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 2 

Abstract 29 

Realising the potential of human induced pluripotent stem cell (iPSC) technology for drug 30 
discovery, disease modelling and cell therapy requires an understanding of variability across 31 

iPSC lines. While previous studies have characterized iPS cell lines genetically and 32 

transcriptionally, little is known about the variability of the iPSC proteome. Here, we present 33 
the first comprehensive proteomic iPSC dataset, analysing 202 iPSC lines derived from 151 34 

donors. We characterise the major genetic determinants affecting proteome and transcriptome 35 

variation across iPSC lines and identify key regulatory mechanisms affecting variation in 36 
protein abundance. Our data identified >700 human iPSC protein quantitative trait loci 37 

(pQTLs). We mapped trans regulatory effects, identifying an important role for protein-protein 38 

interactions. We discovered that pQTLs show increased enrichment in disease-linked GWAS 39 
variants, compared with RNA-based eQTLs.  40 

  41 
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Introduction 42 

Induced pluripotent stem cells (iPSC) hold enormous promise for advancing basic research 43 
and biomedicine. By enabling the in vitro reconstitution of development and cell differentiation, 44 

iPS cells allow the investigation of mechanisms underlying development and the aetiology of 45 

many forms of genetic disease. To realize this potential, it is essential to characterize how 46 
genetic and non-genetic effects in human iPSCs influence molecular and cellular phenotypes. 47 

 48 

Recently, the establishment of population reference panels of normal human iPSC lines1-3 49 
have provided valuable resources for functional experiments in different genetic backgrounds. 50 

Additionally, these data have yielded detailed characterizations of the iPS transcriptome, 51 

identifying thousands of cis expression Quantitative Trait Loci (eQTL)1,4,5, including at disease-52 
relevant loci. While these RNA-based analyses are informative for studying mechanisms 53 

affecting gene regulation at the transcriptional level, most cellular phenotypes involve 54 
mechanisms acting downstream, at the protein level. Evidence in other contexts, including in 55 

lymphoblast cell lines and in cancer, point to substantial differences in the genetic regulation 56 
of protein and RNA traits, identifying protein QTL6-9 and assessing the extent of buffering of 57 
genetic effects between layers10,11. However, existing protein datasets have been limited by 58 

scale (i.e. number of samples) or resolution (i.e. number of proteins, availability of RNA data). 59 
Importantly, no population-scale proteome datasets have been generated from human 60 
pluripotent cells. 61 
 62 

Here, we report on the first comprehensive, population-scale, combined proteomics and gene 63 
expression analysis in human iPSC lines. Our data comprise matched quantitative proteomic 64 

(TMT Mass Spectrometry) and transcriptomic (RNA-seq) profiles of 202 iPSC lines, derived 65 

from 151 donors that are part of the HipSci project1. We identify both genetic and non-genetic 66 
effects causing variability in protein expression between individuals. Our data provide the first 67 

high-resolution map of protein quantitative trait loci (pQTLs) in human iPSCs, which we 68 

characterise in relation to regulatory variants that affect the iPSC transcriptome. This reveals 69 
important roles for protein-protein interactions in propagating and buffering genetic effects on 70 

the human proteome. Additionally, we identify pQTLs linked to GWAS loci, underlining the 71 

importance of direct protein measurements for the characterisation of disease mechanisms. 72 

 73 

 74 

 75 
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Results 76 

A population reference proteome for human iPSCs 77 

We selected 217 iPSC lines from the HipSci project1,  which were derived from 163 different 78 
donors, for protein analysis. Quantitative mass spectrometry was carried out in batches of 10, 79 

using tandem mass tagging (TMT12), including one common reference iPSC line that was 80 

included in each batch (Methods). After quality control (Supp. Fig. 1; Methods), we selected 81 
202 lines (from 151 donors) for which genotype, RNA-seq and proteome information is 82 

available, for further analysis (Fig. 1A; Supp. Table 1).  83 

 84 

In aggregate, our proteomics data identified >250,000 distinct (unmodified) peptide 85 

sequences, corresponding to 16,218 protein groups (hereon denoted proteins) with a median 86 

sequence coverage of 46% (Supp. Table 2), and that map to 10,394 protein coding genes. 87 
Of these, 11,542 protein groups corresponding to 9,993 genes were detected in more than 30 88 
lines and were considered for downstream analysis (Supp. Fig. 2). RNA-seq data from the 89 
same iPSC lines identified 12,363 expressed protein-coding genes (TPM>1), ~75% of which 90 

had evidence for expression at the protein level  (Fig. 1B; Supp. Fig. 3). The average 91 
abundance for cognate protein and RNA expression in iPSCs was positively correlated across 92 
genes (Fig. 1C), consistent with observations in other cell types and organisms 13,14. 93 
 94 

Our data provide the most comprehensive analysis of the human iPSC proteome reported to 95 
date, and one of the most comprehensive proteomic datasets reported for any human primary 96 
or derived cell type (Supp. Table 3). Comparison of iPSC lines derived from both healthy and 97 

disease bearing donors (Supp. Table 4), indicates no substantial global disease-linked 98 

differences, at either proteome or transcriptome levels (Supp. Fig. 4). Notably, when we 99 
compared the iPSC proteome with the Human Proteome Map 15, foetal and reproductive 100 

organs were identified as the tissues with the most similar protein expression patterns to iPS 101 

cells (Fig. 1D). This is consistent with the expression of pluripotency markers in foetal testis 102 
and ovaries 16,17. 103 

