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Abstract

Habitat fragmentation is threatening global biodiversity. To date, there is only

limited understanding of how habitat fragmentation or any alteration to the spatial

structure of a landscape in general, affects species diversity within complex ecological

networks such as food webs. Here, we present a dynamic and spatially-explicit
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food web model which integrates complex food web dynamics at the local scale

and species-specific dispersal dynamics at the landscape scale, allowing us to study

the interplay of local and spatial processes in metacommunities. We explore how

habitat fragmentation, defined as a decrease of habitat availability and an increase

of habitat isolation, affects the species diversity patterns of complex food webs (α-,

β-, γ-diversity), and specifically test whether there is a trophic dependency in the

effect of habitat fragmentation on species diversity. In our model, habitat isolation

is the main driver causing species loss and diversity decline. Our results emphasise

that large-bodied consumer species at high trophic positions go extinct faster than

smaller species at lower trophic levels, despite being superior dispersers that connect

fragmented landscape better. We attribute the loss of top species to a combined

effect of higher biomass loss during dispersal with increasing habitat isolation in

general, and the associated energy limitation in highly fragmented landscapes,

preventing higher trophic levels to persist. To maintain trophic-complex and

species-rich communities calls for effective conservation planning which considers

the interdependence of trophic and spatial dynamics as well as the spatial context

of a landscape and its energy availability.

Keywords: Food webs, allometry, bioenergetic model, metacommunity dynamics,

habitat fragmentation, dispersal, landscape structure.

1 Introduction

Understanding the impact of habitat fragmentation on biodiversity is crucial for ecology

and conservation biology [1–4]. A general observation and prediction is that large-bodied

predators at high trophic levels which depend on sufficient food supplied by lower trophic

levels are most sensitive to fragmentation, and thus, might respond more strongly than

species at lower trophic levels [5–7]. However, most conclusions regarding the effect of

fragmentation are based on single species or competitively interacting species (see [8, 9]

and references therein). There is thus limited understanding how species embedded in
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complex food webs with multiple trophic levels respond to habitat fragmentation [6, 10–

13], even though these networks are a central organising theme in nature [14–16].

The stability of complex food webs is, amongst others, determined by the number

and strength of trophic interactions [17]. While it is broadly recognised that habitat

fragmentation can have substantial impacts on such feeding relationships [18–20], we

lack a comprehensive and mechanistic understanding of how the disruption or loss of

these interactions will affect species persistence and food web stability [13, 18, 21, 22].

Assuming that a loss of habitat and the increasing isolation of the remaining habitat

patches disrupt or weaken trophic interactions [9], thereby causing species extinctions [13,

19], population and community dynamics might change in unexpected and unpredictable

ways. This change in community dynamics might lead to secondary extinctions which

potentially cascade through the food web [23–25].

Successful dispersal between habitat patches might be able to prevent local extinctions

(spatial rescue effects), and thus, ensure species persistence at the landscape scale [26, 27].

Whether dispersal is successful or not depends, among other factors, on the distance

an organism has to travel to reach the next habitat patch and on the quality of the

matrix the habitat patches are embedded in (in short: the habitat matrix) [28]. With

progressing habitat fragmentation, suitable habitat becomes scarce and the remaining

habitat fragments increasingly isolated [4, 29, 30]. As a consequence, organisms have to

disperse over longer distances to connect habitat patches, which in turn might increase

dispersal mortality and thus promote species extinctions [3]. Also, habitat fragmentation

often increases the hostility of the habitat matrix, e.g. due to human land use and

landscape degeneration [4, 31, 32]. The increased matrix hostility might further reduce

the likelihood of successful dispersal between habitat patches as the movement through a

hostile habitat matrix is energy intensive, and thus, population biomass is lost [28, 31].

This loss depends on the distance an organism has to travel and its dispersal ability, i.e.

its dispersal range and the energy it can invest into movement.
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In this context, superior dispersers might have an advantage over species with

restricted dispersal abilities if the distances between habitat patches expand to a point

where dispersal-limited species can no longer connect habitat patches. If this is the case,

the loss of habitat connectivity, which characterises the ability of organisms to move across

a fragmented landscape, prevents spatial rescue effects buffering against local extinctions.

Decreasing habitat connectivity might therefore result in increased extinction rates and

ultimately lead to the loss of dispersal-limited species from the regional species pool.

