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Abstract 

Targeted protein degradation has arisen as a powerful strategy for drug discovery allowing the targeting of 

undruggable proteins for proteasomal degradation. This approach most often employs heterobifunctional 

degraders consisting of a protein-targeting ligand linked to an E3 ligase recruiter to ubiquitinate and  mark 

proteins of interest for proteasomal degradation. One challenge with this approach, however, is  that only few 

E3 ligase recruiters currently exist for targeted protein degradation applications, despite the hundreds of known 

E3 ligases in the human genome. Here, we utilized activity-based protein profiling (ABPP)-based covalent 

ligand screening approaches to identify cysteine-reactive small-molecules that react with the E3 ubiquitin 

ligase RNF4 and provide chemical starting points for the design of RNF4-based degraders. The hit covalent 

ligand from this screen reacted with one of two zinc-coordinating cysteines in the RING domain, C132 and 

C135, with no effect on RNF4 activity. We further optimized the potency of this hit and incorporated this 

potential RNF4 recruiter into a bifunctional degrader linked to JQ1, an inhibitor of the BET family of 

bromodomain proteins. We demonstrate that the resulting compound CCW 28-3 is capable of degrading BRD4 

in a proteasome- and RNF4-dependent manner. In this study, we have shown the feasibility of using 

chemoproteomics-enabled covalent ligand screening platforms to expand the scope of E3 ligase recruiters that 

can be exploited for targeted protein degradation applications. 
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Main text 

Targeted protein degradation is a groundbreaking drug discovery approach for tackling the undruggable 

proteome by exploiting the cellular protein degradation machinery to selectively eliminate target proteins 1,2. 

This technology most often involves the utilization of heterobifunctional degrader molecules  consisting of a 

substrate-targeting ligand linked to an E3 ligase recruiter. These degraders are capable of recruiting E3 ligases 

to specific protein targets to ubiquitinate and mark targets for degradation in a proteasome-dependent manner. 

As functional inhibition of the target is not necessary for degrader efficacy, this strategy has the potential to 

target and degrade any protein in the proteome for which there exists a ligand. However, a major challenge in 

the application of this technology is relatively small number of E3 ligase recruiters. While there are ~600 

different E3 ligases, there are only a few E3 ligases that have been successfully exploited in suhc a strategy , 

including small-molecule recruiters for cereblon, VHL, MDM2, and cIAP 2,3. Identifying facile strategies for 

discovering ligands that bind to E3 ligases remains crucial for expanding the set of E3 ligase recruiters that can 

be utilized for targeted protein degradation applications.  

Activity-based protein profiling (ABPP) has arisen as a powerful platform for ligand discovery against 

targets of interest, including proteins commonly considered as undruggable  4–10. ABPP utilizes reactivity-based 

chemical probes to map proteome-wide reactive and ligandable hotspots directly in complex biological systems 

11,12. When used in a competitive manner, covalently-acting small-molecule librarie can be screened for 

competition against the binding of reactivity-based probes to facilitate covalent ligand discovery against 

proteins of interest 4–7,9,13–15.  Towards discovering covalent ligands that may react with E3 ubiquitin ligases, we 

first investigated whether representative commercially available E3 ligases--MDM2, RNF4, and UBE3A--could 

be labeled by the cysteine-reactive tetramethylrhodamine-5-iodoacetamide dihydroiodide (IA-rhodamine) 

reactivity-based probe. We observed IA-rhodamine labeling of all three E3 ligases in a dose-responsive 

manner (Fig. 1A). While previous studies have already uncovered MDM2 and UBE3A small-molecule 

modulators 16–18, no chemical tools exist for the E3 ubiquitin ligase RNF4, which recognizes SUMOylated 

proteins and ubiquitinates these proteins for subsequent proteasomal degradation 19,20. We thus focused our 

efforts on developing a potential E3 ligase recruiter for RNF4.  

