep 

sequencing data ideally span the whole variable domain of heavy (VH) and light chains (VL) 

and can also pair these two. In such a case the gene segments contributing to the rearrangement 

of VH and VL can be predicted and visualized in 3D and 2D respectively, as shown (Figure 

1B). A repertoire can be represented by identifying coordinates of rearrangements identified, 

and symbol size or color can represent segment frequencies (30). While the use of gene 

segments for classification allows tremendous reduction in dimensionality, it is not best suited 

for functional network analysis, where the use of complete rearranged and mutated sequences 

is preferable (31). 

In a much simpler approach, heavy chain CDR3 regions only are used as an estimate of 

diversity. Though this region is often regarded as being most important for determining binding 

specificity, identical H-CDR3 sequences have been found to be present in functionally 

unrelated cells and therefore H-CDR3 seems insufficient for functional classification (32). 

Selection of the pre-BCR bearing cells depends on signals that may be triggered by ubiquitous 

ligands present in the bone marrow microenvironment. The presence of uniform reactivity 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted April 11, 2019. ; https://doi.org/10.1101/438804doi: bioRxiv preprint 

https://doi.org/10.1101/438804


 

6 
 

against such common public self-antigens may lead to the positive selection of CDR3 with 

similar binding properties, and thereby similar sequences. Sequencing of the complete heavy 

chain variable domains can be readily used to follow changes in repertoire size and diversity 

during B-cell development and response to immunization (33). 

Whatever the depth and methodology, sequence similarity relationships can be used for the 

construction of family trees, often displayed in circular forms. These trees usually start 

classification with the V segment, clustering clones with common V use (34). While this 

approach may be useful for classification, the use of the complete VDJ-H sequence as a first 

stage classifier, followed by VJ-L use better reflects the natural development scheme of B cells 

(Fig 1C). Antibody repertoire sequencing now follows guidelines to help the integration of data 

(35–37), several tools devoted especially for these data have been established (7,9,38–40). 

 

 
Figure 1. Sequence space and visualization of antibody sequence relationships 

A) Theoretical diversity of a sequence is determined by its length and the number of values a particular position 

in the sequence can take. More than 3 dimensions are difficult to visualize in 2D. An antibody Fv region of 250 

amino acids has an astronomical sequence diversity if full randomization is allowed. If the sequences are exact, 

the positions in sequence space are discrete, but there are no structurally meaningful directions or distances in 

this multidimensional sequence space. B) Antibody sequences are frequently interpreted as recombined 

germline sequences. This approach allows the simplified display of repertoires obtained by NGS, preferably 

with paired heavy and light chain VD identification. Such a display of combinatorial diversity may allow the 

tracking of specific clonal expansions and further diversification by SHM but reveals little about the overall 

functional network of interactions. C) The potential development scheme of a given antibody clone is shown 

with antibody sequence development along with B-cell differentiation steps. Arching arrows represent 

combinatorial diversification by V-D-J rearrangement and light chain paring. 
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3. Antibody interaction space representation in structure space 

In contrast to this graded qualitative scheme, which may well serve the purpose of tracking 

peripheral clonal expansions accompanied by affinity maturation, a quantitative scheme should 

place genetic changes into structure rather than sequence space. Furthermore, because it is not 

just antibody structure but also the availability of targets and the structure of those targets that 

determine the development of antibody repertoire and the architecture of the network, we shall 

talk about interaction space, as explained below. 

3.1. Structural resolution of molecular recognition as a measure of interaction strength 

While sequence can be defined with various levels of certainty of an amino acid occupying a 

given position in the sequence, molecular structure can be defined at various levels of 

resolution. As we are talking about antibody molecules structural resolution is on the atomic 

scale, crystal structures define atomic coordinates on the Ängstrom scale. The binding site of 

an antibody can also be characterized by the surface area that comes into close contact with the 

antigen (41,42). Water molecules are displaced from this area as a function of the goodness of 

fit. The so-called buried surface area (BSA) is therefore a good predictor of binding energy of 

protein interactions (43). Another measure of goodness of fit is the decrease of free energy of 

the antibody molecule upon binding. All these approaches are correlated: higher resolution 

“description” of a structure by the antibody corresponds to greater BSA and to a higher binding 

energy. In other words, the resolution of molecular recognition is the goodness of fit in terms 

of number and strength of non-covalent bonds forming between antibody and target and can 

be expressed as standard free energy change or as equilibrium constant of binding. The 

advantage of using thermodynamic description for the characterization of structural resolution 

is that it conveys the sense of function: higher binding energy means higher affinity of antibody 

to target, which in turn means more efficient clearance (27). Besides defining resolution of 

molecular recognition, which is a general descriptor, the identification of a given interaction 

requires the description of target shape, a distinct molecular structure. The higher the resolution 

the more information is required for defining shape, translating into a better fit between 

antibody and target. 
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Figure 2. Quantitative interaction space and B-cell differentiation: the RADARS model 

A) The system of interactions has a center as a reference point in a conceptual three dimensional space. 