As large animal species are, at least up to a certain threshold, faster than smaller ones

[33, 34], they should also be able to disperse over longer distances [6, 35–38]. This body

mass dependent scaling of dispersal range might favour large-bodied consumers such as

top predators in fragmented landscapes, and thus, increase top-down pressure resulting

in top-down regulated communities.

Empirical evidence and results from previous modelling approaches, however, suggest

that species at higher trophic positions are most sensitive to habitat loss and habitat

fragmentation [13, 39–43]. Using tri-trophic food chains on a patch-dynamic framework,

Liao et al. [41, 44] for example, show that increasing habitat fragmentation leads to

faster extinctions of species at higher trophic levels. They ascribe this loss to constraints

of resource availability for top species, whereas Davies et al. [43] attribute the observed

loss of top species in their fragmentation experiment to the unstable population dynamics

of top species under environmental change. The division and loss of suitable habitat are

thus likely to reduce food chain length and result in unpredicted changes in the food web

structure [39, 41].

To understand how habitat fragmentation affects the diversity of communities

organised in complex food webs requires knowledge of the interplay between their local

(trophic) and spatial (dispersal) dynamics. Despite its relevance, a realistic picture and

comprehensive understanding of how natural food webs might respond to progressing

habitat fragmentation and any alteration to the spatial configuration of habitat in general,

4

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 19, 2018. ; https://doi.org/10.1101/439190doi: bioRxiv preprint 

https://doi.org/10.1101/439190
http://creativecommons.org/licenses/by-nc/4.0/


are lacking. We address this issue using a novel modelling approach which integrates

local population dynamics of complex food webs and species-specific dispersal dynamics

at the landscape scale (which we hereafter refer to as meta-food-web model, figure 1 for

a conceptual illustration). Our spatially-explicit dynamic meta-food-web model allows

us to explore how direct and indirect interactions between species in complex food webs

together with spatial processes that connect sub-populations in different habitat patches

interact to produce diversity patterns across increasingly fragmented landscapes. Our

model setup further allows us to disentangle the two key aspects of habitat fragmentation,

habitat availability and habitat isolation, in ways not possible with empirical studies.

Here, we ask how habitat availability and habitat isolation impact the diversity patterns

in complex food webs and which species or trophic groups shape these patterns.

Following general observations and predictions, we expect species diversity within

complex food webs to decrease along a gradient of habitat fragmentation. Based on the

substantial variation in both dispersal abilities and energy requirements among species

and across trophic levels [6, 43, 45], we expect species at different trophic levels to

vary in their response to habitat fragmentation strongly. Specifically, we expect certain

trophic groups such as consumer species at lower trophic ranks with limited dispersal

abilities or top predators with strong resource constraints to be particularly sensitive

to fragmentation. We test our expectations using Whittaker’s classical approach of α-,

β-, and γ-diversity [46] - a commonly used measure to test for the effect of habitat

fragmentation on species diversity at different scales. Here, α- and γ-diversity describe

the species richness at the local and regional scale, respectively, and β-diversity accounts

for differences in community composition between habitat patches.
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Figure 1: Conceptual illustration of our modelling framework. Our model links local food
web dynamics at the patch level (a) through species-specific dynamic dispersal at the
landscape scale (b, d). We consider landscapes with identical but randomly distributed
habitat patches, i.e. all patches have the same size and environmental conditions,
and each habitat patch can potentially harbour the full food web. We model habitat
fragmentation by manipulating the patch number and the mean distance between habitat
patches (c).

2 Methods

2.1 Model

We consider a multitrophic metacommunity consisting of 40 species on a varying number

of randomly positioned habitat patches, Z (the meta-food-web, figure 1b). All patches

have the same abiotic conditions and each patch can potentially harbour the full food
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web, consisting of 10 basal plant and 30 animal consumer species. The feeding links

(i.e. who eats whom) are constant over all patches (figure 1a+b) and are as well as

the feeding dynamics determined by the allometric food web model by Schneider et al.

[47]. We model dispersal as species-specific biomass flow between habitat patches (figure

1b+d). See the corresponding sections and the supplement for further information.

Using ordinary differential equations to describe the feeding and dispersal dynamics,

the rate of change in biomass density, Bi,z, of species i on patch z is given by

dBi,z

dt
= Ti,z − Ei,z + Ii,z , (1)

with Ti,z as the rate of change in biomass density determined by local feeding interactions

(see the supplement, table S1), Ei,z as the total emigration rate of species i from patch z

(equation 2), and Ii,z as the total rate of immigration of species i into patch z (equation

4).