  In search of RNF4-targeting ligands, we screened a cysteine-reactive covalent ligand library against 

IA-rhodamine labeling of pure human RNF4 using gel-based ABPP (Fig. 1B; Table S1). We identified several 
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potential hits from this screen, including TRH 1-74, YP 1-44, DKM 2-76, TRH 1-23, and TRH 1-163. From 

these, YP 1-44, TRH 1-163, and TRH 1-23 showed reproducible and dose-responsive inhibition of IA-

rhodamine labeling of RNF4 (Fig. 1D, Fig. S1). Based on corresponding silver staining of RNF4 in these 

experiments, we found that TRH 1-163 may be causing protein precipitation. Based on gel-based ABPP 

analysis of general cysteine-reactivity in 231MFP lysates, YP 1-44 was much less selective compared to TRH 

1-23 (Fig. S1). Thus, TRH 1-23 appeared to be the most promising RNF4 hit (Fig. 1D).  

We next sought to identify the site-of-modification of TRH 1-23 within RNF4. We performed liquid 

chromatography-tandem mass spectrometry (LC-MS/MS) analysis of tryptic digests from TRH 1-23-treated 

RNF4 pure protein and found that TRH 1-23 covalently modified either, but not both, of the two zinc-

coordinating cysteines C132 and C135 in the RING domain of RNF4 (Fig. 2A, 2B). In support of its utility as a 

functional RNF4 recruiter, we wanted to see if TRH 1-23 had any effect upon RNF4 autoubiquitination activity, 

since previous studies had shown that mutation of these cysteines to serines inhibits RNF4 function 21–23. 

Surprisingly, TRH 1-23 treatment does not inhibit RNF4 autoubiquitination activity in an in vitro reconstituted 

assay (Fig. 2C).  

 While a promising non-functional ligand against RNF4, TRH 1-23 did not show sufficient potency to be 

useful as an RNF4 recruiter. We thus synthesized several TRH 1-23 analogs and used gel-based ABPP to test 

their potency and structure-activity relationships against RNF4 (Fig. 3A). Among these analogs, we found 

CCW 16, with an N-benzyl and 4-methoxyphenoxyphenyl substitution on the chloroacetamide scaffold, to be 

among the most potent of the analogs with inhibition of IA-rhodamine labeling of RNF4 observed down to 1 

µM. Further confirmatory studies revealed a CCW 16 50 % inhibitory concentration (IC50) of 1.8 µM (Fig. 3B).  

 To better understand how CCW 16 was interacting with RNF4, we carried out covalent docking on 

CCW 16 bound to either C132 or C135 on a publicly available crystal structure of RNF4 (Fig. 3C). In this 

model, CCW 16 covalent binding to C132 causes the residue to flip out. The CCW 16 ligand occupies a groove 

on the RNF4 surface consisting of side-chains R125, T129, and S131, with no obvious polar interactions 

between the ligands and the protein in this model. Interestingly, CCW 16 does not bind directly in the zinc-

binding site, leaving the other three zinc-coordinating cysteines (C135, C159, and C162) unperturbed (Fig. 

3C). In modeling CCW 16 covalently bound to C135, we observed binding on a surface groove of RNF4 

occupying a region between Q161, S166, and P174. To accommodate the ligand, a dihedral rotation of Ca & 
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Cb of C132 is predicted (Fig. 3C). Both models indicate that zinc may still be bound by the three remaining 

cysteines in the site, while CCW 16 binds outside of the zinc-coordinating site. Since CCW 16 and TRH 1-23 

are based on the same scaffold, these results may explain why TRH 1-23 did not inhibit RNF4 

autoubiquitination activity.  

Based on the structure-activity relationships observed with TRH 1-23 analogs, we thought that the 4-

methoxy group on CCW16 would be an ideal position for extending a linker to yield a RNF4-based degrader. 

To demonstrate that we could use CCW 16 as a potential RNF4 recruiter for targeted protein degradation 

applications, we synthesized CCW 28-3, a bifunctional degrader linking CCW16 to the BET bromodomain 

family  inhibitor JQ1 (Fig. 4A). CCW-28-3 was prepared in five steps from commercially available materials. 