Structural diversity, that is different shapes, appear as directions (exemplary arrow) from this center towards 

the target structure. Distinct directions can be defined with a precision dependent on the distance from the 

center, equivalent to the radius (r) of the system extending in that particular direction. Multidimensionality is 

theoretically infinite in this representation, practical limits being introduced by maximal resolution (BSA) or 

the maximum interaction energy (DG°) in the system. 

B) Structural diversity appears as we leave the center, spherical shells representing various levels of resolution 

of molecular recognition, measured as logKA. Colors represent distinct amino acids of antibody binding site 

engaging in non-covalent bonding with the target molecule. BSA, buried surface area 

C) Systemic organization of antibody evolution. 

The evolution of the system of antibodies can be interpreted as clones filling the interaction space at various 

levels of resolution. Along this pathway cells continually increase their specificity and affinity towards their 

target direction.  A common lymphoid progenitor has the potential to develop antibody against any target. TD 

responses allow further directed differentiation via somatic hypermutations in germinal centers, yielding post-

germinal center B cells. B2 cells are continuously generated and only survive if recruited for specific immune 

responses. B1 cells, on the contrary, survive in an activated state producing antibodies and dividing rapidly 

upon activation. Effector cells from clonal expansions can establish long lived plasma cells if they arrive in the 

required niche. Fibonacci branching of dividing and differentiating cells defines ratios of cells on various levels. 

Different colors stand for structural differences and relationships. 
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By starting to increase resolution we shall be able to distinguish between different shapes, the 

higher the resolution the more shapes becoming distinct. Because of the structural complexity 

of an antibody binding surface area, the distinction between all possible shapes at high 

resolution would require a multidimensional space. Let us gradually generate a 

multidimensional interaction space by considering a point of origin, the center of the system, 

from which a particular direction represents a particular shape. In this representation the extent 

by which we leave the point of origin corresponds to the resolution at which we can define the 

direction. Thus, going away from the minimal resolution we can define shape at gradually 

higher resolutions, corresponding to larger free energy decrease of the interacting molecule 

(Fig. 2A,B). Different levels of resolution, that is different levels of binding energies appear in 

our scheme as shells of a sphere. Theoretically the number of directions originating from a 

single point is infinite, so the shapes available in this representation are also infinite if we go 

far enough. The other way around, higher resolution of molecular recognition is required to 

distinguish two similar antigenic structures. Practically, considering a reversible interaction, 

the resolution is limited by the binding energy of reversible interactions. 

This model of the organization of interactions of a system we shall call ‘RAdial ADjustment 

of System Resolution’ or RADARS in short. The abbreviation intentionally reminds of 

radiolocation, where emitted electromagnetic waves interact with objects in their way and are 

reflected to provide an image of the surroundings. The RADARS model implies that elements 

of the growing system interact with the surroundings, gaining information and adjusting system 

growth accordingly. 

3.2. B-cell development in interaction space 

Immunological interpretation of the model requires us to fit B-cell development and antibody 

network evolution into this interaction space. We shall assume that a common lymphoid 

progenitor has the potential to generate any and all functional VDJ-VJ sequences and therefore 

to produce via sequential differentiation and maturations steps antibody against any and all 

targets. By functional VDJ-VJ sequences we mean all sequences that are physically and 

biologically viable. This means thermodynamic stability (able to fold into a structure 

compatible with the Ig domain), ability to pair, forming a VH-VL functional binding unit, and 

ability to sustain a B-cell via delivering survival, differentiation and proliferation signals. 

A differentiation step that reduces this total potential introduces restrictions in structural space. 

This will appear as a step towards increased resolution of cognate target structure recognition. 

Expression of the surrogate light chain (SLC) marks the first step towards BCR formation. 