2.2 Local food web dynamics

Following the allometric food web model by Schneider et al. [47], each species i is fully

characterised by its average adult body mass mi. We sampled log10 body masses of

animal species randomly with a uniform probability density from the inclusive interval

[2, 12] and the log10 body masses of plant species from the inclusive interval [0, 6]. The

model is designed such that animal consumers feed on resources, which can be both

plants and other animal species, that are smaller than themselves. Body masses further

determine the interaction strengths of feeding links as well as the metabolic demands

of species. We use a nutrient model with two nutrients of different importance as the

energetic basis of our food web [47, 48]. See the supplement and Schneider et al. [47]

for further information regarding the allometric food web model and table S1 for the

ordinary differential equations describing the local population dynamics.
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2.3 Dispersal dynamics

We model dispersal between local communities as a dynamic process of emigration and

immigration, assuming dispersal to occur at the same timescale as the local population

dynamics [11]. Thus, biomass flows dynamically between local populations and dispersal

dynamics directly influence local population dynamics and vice versa [49]. We model

a hostile matrix between habitat patches that does not allow for feeding interactions to

occur during dispersal and we thus assume the biomass lost to the matrix to scale linearly

with the distance travelled.

Emigration The total rate of emigration of species i from patch z is

Ei,z = di,zBi,z , (2)

with di,z as the corresponding per capita dispersal rate. We model di,z as

di,z =
a

1 + eb(xi−υi,z)
, (3)

with a, the maximum dispersal rate, b, a parameter determining the shape of the dispersal

rate (see the supplement, figure S1), xi, the inflection point determined by the metabolic

demands per unit biomass of species i (for animals, xi = xAm
−0.25
i with scaling constant

xA = 0.314 and for plants, xi = xPm
−0.25
i with xP = 0.138, respectively), and υi,z, the per

capita net growth rate. We chose to model di,z as a function of each species’ per capita

net growth rate to account for emigration triggers such as resource availability, predation

pressure and inter- and intraspecific competition [49]. For each simulation run, a was

sampled from a Gaussian distribution with mean µ = 0.1, s.d. σ = 0.03, and cut off

θ = 3 · σ; b was sampled from an integer uniform distribution within the inclusive limits

µC = [0, 19] for consumer species and µP = [−20, 19] for plant species. The different

intervals reflect different dispersal triggers for animals and plants. See the supplement,

section S3 for the underlying assumptions for animal and plant dispersal.
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Immigration The rate of immigration of biomass density of species i into patch z

follows

Ii,z =
∑
n∈Nz

Ei,n(1− δi,nz)
1− δi,nz∑

m∈Nn
, 1− δi,nm

, (4)

where Nz and Nn are the sets of all patches within the dispersal range of species i on

patches z and n, respectively. In this equation, Ei,n is the emigration rate of species i from

patch n, (1 − δi,nz) is the fraction of successfully dispersing biomass, i.e. the fraction of

biomass not lost to the matrix, and δi,nz is the distance between patches n and z relative

to species i’s maximum dispersal distance δi (see below). The term 1−δi,nz∑
1−δi,nm

determines

the fraction of biomass of species i emigrating from source patch n towards target patch

z. This fraction depends on the relative distance between the patches, δi,nz, and the

relative distances to all other potential target patches m of species i on the source patch

n, δi,nm. Thus, the flow of biomass is greatest between patches with small distances. For

numerical reasons, we did not allow for dispersal flows with Ii,z < 10−10. In this case, we

immediately set Ii,z to 0.