Demethylation of 4-(4-methoxyphenoxy)aniline yielded 4-(4-aminophenoxy)phenol, which underwent reductive 

amination with benzaldehyde using sodium triacetoxyborohydride as the reducing agent to form CCW 22. 

Alkylation of phenolic moiety of CCW 22 with 4-(Boc-amino)butyl bromide and subsequent reaction with 2-

choloracetyl chloride allowed functionalization of the RNF4 recruiter with a linker containing a “latent” reactive 

handle, a Boc-protected amino group. Boc deprotection by trifluoroacetic acid restored the functional primary 

amine which could then be reacted with the BRD4-targeting JQ1 through amide coupling, yielding the 

bifunctional degrader CCW-28-3 as the final product. It is noteworthy that amide coupling reaction should be 

highly versatile and thus this synthetic scheme should be applicable for conjugating different protein-targeting 

ligands with carboxylic acid moiety onto our RNF4 recruiter.  

CCW 28-3 showed higher potency for RNF4 than CCW16 with an IC50 of 0.54 µM (Fig. 4B). 

Compellingly, treatment with CCW 28-3 degraded BRD4 in a dose-responsive manner in 231MFP breast 

cancer cells (Fig. 4C). We also confirmed that CCW 28-3 did not inhibit RNF4 autoubiquitination activity (Fig. 

4D). CCW 28-3-mediated degradation of BRD4 was prevented by pre-treatment of cells with the proteasome 

inhibitor bortezomib (BTZ), JQ1 alone, as well as the E1 ubiquitin activating enzyme inhibitor TAK-243 (Fig. 

4E-4F).   

 We next used isotopic tandem orthogonal proteolysis-enabled ABPP (isoTOP-ABPP) platforms to 

assess the proteome-wide selectivity of CCW 28-3 4,6,7,12 (Fig. S2; Table S2). We treated 231MFP cells with 

vehicle or CCW 28-3 and labeled the resulting proteomes with the cysteine-reactive N-hex-5-ynyl-2-iodo-

acetamide (IA-alkyne) probe, followed by appendage of isotopically light or heavy TEV protease-cleavable 
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biotin-azide tags onto probe-labeled proteins in vehicle and CCW-28-3-treated groups, respectively. Probe-

modified peptides were enriched and eluted and analyzed using previously described methods for isoTOP-

ABPP 4,6,7,12. While we were not able to observe the probe-modified peptide for RNF4 in this experiment likely 

due to its low abundance compared to other IA-alkyne labeled proteins, we demonstrated that there were only 

7 potential off-targets of CCW 28-3 that showed isotopically light to heavy ratios greater than 4, out of 1114 

total quantified probe-modified peptides identified. This ratio >4 indicates that the covalent ligand displaced IA-

alkyne probe labeling at the particular site within the protein by >75 %. Most notably, none of these off-targets 

of CCW 28-3 are part of the ubiquitin-proteasome system indicating that the observed BRD4 degradation can 

likely be attributed to RNF4-based ubiquitination (Fig. S2; Table S2). 

Because CCW 28-3 was not completely selective and we were targeting conserved zinc-coordinating 

cysteines across the RING family of E3 ligases, we next confirmed the contributions of RNF4 to CCW 28-3-

mediated degradation of BRD4. We compared CCW 28-3-mediated BRD4 degradation in wild-type (WT) and 

RNF4 knockout (KO) HeLa cells. Convincingly, CCW 28-3-mediated degradation of BRD4 observed in HeLa 

WT cells was not evident in RNF4 KO cells (Fig. 4G; Fig. S3). These data further support our claim that CCW 

28-3 degrades BRD4 through RNF4 recruitment.  