These pro-B cells represent the founders of all B cells (Fig. 2C). While signaling via the SLC 
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may be required, it is uncertain whether binding of SLC is required for further differentiation, 

therefore we assume that these cells seed the complete antibody interaction space. 

Rearrangement of the heavy chain introduces a structural restriction: a particular functional 

heavy chain variable domain (VH) sequence has a limited range of targets. Pre-B cells 

displaying the pre-BCR composed of VH-SLC pairs will divide until and as long as ligands 

(antigens) are available. Cells with different VH sequences will populate the structural space 

and share this space according to the availability and in the direction of target. Cells with more 

abundant targets expand more, cells with less frequent targets remain in lower numbers, until 

optimal BCR engagement is achieved (25). As a result, interaction space as represented at these 

resolutions will be filled with different pre-B cell clones according to the availability of the 

common self-antigens. 

The next levels of interaction resolution, introducing further focusing in interaction space, 

comes with the rearrangement of the light chain. Individual pre-B cells rearrange their light 

chains independently and randomly. Therefore, all pre-B cells reserve a particular area on the 

next level of structural resolution. The size of this area again will correspond to the nature of 

the rearranged VL domain, with those finding more available targets expanding more. The pool 

of immature B cells fills thus the outer level of resolution in the bone marrow (Fig. 2C). 

Taking a somewhat unique route of differentiation are the B1 cells. These cells seem to generate 

antibodies that keep B1 cells in a continuous state of low-level activation. This may reflect 

their ability to respond to soluble, highly abundant antigens (25), or an intrinsic ability of the 

BCR of sustained signaling, perhaps due to structural properties (44). In any case, B1 cells 

represent a stable population with the highest affinity towards self and non-self, which is 

achieved without affinity maturation. Meanwhile B2 cells are continuously generated but die 

in a few days unless recruited as effector cells for further differentiation (Fig. 2C). 

To allow for an even balance between differentiation and division we can employ a Fibonacci 

branching scheme in our model: every division yields one cell that divides again and another 

one that differentiates, changing its BCR (Fig. 2C). Assuming equal time and energy 

investments for division and differentiation this scheme results in a Fibonacci series number of 

cells after every time unit. In our model dividing cells remain on the same level of resolution, 

differentiating cells move outwards if interaction resolution grows, in a hierarchy similar to 

that proposed by Derényi&Szőllősi (45). To maintain constant cell numbers in all levels of 

differentiation the ratio of differentiation rates is proposed to be determined by  the number 

approached by Fibonacci series. Thus, on a systemic level, for every new incoming cell there 
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will be one differentiated cell entering the next level, along with a differentiated cell already 

dividing on the next level (Fig. 2C inset). In our model this also means a 2 increase in surface 

area to be filled with differentiated cells continuously replenished from lower levels, along with 

a proportional decrease of directions (shapes) available for a given cell. 

As implied above, selection in the bone marrow is a passive process: randomly generated 

sequences find their positions in the structural space, expanding according to the availability 

of interacting target structures. As a result, the emerging population of immature B cells will 

bear the low-resolution antigenic signature of the bone marrow environment. This can be 

interpreted both as deletion of highly self-reactive clones to prevent autoimmunity (46), and as 

selection for mildly autoreactive clones to help homeostatic antibody functions and setting a 

reference for recognition of non-self (47). 

3.3. Immune responses in interaction space 

The development of cells reacting with antigens that are only temporarily present in the host 

presents the risk of investing energy into clones that will become useless once that antigen 

disappears. Therefore, such clonal expansions beyond the border of self only takes place when 

2nd signals inform the host of danger. This is the development of an immune response, aided 

by various molecular and cellular help signals. Thymus independent and primary thymus 

dependent responses expand populations of B cells without improving their affinity, thus 

keeping them on the same level in the interaction space. We shall call these cells effector B 

cells. Thymus dependent responses aided by helper T cells lead to the formation of germinal 

centers where affinity maturation takes place. This adjustment of affinity focuses interactions 

into a particular direction, corresponding to molecular shape in our model, leading to increased 

resolution of interaction space only in that direction. Post-germinal center B cells will have 

accumulated somatic hypermutations to increase their affinity. In this region of interaction 

space, affinity and corresponding resolution of target recognition is high, but once target is 

cleared cells go into dormancy. These are the memory B cells that conserve the genetic 

information acquired during affinity maturation but minimize their activity: no divisions, no 

antibody secretion; remaining guards against future encounter with the same or similar target 