Based on empirical observations (e.g. [37]) and previous theoretical frameworks

(e.g. [6, 10, 34, 50]), we assume that the maximum dispersal distance δi of animal

species increases with their body mass. Thus large-bodied animal species at high trophic

positions can disperse further than smaller animals at lower trophic levels. As plants are

passive dispersers, we model their maximum dispersal distance as random and body mass

independent. For both plant and animal species, we set the highest possible maximum

dispersal distance to δmax = 0.5. Additionally, we tested a null model in which all species

have the same maximum dispersal distance of δi = δmax. See the supplement, section

S4 and S6 for further information on the maximum dispersal distance and the additional

simulations, respectively.
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2.4 Numerical simulations

We constructed 30 model food webs, each comprising 10 plant and 30 animal species. To

avoid confounding effects of different initial species diversities, we kept both the number

of species S and the fraction of plants and animals constant among all food webs. For

each simulation, we randomly generated a landscape of size Q (edge length of a square

landscape) with Z randomly distributed habitat patches. To test each food web across

a gradient of habitat availability and habitat isolation, we drew the number of habitat

patches, Z, from the interval [10, 69] and the size of the landscape, Q, from the interval

[0.01, 10] using a stratified random sampling approach (see the supplement, section S2

for further information). With this approach we generated landscapes with different

degrees of fragmentation which we then related to each other, i.e. larger landscapes

with fewer patches have larger mean patch distances, and are thus more isolated than

smaller landscapes with more habitat patches (figure 1c). To cover the full parameter

range of Z and Q, we simulated each food web on 72 landscapes resulting in a total of

2160 simulations. Additionally, we performed dedicated simulation runs to reference the

two extreme cases, i.e. (1) landscapes in which all patches are direct neighbours without

a hostile matrix, and thus, no dispersal mortality, and (2) fully isolated landscapes, in

which no species can bridge between patches, and thus, a dispersal mortality of 100%

(see the supplement, section S7 for further information).

For each simulation run, we initialised our model with random conditions, provided

that the full food web of 40 species exists in the regional species pool. In the initial setup,

each habitat patch z holds a random selection of 21 to 40 species. We initialised each

local population with a biomass density Bi,z which we randomly sampled with uniform

probability density within the interval (0, 10). Nutrient concentrations Nl (l ∈ 1, 2) were

initialised with random values uniformly distributed between Sl/2 and Sl, with Sl as

the supply concentration of nutrient l. Supply concentrations Sl are drawn from normal

distributions with mean µS = 10 and s.d. σS = 2, provided that Sl > 0 and can differ
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between nutrients but are, for each nutrient, constant on all habitat patches. See the

supplement, Table S1 and Schneider et al. [47] for further information on the nutrient

dynamics.

Starting from these random initial conditions, we numerically simulated local food web

and dispersal dynamics over 250,000 time steps by integrating the system of differential

equations implemented in C++ using procedures of the SUNDIALS CVODE solver

version 2.7.0 (backward differentiation formula with absolute and relative error tolerances

of 10−10 [51, 52]). Successful dispersal between local populations thereby enabled species

to establish populations on patches where they were initially absent. For numerical

reasons, a local population was considered extinct once Bi,z < 10−20, and Bi,z was then

immediately set to 0.

2.5 Output parameters

We recorded the following output parameters for each simulation run: (1) the mean

biomass density of each species i on each habitat patch z over the last 20,000 time steps

to capture oscillations, Bi,z; (2) habitat availability, i.e. the number of habitat patches

in a landscape, Z; (3) habitat isolation, i.e. the mean distance between all habitat

patches, τ =
∑Z

n,m=1 τnm

Z2−Z , where τnm is the absolute distance between patches n and m,

and the denominator, (Z2 − Z), is the total number of potential directed links between

all Z habitat patches; and (4) the landscape connectance of each species i, ρi = Li

Z2−Z ,

with Li, the number of directed dispersal links of species i. Thus, ρi determines the

species-specific habitat fragmentation, i.e. the ability of a species to connect habitat

patches in a fragmented landscape.

2.6 Analysis

Out of the 2160 simulations we started, 374 were terminated by reaching the maximum

usage time of the high-performance-cluster we used. We further deleted 31 simulations as
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they had entirely isolated landscapes. We performed all statistical analyses in R version

3.3.2. [53] using the output of the remaining 1755 simulations, except for the analysis of

β-diversity in which we excluded 111 additional simulations as all species went extinct,

and thus these simulations could not be used to calculate β-diversity.

Species diversity We quantified Whittaker’s α-, β-, and γ-diversity [46] using

presence-absence data derived from the recorded mean biomass densities, Bi,z, counting

species i present on patch z when Bi,z > 10−8. In Whittaker’s approach, α accounts for

the local species richness, β is the component of regional diversity that accumulates from

compositional differences between local communities, and γ is the regional diversity, i.e.

the species richness at the landscape scale [46]. We relate α, β and γ to each other using

multiplicative partitioning [46], i.e. α · β = γ, and thus, β = γ
α
. Here, we use α averaged

over all habitat patches Z (which we hereafter refer to as α) to get a measure at the

landscape level comparable to β and γ.