 Our study demonstrates the feasibility of using ABPP-based covalent ligand screening approaches to 

rapidly discover chemical entry points for targeting E3 ligases and that these covalent ligand hits can be 

identified, optimized, and incorporated into degraders for targeted protein degradation applications. While 

CCW16 and CCW-28-3 are not yet completely selective for RNF4 in cells, we demonstrate that we can still 

degrade BRD4 in an RNF4-dependent manner. We note that CCW 28-3 does not degrade BRD4 as well as 

other previously reported BRD4 degraders such as MZ1 that utilizes a VHL-recruiter linked to JQ124. Future 

medicinal chemistry efforts can be employed to optimize the potency and selectivity of CCW16 for RNF4 and 

to optimize linker positioning and composition of CCW 28-3 to promote better degradation of protein 

substrates. Nonetheless, CCW16 represents a novel, small-molecule E3 ligase recruiter for RNF4, beyond the 

four other E3 ligase recruiters that have been reported previously, targeting cereblon, VHL, MDM2, and cIAP 2. 

We believe that the approaches described here can be utilized for future applications in expanding the scope 

of E3 ligase recruiters or modulators.  
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Methods 

Covalent Ligand Library used in Initial Screen 

The synthesis and characterization of many of the covalent ligands screened against RNF4 have been 

previously reported 4–6,13. Synthesis of TRH 1-156, TRH 1-160, TRH 1-167, YP 1-16, YP 1-22, YP 1-26, YP 1-

31, YP 1-44 have been previously reported 25–32. The synthesis and characterization of covalent ligands that 

have not been reported are described in Supporting Information. 

 

Gel-Based ABPP 

Gel-based ABPP methods were performed as previously described 5,6,33,34. Pure recombinant human RNF4 

was purchased from Boston Biochem (K-220). RNF4 (0.25 µg) was diluted into 50 µL of PBS and 1µL of either 

DMSO (vehicle) or covalently acting small molecule to achieve the desired concentration. After 30 minutes at 

room temperature, the samples were treated with 250 nM IA-Rhodamine (Setareh Biotech, 6222, prepared in 

anhydrous DMSO) for 1 h at room temperature. Samples were then diluted with 20 μL of 4x reducing Laemmli 

SDS sample loading buffer (Alfa Aesar) and heated at 90 °C for 5 min. The samples were separated on 

precast 4-20% Criterion TGX gels (Bio-Rad Laboratories, Inc.). Fluorescent imaging was performed on a 

ChemiDoc MP (Bio-Rad Laboratories, Inc) inhibition of target labeling was assessed by densitometry using 

ImageJ.  

 

LC-MS/MS analysis of RNF4 

Purified RNF4 (10 μg) was diluted into 80 µL of PBS and treated for 30 min with DMSO or compound (50 µM). 

The DMSO control was then treated with light iodoacetamide (IA) while the compound treated sample was 

incubated with heavy IA for 1 h each at room temperature (100 μM, Sigma-Aldrich, 721328). The samples 

were precipitated by additional of 20 µL of 100% (w/v) TCA and combined pairwise before cooling to -80 C for 

one hour. The combined sample was then spun for at max speed for 20 min at 4 °C, supernatant is carefully 

removed and the sample is washed with ice cold 0.01 M HCl/90 % acetone solution. The sample was then 

resuspended in 2.4 M urea containing 0.1 % Protease Max (Promega Corp. V2071) in 100 mM ammonium 

bicarbonate buffer. The samples were reduced with 10 mM TCEP at 60 °C for 30 min. The samples were then 

diluted 50% with PBS before sequencing grade trypsin (1 ug per sample, Promega Corp, V5111) was added 
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for an overnight incubation at 37 °C. The next day the sample was centrifuged at 13200 rpm for 30 min. The 

supernatant was transferred to a new tube and acidified to a final concentration of 5 % formic acid and stored 

at -80 oC until MS analysis. 