(Fig. 2C) (48–50). Another type of cell that remains in the system after target has been cleared 

is plasma cell, which become long-lived antibody producing cells following terminal 

differentiation (51,52). 
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4. Characterization of the antibody interaction network 

4.1 Distribution of binding energies in the system 

The cell biological aspects of the RADARS model are summarized in Figure 3A. Expansion 

and differentiation of cells originating from CLPs create a cellular repertoire in the bone 

marrow, then further expansions and differentiation steps increase this repertoire and 

supplement it with antibody secretion. The development of B cells bearing surface antibodies, 

B-cell receptors, with increasing affinities takes place in an environment loaded with a huge 

diversity of macromolecules. These antibodies thus develop in a system characterized by 

reversible, non-covalent interactions. These interactions in the system can be described 

mathematically by the frequency distribution of interaction affinity. Theoretically the 

equilibrium binding constants of a given molecule in the system show a lognormal distribution 

(53). Accordingly, since the logarithm of the constant is correlated to binding energy by 

G°=-RTlogK         1) 

where G° is standard free energy, R is universal gas constant, T is thermodynamic 

temperature, log is natural logarithm, the standard free energy of the interactions shows a 

normal distribution. If we have a huge diversity of antibodies, forming a complex system, then 

interactions of a particular antigen should follow a lognormal KA and a normal G° 

distribution, as well. If we have a system of antigens with huge diversity, then the interaction 

of these two systems will also follow such distributions. 

 

Figure 3. Predicted interaction properties of the humoral immune system. 

A) Clonal network development of the humoral immune system, shown as cumulative distribution of evolving 

antibody clones. The self-organizing system in the bone marrow utilizes recombination of gene segments 

(V,D,J) and meets environment in the periphery to maintain immunological self and generate immunological 
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antibody profile, here also employing selected mutations (*). ‚r’ represents the radius of the system. B) 

Distribution of equilibrium constant of antibody interactions in the system. Differentiation of B in the bone 

marrow is driven by antigen, whereas in the periphery excess secreted antibody maintains BCR of memory B 

cells in equilibrium. *somatic hypermutations; CLP, common lymphoid progenitor; immat., immature; B2eff, 

effector B2 cell; Bmem, memory B cell; PC, plasma cell; BCR, B-cell receptor; sAb, secreted antibody 

 

Reversible interactions take place with binding energies between 0 and 60 kJ/mol. The mean 

standard free energy of binding we will therefore assume to be 30 kJ/mol. This corresponds 

roughly to a median equilibrium binding constant of 105 /mol. This is also the lower limit of 

BCR sensitivity, so it makes sense to distinguish molecular structures above this value (54). In 

order to define the behavior of a system of molecules we can introduce a system equilibrium 

constant  

Ksys = KA/<KA>=e-(G°-<G°>)/RT      2) 

where < > enclose average values, median equilibrium constant and mean free energy of 

binding, respectively. Ksys represents the binding propensity of the molecule in the system 

(Fig.3B). The reason for introducing this parameter is that whereas in a bimolecular interaction 

KA is a sufficient measure for determining the ratio of bound and free molecules in equilibrium, 

in a system a given molecule can interact with any other component of the system and its free 

energy will determine its behavior in the system. Instead of looking at particular bimolecular 

interactions we are interested in how close the antibody gets to its native conformation, which 

is its form bound to its cognate target. In fact, we expect different copies of a given antibody 

structure to be bound to several targets at a time: because of the high frequency of potential 

binding partners with an average affinity, only a fraction of it will bind to its cognate target. 

The reaction quotient Q is the instantaneous ratio of activity of products and reactants of a 

chemical reaction. It is equal to the equilibrium constant when equilibrium is established. 

Q = e(G-G°)/RT         3) 

where G is free energy change of the reaction, which is zero in equilibrium.  

A non-equilibrium process can be maintained by keeping a constant ratio of Q/K. In the 

immune system this is achieved by the constant generation of B cells and antibodies. Using a 

φ rate of generation of cells/antibodies at every level of differentiation we obtain 

ΔG=φΔG°sys         4) 

which substituted into equation 3) gives 

Q = e(φG°-G°)/RT        5) 

Then, by simplification 

Q = e((φ-1)G°)/RT        6) 
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and since φ-1=1/φ we get 

Q = eG°/φRT         7) 

This is a definition of the exponential growth of the system with 1/φ in the exponent. If growth 

of the system towards a particular target is stopped because equilibrium is reached and BCR 

engagement sends B cells to a resting memory and secreting plasma cell stage (25) we obtain 

antibody with a particular Ksys. Combining a growth and a stop process, both exponentially 

distributed and determined by ΔG°, we obtain a power law relationship (55,56) with an 

exponent 

γ= 1-a/b         8) 

where a is the stop process exponent and b is the growth process exponent. In our case these 

are -1 for Ksys and 1/φ for Q. Substituting these values 

γ=1-(-1/(1/φ))         9) 

γ=1+φ          10) 

which is equal to φ square, because of the unique property of the number φ (Fig.3B). 