Statistical models We tested for correlation between initialised and emerged

β-diversity, which was however not the case (see the supplement, section S9). Further,

we used generalised additive mixed models (GAMM) from the mgcv package in R [54] to

investigate the impact of habitat availability and habitat isolation on species diversity.

To fit the model assumptions, we logit-transformed α-diversity, and log-transformed β-

and γ-diversity. We analysed each diversity index separately, with the number of patches

Z (log-transformed), the mean patch distance τ (log-transformed) and their interaction

as fixed effects and the ID of the food web (1 - 30) as random factor (with normal

distribution for α- and β-diversity, and binomial distribution for γ-diversity). Similarly,

we analysed the mean biomass densities, Bi,z (log-transformed), and species-specific

landscape connectance ρi, for each species (ID 1 - 40) using GAMM with a normal

distribution. We used the mean patch distance, τ , as fixed effect and the food web ID (1

- 30) as random effect.
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3 Results

3.1 Species diversity

Our simulation results identify habitat isolation (defined as the mean distance between

habitat patches, τ , figure 2, x-axis) as the key factor driving species diversity loss. As

expected, we find fewer species in landscapes in which habitats are highly isolated. This

species decline applies both to the averaged local diversity, α, and regional diversity, γ

(figure 2, left and right panel, respectively). Habitat availability (the number of habitat

patches in a landscape, Z, figure 2, y-axis) only marginally affected this pattern. Contrary

to the simple decrease of α- and γ-diversity with increasing habitat isolation, β-diversity

(figure 2, middle panel), which describes differences in the community composition

between patches, shows a more complicated pattern. The most prominent feature is

a local maximum of β around log10 τ ≈ 0.25, which becomes more pronounced with

more patches Z. When approximating the two extreme cases (i.e. landscapes with no

dispersal mortality, log10 τ < −2, and fully isolated landscapes with a 100% dispersal

mortality, log10 τ > 1), β-diversity declines towards lower values approaching 1. The

additional simulations of the two extreme cases that we performed support this pattern.

In both cases, β-diversity is approximately 1, i.e. all patches within the landscape have

the same or a very similar community composition (see the supplement, section S7 for

the corresponding results). We further show that the isolation-induced species loss also

translates into a loss of trophic complexity, i.e. isolated landscapes are characterised by

reduced food webs with fewer species and fewer trophic levels (see the supplement, figure

S2).

3.2 Differences among trophic levels

As the number of patches only marginally affects species diversity patterns, we hereafter

focus on the effects of habitat isolation on trophic-dependent differences among species

(figure 3). In figure 3, biomass densities, Bi, and landscape connectances, ρi, represent
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Figure 2: Heatmaps visualising α-, β- and γ-diversity (colour-coded; z-axis) in
response to habitat isolation and habitat availability, i.e. the mean patch distance (τ ,
log10-transformed; x-axis) and the number of habitat patches (Z; y-axis), respectively.
We generated the heatmaps based on the statistical model predictions (see the methods
section).

the average of each species i over all food webs. Thus, although species body masses differ

between food webs, species 1 is always the smallest, species 2 the second smallest and

so forth. The same applies to ρi, where the landscape connectance of consumer species

is body mass dependent, but the connectance of plant species is body mass independent

(see the methods section). In well-connected landscapes (i.e. landscapes with small mean

patch distances, τ), large and medium-sized consumer species have higher population

biomass densities than smaller consumers (figure 3a,c). This pattern is reversed if habitat

isolation increases. With expanding distances between habitat patches, large-bodied

consumers at high trophic positions (figure 3a, red to blue lines) show a particularly strong

decrease in population biomass densities. Small consumer species (figure 3a, orange to

yellow lines) and plant species at the basal level (figure 3b) on the other hand, are

generally less affected by increasing habitat isolation with only a minor decrease of their

biomass densities over the full gradient of habitat isolation. Based on our assumption

that the maximum dispersal distance of animals scales with body mass, the ability to

connect a landscape follows the same allometric scaling (figure 3c). Despite this dispersal

advantage, intermediate-sized and large animal species (figure 3a, red to blue lines) lose

biomass in landscapes in which they still have the potential to fully connect (almost) all
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habitat patches (figure 3c).