 

RNF4 ubiquitination assay 

For in vitro auto-ubiquitination assay, 200 nM RNF4 in 15 µL ubiquitination assay buffer (50 mM Tris, 150mM 

NaCl, 5 mM MgCl2, 5mM DTT, pH 7.4) was pre-incubated with DMSO vehicle or the covalently-acting 

compound for 30 min at room temperature. Subsequently, UBE1 (50 nM, Boston Biochem, E-305), UBE2D1 

(400nM Boston Bichem, E2-615), Flag-ubiquitin (4000 nM, Boston Biochem, U-120) and ATP (200 µM) were 

added in ubiquitination assay buffer bring the total volume to 30 µL. The mixture was incubated at RT for 30 

min before quenching with 10 μL of 4x Laemmli’s buffer. Ubiquitination activity was measured by separation on 

an SDS-PAGE gel and western blotting as previously described. 

 

Synthetic Methods and Characterization of Covalent Ligand Analogs and CCW 28-3 Degrader 

Synthetic methods and characterization are detailed in Supporting Information 

 

Covalent Docking of CCW 16 in RNF4 

For covalent docking, a crystal structure of human RNF4 (pdb code: 4PPE) was used 35. This crystal 

structure was then prepared for docking utilizing Schrödinger’s Maestro (2018-1) protein preparation 36. 

Missing loops and side chains were added using PRIME and only A chain was utilized for docking purposes. 

Protonation was carried out to optimize H-bond assignments (assuming pH 7.0) and all waters were removed.  

A restrained minimization (<0.3Å) was then carried out to optimize the protein.  A Zn coordinated by C132, 

C135, C159 & C162 was removed for docking purposes. 

Prior to docking, CCW16 was prepared via LigPrep. To carry out covalent docking using Schrödinger’s 

covalent docking 37, either C132 or C135 were defined as the center of the binding grid (within 20A). CCW 16 

was selected as the ligand and the appropriate reactive residues were selected. A “nucleophilic substitution” 

was selected as the reaction type within the covalent docking menu and calculations were carried out on a 

Linux workstation with Intel Xeon 2.4GHz processors running Red Hat 6.8 with 128GB memory. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 16, 2018. ; https://doi.org/10.1101/439125doi: bioRxiv preprint 

https://doi.org/10.1101/439125


 

Cell Culture 

The 231MFP cells were obtained from Prof. Benjamin Cravatt and were generated from explanted tumor 

xenografts of MDA-MB-231 cells as previously described38. RNF4 knockout HeLa cells were purchased from 

EdiGene USA (CL0033025003A). RNF4 wild-type HeLa cells were provided by EdiGene USA or the UC 

Berkeley Cell Culture Facility. 231MFP cells were cultured in L-15 media (Corning) containing 10% (v/v) fetal 

bovine serum (FBS) and maintained at 37°C with 0% CO2. HeLa cells were cultured in DMEM media (Corning) 

containing 10% (v/v) fetal bovine serum (FBS) and maintained at 37°C with 5% CO2. 

 

Cell based degrader assays 

For assaying degrader activity, cells were seeded (500,000 for 231MFP cells, 300,000 for HeLa cells) into a 6 

cm tissue culture dish (Corning) in 2.0 – 2.5 mL of media and allowed to adhere overnight. The following 

morning, media was replaced with complete media containing the desired concentration of compound diluted 

from a 1000x stock in DMSO. At the specified timepoint, cells were washed once with PBS on ice, before 

150uL of lysis buffer was added to the plate (10 mM sodium phosphate, 150 mM NaCl, 0.1% SDS, 0.5% 

sodium deoxycholate, 1% Triton X100). The cells were incubated in lysis buffer for 5 min before scraping and 

transfer to microcentrifuge tubes. The lysates were then frozen at -80C or immediately processed for western 

blotting. To prepare for western blotting, the lysates were cleared with 20,000 g spin for 10 min and the 

resulting supernatants quantified via BCA assay. The lysates were normalized by dilution with PBS to match 

the lowest concentration lysate and appropriate amount of 4x Laemmli’s reducing buffer added. 

 

Western blotting 

Antibodies to RNF4 (Proteintech, 17810-1-AP, 1:1000), GAPDH (Proteintech, 60004-1-IG, 1:5000), BRD4 

(Abcam, Ab128874, 1:1000), and beta-actin (Proteintech Group Inc., 6609-1-IG, 1:7000) were obtained from 

the specified commercial sources and dilutions were prepared in 5% BSA/TBST at the specified dilutions. 