We have now obtained the description of a non-equilibrium system of antibody interactions. 

This non-equilibrium system describes both the growth phase and the non-growing phase, 

where network nodes are constantly added and removed from the system to establish a 

continuous flow of antibodies. This continuous flow appears as a current of links in the 

direction of older nodes in a non-equilibrium network (57). 

 

 

Figure 4. Properties of the antibody interaction 

network. 

Degree distribution of the antibody network 

corresponds to the probability distribution of relative 

free energy of antibody interactions, where the system 

equilibrium constant is the degree of a B-cell clone 

node and Q/Ksys is the frequency of nodes with that 

degree in the interaction network. Note that this figure 

corresponds to the lower right quadrant of Figure 3B, 

except that not the axis values but the scale is 

logarithmic. 

 

4.2 A scale-free network of interactions 

The systematic organization of binding events, as outlined above, can be interpreted as a 

network of interactions. While antibodies seek to minimize their free energy by finding their 
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best fitting target, antigens are passed on from antibody to antibody. Such shared consecutive 

binding represents links in the network between nodes of antibodies. Antibodies with the 

highest Ksys value are the most avid binders and as such will take over and handle most antigens, 

which are channeled to these molecules by antibodies underneath in the binding hierarchy. 

These antibodies will have the highest number of links and therefore the highest network degree 

k. Assuming that k=Ksys we obtain the probability density function of the antibody network  

p(k) ~ k-γ         11) 

where γ is the degree exponent and is equal to φ2 (Fig.4). 

Both cells and secreted antibodies are continually replaced as they die or are removed along 

with bound target antigens. It is the rate of replacement that determines the organization of the 

network, by sustaining a non-equilibrium system of binding events. Thus, while individual 

molecules are replaced, the overall organization of the system is stationary in time. The non-

equilibrium system depicted in Figure 3B maintains a constant ratio between the reaction 

quotient Q and Ksys. This in turn regulates the frequency distribution of antibodies along our 

radius of logKsys. 

The power law relationship of antibody interactions is a hallmark of scale-free networks (58). 

This scale-free network is an energy transfer system physically and an antigen transfer system 

immunologically. This is an optimization of antibody differentiation in the sense that the 

minimal number of high free energy antibodies (network hubs) are used for the removal of the 

maximal number of antigens, covering the maximum of immunologically relevant structure 

space. The generation of an antibody network, with network hubs represented by plasma cells 

secreting antibodies, reveals the physical aspect of the system: all interactions of such an 

antibody contribute to the clearance of many target antigens sharing structural homology. A 

new node in the network, a new B cell in the structure space, will preferentially attach to an 

existing subnetwork as a low-affinity clone, in agreement with the preferential attachment 

model of growth in scale-free networks (59). Preferential attachment may explain 

immunodominance and antigenic sin, phenomena arising from the preference of the immune 

system for known epitopes, which correspond to hubs in the network. 

4.3 An inverted view of the system 

The model presented so far follows a view of the system growing outwards, with cells supplied 

from within and extending into the world of antigens. However, we can turn this view inside 

out, as shown in Figure 5, interpreting the events as the immune system being outside and 

developing inwards. Practically this means that we use the dissociation constant KD instead of 
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KA as a measure for the system. Though it is more difficult to visualize a system that grows 

inwards, this view helps our perception of the developing antibody network. 

In the immune-side out view of the RADARS model distance from the outside boundary of the 

system represents resolution of molecular recognition, which is now KD. Directions still 

correspond to theoretical targets: individual molecular shapes. If all these targets have binding 

energy distributions as predicted by the universal distribution model, then our interaction space 

will represent a collection of these statistical distributions. 

 

Figure 5. Antibody-centric and antigen-centric views of the organization of adaptive humoral immunity. 