In our simulations, the smallest plant species has the overall highest population

biomass averaged over all food webs, which is due to a minor bias of the allometric

food web model in the assignment of consumers that favours plant species at the lower

end of the body mass axis [47]. This pattern holds across all landscapes independent of

habitat isolation. Biomass densities of large plant species (figure 3b, dark green lines)

show a stronger response to habitat isolation than those of small plant species. This body

mass dependent response to habitat isolation among plant species cannot be attributed

to species-specific dispersal distances as for plants maximum dispersal distances were

randomly assigned, and thus, there is no connection between body mass and landscape

connectance (figure 3d).

Additional simulations, in which we assumed a constant maximum dispersal distance

for all species of δi = δmax = 0.5, support the negligibility of species-specific differences

in dispersal ability for the emerging diversity patterns (see the supplement, figure S3).

4 Discussion

Habitat fragmentation is a major driver of global biodiversity decline, but to date,

a comprehensive understanding of how fragmentation affects the diversity patterns

of species embedded in complex ecological networks such as food webs is lacking

[8, 13, 41]. In our simulation experiment we disentangle habitat fragmentation into

habitat availability and habitat isolation. We identified habitat isolation to be responsible

for species diversity decline both at the local and regional scale. The rate at which

a species loses biomass density strongly depends on its trophic position. Large-bodied

consumer species at the top of the food web are most sensitive to fragmentation although

they are dispersing most effectively (i.e. for them, increasing distances between habitat

patches do not necessarily result in the loss of dispersal pathways or a substantial increase
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Figure 3: Top row: Mean biomass densities of consumer (a) and plant species (b) over all
food webs (Bi, log10-transformed; y-axis) in response to habitat isolation, i.e. the mean
patch distance (τ , log10-transformed; x-axis). Each colour depicts the biomass density of
species i averaged over all food webs: (a) colour gradient where orange represents the
smallest, red the intermediate and blue the largest consumer species; (b) colour gradient
where light green represents the smallest and dark green the largest plant species. Bottom
row: Mean species-specific landscape connectance (ρi; y-axis) for consumer species (c)
and plant species (d) over all food webs as a function of the mean patch distance (τ ,
log10-transformed; x-axis).

of dispersal mortality). Surprisingly, we find top species at the verge of extinction in

landscapes they can still fully connect, whereas the biomass densities of small consumer

species at lower trophic levels and plant species are only marginally affected by increasing

habitat isolation. We attribute the accelerated loss of top species to the energy limitation

propagated through the food web: as habitat fragmentation progresses an increasing

fraction of the biomass production of the lower trophic levels is lost due to mortality

during dispersal and is thus no longer available to support the higher trophic levels. Our
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model thus adds a complementary perspective to previous research pointing towards

a trophic-dependent extinction risk due to constraints in resource availability with

increasing habitat fragmentation [41, 42].

4.1 Habitat isolation drives species loss

The increasing isolation of habitat fragments poses a severe threat to species persistence.

We demonstrate in our simulation experiment that the generally observed pattern of

species loss with increasing habitat isolation also holds for species embedded in large food

webs. The loss of species occurs both at the local (α-diversity) and regional (γ-diversity)

scale. In contrast to our expectations and previous research (see for instance Melian

& Bascompte [8]), the observed diversity patterns were only marginally affected by the

amount of available habitat in a landscape.

We modelled dispersal between habitat patches by assuming an energy loss for the

dispersing organisms – a biologically realistic assumption as landscape degeneration,

which often occurs concurrently with habitat fragmentation, increases the hostility of

the habitat matrix [4]. Consequently, the dispersal mortality, and thus, biomass loss

of populations to the habitat matrix increases substantially when dispersal distances

between habitat patches expand. To account for the variation in dispersal ability among

trophic groups, we incorporated species-specific maximum dispersal distances. For animal

species, this maximum dispersal distance increases like a power law with body mass,

therefore weakening the direct effect of habitat fragmentation the larger a species is.