Proteins were resolved by SDS/PAGE and transferred to nitrocellulose membranes using the iBlot system 

(Invitrogen). Blots were blocked with 5 % BSA in Tris-buffered saline containing Tween 20 (TBST) solution for 

1 h at room temperature, washed in TBST, and probed with primary antibody diluted in recommended diluent 
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per manufacturer overnight at 4 °C. Following washes with TBST, the blots were incubated in the dark with 

secondary antibodies purchased from Ly-Cor and used at 1:10,000 dilution in 5 % BSA in TBST at room 

temperature. Blots were visualized using an Odyssey Li-Cor scanner after additional washes. If additional 

primary antibody incubations were required the membrane was stripped using ReBlot Plus Strong Antibody 

Stripping Solution (EMD Millipore, 2504), washed and blocked again before being re-incubated with primary 

antibody.   

 

IsoTOP-ABPP chemoproteomic studies 

IsoTOP-ABPP studies were done as previously reported 4,6,7,12. Briefly, cells were lysed by probe sonication in 

PBS and protein concentrations were measured by BCA assay 39. For in situ experiments, cells were treated 

for 90 min with either DMSO vehicle or covalently-acting small molecule (from 1000X DMSO stock) before cell 

collection and lysis. For in vitro experiments, proteome samples diluted in PBS (4 mg of proteome per 

biological replicate) were treated with a DMSO vehicle or covalently-acting small molecule for 30 min at room 

temperature. Proteomes were subsequently treated with IA-alkyne (100 μM, Chess GmbH, 3187) for 1 h at RT. 

CuAAC was performed by sequential addition of tris(2-carboxyethyl)phosphine (TCEP) (1 mM, Sigma), tris[(1-

benzyl-1H-1,2,3-triazol-4-yl)methyl]amine  (TBTA) (34 μM, Sigma), copper (II) sulfate (1 mM, Sigma), and 

biotin-linker-azide—the linker functionalized with a TEV protease recognition sequence as well as an 

isotopically light or heavy valine for treatment of control or treated proteome, respectively. After CuAAC, 

proteomes were precipitated by centrifugation at 6500 x g, washed in ice-cold methanol, combined in a 1:1 

control/treated ratio, washed again, then denatured and resolubilized by heating in 1.2 % SDS/PBS to 80°C for 

5 minutes. Insoluble components were precipitated by centrifugation at 6500 x g and soluble proteome was 

diluted in 5 ml 0.2% SDS/PBS. Labeled proteins were bound to avidin-agarose beads (170 μl resuspended 

beads/sample, Thermo Pierce) while rotating overnight at 4°C. Bead-linked proteins were enriched by washing 

three times each in PBS and water, then resuspended in 6 M urea/PBS (Sigma) and reduced in TCEP (1 mM, 

Sigma), alkylated with iodoacetamide (IA) (18 mM, Sigma), then washed and resuspended in 2 M urea and 

trypsinized overnight with 2 ug/sample sequencing grade trypsin (Promega). Tryptic peptides were eluted off. 

Beads were washed three times each in PBS and water, washed in TEV buffer solution (water, TEV buffer, 
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100 μM dithiothreitol) and resuspended in buffer with Ac-TEV protease (Invitrogen) and incubated overnight. 

Peptides were diluted in water and acidified with formic acid (1.2 M, Spectrum) and prepared for analysis. 