The antibody-centric view (A) corresponds to the clonal development and expansion of B cells, generating and 

maintaining a spherical system with a radius of lnKsys. The system carves out a niche in the molecular 

structural world of antigens. We can turn the system inside out to obtain an antigen-centric view (B), where the 

system grows „inwards” with a radius corresponding to ln(1/Ksys). In this representation the development of 

antibodies with higher affinity pull antigen down an antigen sink with increasing efficiency. 

 

The RADARS model suggests that the greater the resolution of structural recognition the more 

restricted is the number of shapes recognized. However, with the development of high affinity 

clones the ability to react with related structures also grows, a phenomenon called cross 

reactivity. The further the system grows in a given direction the more focused is the recognition 

of cognate target but affinity to related structures inevitably grows as well. This is not mere 

polyreactivity, however, but rather organized cross-reactivity. With the supply of B-cell 

precursors outside and the organization of antigen removal inside, we can best interpret effector 

antibody function as an antigen sink (Fig.5). In this sink multiple sinkholes develop as the 
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immune system matures. The sinkholes themselves correspond to immunodominant epitopes: 

structures preferred by the system as targets. 

 

5. Merging sequence space to interaction space 

Network theory has always been considered as a key to understand and define immunity on a 

systems level. The network hypothesis of Niels Jerne (22), its modified version leading to the 

concept of clonal selection (60), mathematical and computational simulations (61,62), various 

re-interpretations (23), experimental approaches using NGS (24,31) or antigen microarrays 

(21) all strive to describe this highly complex system as connected elements of a network. 

There are two new aspects of the RADARS model that may improve our view of this network. 

First, it introduces physical units, binding energy, as the measure of interactions and as a 

measure of system architecture. Natural networks are formed as a result of energy dispersal 

(63,64), therefore network theories should consider energy transduction in the system. Second, 

it proposes an architecture for the whole network, characterized by the scale-free distribution, 

and an optimal value for the degree exponent of power-law relationship. 

The network architecture of antibody repertoires was recently computed based on high-

throughput sequencing data from more than 100.000 unique antibody sequences (65). This 

study revealed that pre-B cell and naïve B-cell clones form homogenously interconnected 

assortative networks, in contrast to the disassortative networks of plasma cell clones, which 

covered smaller but more focused regions of sequence space. This contrasting behavior of 

antigen-naïve and antigen experienced, post-germinal center B cells corresponds to the 

antibody-centric view in our model. The low-affinity region with developing B-cells is 

homogenously interconnected by clonal relationships and shared usage of gene segments (Fig.2 

and 3). The high affinity side of the distribution is the narrowing, focusing interaction space of 

plasma cells. 

Considering that our technological capability is ripe for the high-resolution determination and 

comprehensive analysis of antibody sequence space, current efforts focus on the conversion of 

sequence space data into datasets in interaction space. By providing a physical and 

mathematical description of relationship between antibody clones the RADARS model may 

help in the final integration of sequence data. The model also suggests that sequence-based 

network properties of early B-cell developmental stages also need to be determined (24), in 

addition to the mature and antigen-experienced repertoire (66), and comprehensive and 

selective analysis of the B1 repertoire is very important for capturing network properties of the 

system. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted April 11, 2019. ; https://doi.org/10.1101/438804doi: bioRxiv preprint 

https://doi.org/10.1101/438804


 

18 
 

The model presented here depicts an ideal state of the system of antibody interactions. It is the 

fluctuations and disturbances in the system that we observe as immune response during 

infections, and distortions are autoimmunity and allergy. Besides suggesting how antibody 

sequence space fits into structural space and into an interaction network, the model may 

potentially lead to the ability to model whole immune system and simulate its functioning. 

 

6. Concluding remarks 

This theoretical study introduces the concept of antibody interaction space, which arises from 

structure space, and in turn from sequence space. A self-organizing system, such as the humoral 

adaptive immune system, is based on the organization of interactions. Since molecular 

interactions are determined by structure, organized interaction space should mean an organized 

structure space. The RADARS model proposes that a universal organization of an immense 

number of structures in a huge but finite system is possible by adjusting the resolution of 

structural recognition, which is the adjustment of interaction energy. Radial adjustment of 

system resolution generates a non-equilibrium network of interactions. Consecutive binding 

reactions generate a stationary non-equilibrium system. The network of interactions is scale-

free and is characterized by a power law distribution of free energy of reactants. Overall, this 

organization allows the energy optimized controlled removal of antigens from the host system.  
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