Despite this, top predators and other large consumer species respond strongly to habitat

isolation. These species exhibit a dramatic loss in biomass density or even go extinct

in landscapes they still perceive as almost fully connected (landscape connectance, ρi,

close to one), which indicates that their response to habitat fragmentation is mediated

by indirect effects originating from the local food web dynamics.
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4.2 Local food web dynamics and energy limitation drive top

predator loss

To understand this finding, we need to consider the basic fact that in the local food

webs energy is transported rather inefficiently from the basal to the top species, with

transfer efficiency in natural systems often only around 10% [55]. This energy limitation

effectively controls the food chain length [56] and renders large species at high trophic

levels vulnerable to extinction due to resource shortage [57]. Considering the way we

modelled habitat fragmentation, energy availability decreases if habitat availability is low

(fewer patches per total area) and habitat isolation is high (extended distances between

habitat patches increase biomass loss during dispersal). The latter affects particularly

small species at lower trophic levels as they generally have the highest metabolic costs

per unit biomass and therefore the highest biomass losses per distance travelled [33, 47].

This biomass loss during dispersal consequently reduces the net biomass production at

the bottom of the food web and severely threatens species at higher trophic positions

that already operate on a very limited resource supply.

Moreover, due to the feedback mechanisms regulating the community dynamics within

complex food webs, a loss of top consumer species can have severe consequences for the

functioning and stability of the network [21, 22]. A loss of top-down regulation can,

for instance, lead to secondary extinctions resulting in simpler food webs [21, 58, 59]

– an additional mechanism that can foster the loss of biodiversity as observed in

our simulations. However, we also see a much more direct effect of the changing

community composition: The biomass densities of small species that suffer most from

increased dispersal mortality do not, as one might expect, decline much as fragmentation

progresses. We attribute this paradoxical finding to a release from top-down control as

their consumers lose biomass and eventually go extinct, which counters the negative direct

effect of habitat fragmentation. These arguments suggest that species-specific maximum

dispersal distances are less important than energetic limitations in explaining the strong
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negative response of large consumers to habitat isolation. This claim is supported by the

additional simulations where all species had the same maximum dispersal distance (and

thus experienced the same level of dispersal mortality), which yielded similar results (see

the supplement, figure S3).

We did not find a strong effect of habitat availability on α- and γ-diversity, even though

it is also directly connected to the total energy availability of the meta-food-web. For

plant and small animal species this can be understood easily, as these species are always

able to persist even on a single habitat patch. For larger animal species the situation

is more subtle: While they can integrate over multiple patches, feeding interactions still

always occur on one patch at a time. If the biomass density of their resources (and thus

also the realised feeding rate) is too low on a particular patch to cover their metabolic

requirements, they gain no advantage from the addition of more patches with equally low

resource abundance.

4.3 Spatial heterogeneity promotes β-diversity

Apart from the decline of both α- and γ-diversity with increasing habitat isolation, one

striking feature of our simulation results is the conspicuous peak of β-diversity around

log10 mean patch distance τ ≈ 0.25, on top of the overall trends of a decline in β-diversity

with increasing mean patch distance and an increase with habitat availability (number

of patches, Z). We suppose that this peak is related to a maximum in effective spatial

heterogeneity of habitat that appears when the average distance between patches is large,

but not so extreme that the patches are completely isolated.

We assumed identical abiotic conditions on all habitat patches, i.e. there are

no differences in nutrient availability or background mortality rates. Therefore, any

differences in conditions experienced by the species on different patches can only originate

from the structure of the dispersal network. One way for such different conditions

to emerge is the disintegration of the dispersal network into several smaller clusters,
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what appears to happen right before β-diversity reaches its maximum. Up to a log10

mean patch distance τ ≈ −0.5, the species with the largest maximum dispersal distance

(which could be both large animals that have not already gone extinct and plants with a

randomly selected large dispersal distance) have a landscape connectance of at least 0.5.

This dispersal advantage easily allows them to connect all patches to a single network

component, thereby providing some homogenisation for the meta-food-web. However, as

the mean patch distance increases further up to log10 τ ≈ 0.25, even these species cannot

bridge all gaps in the habitat matrix any more and clusters of patches emerge that are

for all species disconnected from the other patches. As these clusters vary in size and

mean patch distance within the cluster, the level of dispersal mortality experienced by the

species on the different clusters can also vary considerably. Given that in our simulations

dispersal mortality is a key factor determining species persistence and diversity, this might

explain the observed increase in β-diversity. Any further increase in mean patch distance

beyond log10 τ = 0.25 causes the landscape connectance to drop to nearly zero for all

species and the average cluster size approaches one. At this point, all clusters are from a

network point of view trivially identical and β-diversity declines again.