 

Mass Spectrometry Analysis 

Peptides from all chemoproteomic experiments were pressure-loaded onto a 250 μm inner diameter 

fused silica capillary tubing packed with 4 cm of Aqua C18 reverse-phase resin (Phenomenex # 04A-4299) 

which was previously equilibrated on an Agilent 600 series HPLC using gradient from 100% buffer A to 100% 

buffer B over 10 min, followed by a 5 min wash with 100% buffer B and a 5 min wash with 100% buffer A. The 

samples were then attached using a MicroTee PEEK 360 μm fitting (Thermo Fisher Scientific #p-888) to a 13 

cm laser pulled column packed with 10 cm Aqua C18 reverse-phase resin and 3 cm of strong-cation exchange 

resin for isoTOP-ABPP studies. Samples were analyzed using an Q Exactive Plus mass spectrometer (Thermo 

Fisher Scientific) using a 5-step Multidimensional Protein Identification Technology (MudPIT) program, using 0 

%, 25 %, 50 %, 80 %, and 100 % salt bumps of 500 mM aqueous ammonium acetate and using a gradient of 

5-55 % buffer B in buffer A (buffer A: 95:5 water:acetonitrile, 0.1 % formic acid; buffer B 80:20 

acetonitrile:water, 0.1 % formic acid). Data was collected in data-dependent acquisition mode with dynamic 

exclusion enabled (60 s). One full MS (MS1) scan (400-1800 m/z) was followed by 15 MS2 scans (ITMS) of 

the nth most abundant ions. Heated capillary temperature was set to 200 °C and the nanospray voltage was 

set to 2.75 kV. 

 Data was extracted in the form of MS1 and MS2 files using Raw Extractor 1.9.9.2 (Scripps Research 

Institute) and searched against the Uniprot human database using ProLuCID search methodology in IP2 v.3 

(Integrated Proteomics Applications, Inc) 40. Cysteine residues were searched with a static modification for 

carboxyaminomethylation (+57.02146) and up to three differential modifications for methionine oxidation and 

either the light or heavy TEV tags (+464.28596 or +470.29977, respectively). Peptides were required to have 

at least one tryptic end and to contain the TEV modification. ProLUCID data was filtered through DTASelect to 

achieve a peptide false-positive rate below 5%. Only those probe-modified peptides that were evident across 

all two out of three biological replicates were interpreted for their isotopic light to heavy ratios. Those probe-

modified peptides that showed ratios >3 were further analyzed as potential targets of the covalently-acting 

small-molecule. For modified peptides with ratios >3, we filtered these hits for peptides were present in all 
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three biological replicates. For those probe-modified peptide ratios >3, only those peptides with 3 ratios >3 

were interpreted, and otherwise replaced with the lowest ratio. For those probe-modified peptide ratios >4, only 

those peptides with 3 ratios >4 were interpreted, and otherwise replaced with the lowest ratio. MS1 peak 

shapes of any resulting probe-modified peptides with ratios >3 were then manually confirmed to be of good 

quality for interpreted peptides across all biological replicates.  
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Figure Legends 

Figure 1. Covalent ligand screen against RNF4 using gel-based ABPP. (A) Gel-based ABPP labeling of 

E3 ligases MDM2, RNF4, and UBE3A. Pure protein was labeled with IA-rhodamine (IA-Rh) for 30 min at room 

temperature, followed by SDS/PAGE and visualization by in-gel fluorescence. (B) Schematic of gel-based 

ABPP screen of covalent ligands (50 µM) against IA-rhodamine labeling of pure RNF4, looking for compounds 

that inhibit probe labeling resulting in loss of fluorescence. (C) Gel-based ABPP screen of cysteine-reactive 

covalent ligands against IA-rhodamine labeling of RNF4. Covalent ligands were pre-incubated with pure RNF4 

protein for 30 min prior to IA-rhodamine labeling (250 nM) for 1 h. Proteins were subjected to SDS/PAGE and 

visualized by in-gel fluorescence. Highlighted in red were potential hits from this screen. (D) Chemical 

structures and gel-based ABPP confirmation of reproducible RNF4 screening hits, performed as described in 

(C). Gels were also silver stained.  

 

Figure 2. TRH 1-23 reacts non-functionally with zinc-coordinating cysteines in RNF4. (A) LC-MS/MS 

analysis of TRH 1-23 covalent adduct on RNF4. RNF4 was incubated with TRH 1-23 (50 µM) for 30 min at RT. 