By contrast, communities in landscapes with either no dispersal mortality (i.e. all

pathces are direct neighbours) or dispersal mortality of a 100% (i.e. fully isolated

patches), showed no β-diversity (see the supplement, section S7), suggesting that in such

extreme cases local food web dynamics conserve similar communities. Given current

land use practices, these findings point towards a high risk of biotic homogenisation in

fragmented landscapes, in which the remaining habitat fragments often have the same or

very similar environmental conditions.

4.4 Model specifications

The framework we propose here for modelling meta-food-webs is very general and allows

for a straightforward implementation of future empirical insight where we so far had
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to rely on plausible assumptions. The trophic network model for the local food webs

is based on a tested and realistic allometric framework [47] with a fixed number of 40

species – a typical value in dynamic food web modelling (e.g. [60, 61]). We based

all model parameters on allometric principles [33, 62] allowing for a simple adaptation

of our modelling approach to other trophic networks such as empirically sampled food

webs [63] or other food web models such as the niche model [64]. Moreover, empirical

patch networks (e.g. the coordinates of meadows in a forest landscape) or other dispersal

mechanisms [8, 65] may be incorporated in the future. In our simulations, biomass

loss during dispersal is predominantly responsible for the decline in species diversity.

We linked the maximum dispersal distance of animals and thereby also their mortality

during dispersal to body mass, which is plausible because larger animal species can move

faster [34], and thus, have to spend less time in the hostile habitat matrix. Interestingly,

however, we did not find any empirical study relating body mass directly to mortality or

biomass loss during migration. If such information becomes available in the future, it can

be easily incorporated into our modelling framework. Further, we deliberately assumed all

habitat patches to share the same abiotic conditions [66, 67] as we wanted to focus on the

general effects of the interaction of complex food web dynamics and dispersal dynamics.

Adding habitat heterogeneity among patches, e.g. by modifying nutrient availability or

mean temperature, however, is straightforward and can be expected to yield additional

insight into the mechanisms for the maintenance of species diversity in meta-food-webs.

4.5 Synthesis and outlook

Our simulation experiment demonstrates that fragmentation reduces species diversity

in complex food webs in general, with differences in the effect across trophic levels.

In increasingly fragmented landscapes, energy becomes limited, which prevents large

consumers from persisting. These primary extinctions may result in a cascade of

secondary extinctions, given the importance of top predators for food web stability

[25, 68]. The increased risk of network downsizing, i.e. simple food webs with fewer
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and smaller species [12, 69], stresses the importance to consider both direct and indirect

trophic interactions as well as dispersal when assessing the extinction risk of species

embedded in complex food webs and other ecological networks.

To date, conservation strategies are mostly designed based on single species or

competitive interactions and do not consider the complex network of interactions in

natural communities [12]. However, the patterns we presented here clearly support

previous studies (e.g. [39, 41, 42]) and show that the fragmentation-induced extinction

risk of species strongly depends on their trophic position, with top species being

particularly vulnerable. Given that top-down regulation can stabilise food webs [25, 68],

the loss of top predators might entail unpredictable consequences for adjacent trophic

levels, destabilise food webs, reduce species diversity and trophic complexity and

ultimately compromise ecosystem functioning [23, 25, 70]. Our results suggest that

bottom-up energy limitation due to habitat isolation is the critical factor driving

species loss and the reduction of trophic complexity. The extent of this loss strongly

depends on the spatial context (see also [8]). Our results further emphasise that

in fragmented landscapes a strategically planned spatial configuration of habitats can

potentially foster β-diversity, and thus, mitigate the risk of biotic homogenisation,

which poses a severe threat to biodiversity in human-dominated landscapes [71].

Thus, to maintain species-rich and trophic-complex natural communities under future

environmental change, effective conservation planning must consider this interdependence

of spatial and trophic dynamics. Notably, conservation planning should focus on

decreasing habitat isolation and matrix hostility (and consequently dispersal mortality) to

ensure sufficient biomass exchange between local populations, capable of inducing spatial

rescue effects, and to alleviate bottom-up energy limitation of large consumers. Therefore,

we highlight the need to explore food webs and other complex ecological networks in a

spatial context to achieve a more holistic understanding of biodiversity and ecosystem

processes.
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