RNF4 was digested with trypsin and tryptic digests were analyzed by LC-MS/MS and we searched for the TRH 

1-23 modified adduct. Shown are the MS/MS spectra of TRH 1-23-modified C132 and C135 RNF4 tryptic 

peptide. Highlighted in red in the peptide sequence is the cysteine that was modified. (B) Schematic of TRH 1-

23 reactivity with C132 or C135 of RNF4. (C) TRH 1-23 does not inhibit RNF4 autoubiquitination assay. RNF4 

was pre-incubated with TRH 1-23 (100 µM) for 30 min at room temperature followed by addition of UBA1, E2 

enzyme, and ATP for 40 min at 37 C. The reaction was quenched and subjected to SDS/PAGE and Western 

blotting for RNF4. Gel shown in (C) is a representative gel from n=3.  

 

Figure 3. Optimizing RNF4 covalent ligands using gel-based ABPP. (A) Derivatives of TRH 1-23 were 

tested against IA-rhodamine labeling of RNF4 using gel-based ABPP. Silver stained gels are also shown to 

visualize total protein content. (B) CCW16 was tested against IA-rhodamine labeling of RNF4 using gel-based 

ABPP. For (A) and (B), covalent ligands were pre-incubated with pure RNF4 protein for 30 min prior to IA-

rhodamine labeling for 1 h. Proteins were subjected to SDS/PAGE and visualized by in-gel fluorescence. In 
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(B), gels were quantified by densitometry to calculate IC50 values. Gel shown in (B) is a representative gel 

from n=3. (C) Covalent docking of CCW 16 bound to either C132 or C135 in RNF4.  

 

Figure 4. RNF4 recruiter-based BRD4 degrader. (A) Structure of CCW 28-3, an RNF4-recruiter-based 

degrader linked to BRD4 inhibitor JQ1. (B) Gel-based ABPP analysis of CCW 28-3 against pure human RNF4. 

CCW 28-3 was pre-incubated with pure RNF4 protein for 30 min prior to IA-rhodamine labeling for 1 h. 

Proteins were subjected to SDS/PAGE and visualized by in-gel fluorescence. Gels were quantified by 

densitometry to calculate IC50 values. (C) CCW 28-3 treatment in 231MFP breast cancer cells leads to BRD4 

degradation. 231MFP breast cancer cells were treated with vehicle DMSO or CCW 28-3 for 3 h. Proteins were 

subjected to SDS/PAGE and Western blotting for BRD4 and GAPDH loading control. (D) CCW 28-3 does not 

inhibit RNF4 autoubiquitination assay. RNF4 was pre-incubated with CCW 28-3 (10 µM) for 30 min at room 

temperature followed by addition of UBA1, E2 enzyme, and ATP for 60 min at 37 C. The reaction was 

quenched and subjected to SDS/PAGE and Western blotting for RNF4.  (E, F) CCW 28-3 treatment in 231MFP 

breast cancer cells leads to proteasome-, E1 inhibitor-, and BRD4 inhibitor-dependent BRD4 degradation. 

Vehicle DMSO or proteasome inhibitor bortezomib (BTZ) (10 µM), E1 inhibitor TAK-243 (10 µM), or BRD4 

inhibitor JQ1 (10 µM) were pre-incubated for 30 min prior to treatment with MZ1 (1 µM) or CCW 28-3 (1 µM) for 

3 h. Proteins were subjected to SDS/PAGE and Western blotting for BRD4 and actin loading control. (G) RNF4 

wild-type and knockout Hela cells were treated with CCW 28-3 (10 µM) for 5 h and subjected to SDS/PAGE 

and Western blotting for BRD4, RNF4, and GAPDH. Blots in (B-G) were quantified by densitometry. Data in 

(B-G) are from representative gels from n=3. Bar graphs are average ± sem, n=3-5/group. Significance is 

expressed as *p<0.05 compared to vehicle-treated controls and #p<0.05 compared to CCW 28-3 treated 

groups in (E-F) and CCW 28-3 treated wild-type cells in (G). 
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Figure 4

A CCW 28-3: an RNF4 recruiter-
based degrader
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