 104 
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 105 
Figure 1 | Molecular profiling of iPSC lines. (A) Experimental design, displaying assays considered 106 
in this study. Genotype, RNA-seq and quantitative proteomics data were generated from the same cell 107 
lines. (B) Aggregate proteome coverage, displaying the fraction of genes with detected protein peptides 108 
as a function of RNA abundance (mRNA transcripts per million reads). (C) Genome-wide correlation 109 
between the aggregate RNA and protein abundance for 10,672 protein-coding genes (showing average 110 
expression across 202 lines). All proteomics data can be interactively explored in the Encyclopedia of 111 
Proteome Dynamics (http://www.peptracker.com/epd). (D) Similarity between the iPSC proteome and 112 
somatic tissues. Shown are Spearman correlation coefficients between the average iPSC proteome 113 
and 23 tissues from the Human Proteome Map, including Adult (Red) and Fetal (Blue) tissues 114 
(Methods).  115 
 116 

RNA and proteome variability  117 

Across iPSC lines, the majority of genes showed low RNA and protein coefficients of variation 118 
(Fig. 2A), with only weak to moderate global correlation across the lines (Fig. 2B). Notably, 119 

many highly variable RNAs showed low covariation with protein (985 RNA-protein pairs with r 120 
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< 0.2), indicating that the variation in protein abundance between iPSC lines is not explained 121 
solely by variation in RNA expression levels. 122 

 123 

Next, we assessed a range of factors, including the cell line donor, age, sex, as well as culture 124 

medium and other technical factors, for their potential contribution to the variation in protein 125 
expression between iPSC lines (Fig. 2C; Methods). The largest effects on protein variation 126 

were associated with donor effects and culture medium (Fig. 2C). Even after accounting for 127 

protein variability that can be explained by transcriptional mechanisms, i.e. where there was 128 
parallel variation in RNA expression (Supp. Fig. 7), substantial effects on protein expression 129 

levels were still observed for both donor and culture medium (Fig. 2C; Methods). This 130 

indicates that (i) differences between individual donors play an important role in causing the 131 
observed variation in proteome expression between the iPSC lines and (ii) post-transcriptional 132 

mechanisms also contribute significantly to these donor effects. 133 
 134 
We note that some of the genes showing the strongest effect of donor variation on protein 135 

expression levels encoded the same proteins that were previously identified as being 136 
differentially expressed between reprogrammed iPS cells and embryonic stem cells (ESCs) 137 
18,19. These earlier studies had suggested that reprogrammed iPS cells may have important 138 
differences in protein expression, when compared with the physiological stem cells present in 139 
embryos. However, these previous comparisons of iPSC and ESC cells did not control for 140 
genetic differences between donors. Our data show that these previously reported differences 141 

between iPSC and ESC cells may be explained by underlying effects of genetic variation 142 
between donors, rather than intrinsic differences between the iPSC and ESC cell types (Supp. 143 
Fig. 6). This supports the view that it is possible to reprogram iPS cells to a state showing 144 

near identical protein expression patterns to ESC cells. 145 

Coordinated expression changes of biological processes 146 

Next, we explored protein co-expression clusters (Methods), which identified 51 modules of 147 

proteins that showed patterns of co-expression, 34 of which were enriched for at least 10 GO 148 
terms (FDR<10%; Fisher’s exact test; Supp. Table 5). Among the most prevalent processes 149 

identified were ‘cellular developmental process’ (3 modules), ‘cell adhesion’ (3 modules), and 150 

‘respiratory electron transport chain’ (3 modules). For each module we evaluated: (i) the 151 

coefficients of protein abundance variation (CV), (ii) the fraction of variance explained by 152 
biological and technical factors (Methods), and (iii) the RNA-protein correlation. While 153 

modules with high protein variability also tended to show high RNA variability, (Fig. 2D,E; 154 
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Supp. Fig. 8), we also identified clusters showing high variability at the protein level, but not 155 
at the RNA level (Fig. 2D). 156 

 157 

There were differences between modules with high RNA and protein variability (e.g. clusters 158 
1, 2, 3), both in the specific enriched GO terms and in their variance components (Fig. 2D,E). 159 

For example, Cluster 2 was enriched for proteins encoded on the X chromosome and variation 160 

was associated with the sex of the donor, at both the RNA and protein levels. In contrast, 161 
Cluster 4 showed high variability in protein abundance, but low RNA variability (Fig. 2E). The 162 

134 proteins in Cluster 4 were enriched for integral membrane proteins and their variation was 163 

linked to the culture medium variance component (Fig. 2E), which was not explained by biases 164 
in the quantification of peptides from membrane proteins (Supp. Fig. 5). This indicates that 165 

differences in the cellular environment can affect the abundance of Cluster 4 proteins, and is 166 

not driven by changes in transcriptional regulation. 167 

 168 

In summary, analysis across the 202 iPSC lines shows significant donor-to-donor variation in 169 
both the proteome and transcriptome. Interestingly, donor variation was apparent both at the 170 

level of individual proteins and in the coordinated regulation of whole pathways. 171 

 172 
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 173 
Figure 2 | Genetic and non-genetic sources of iPS proteome variation. (A) Distribution of RNA and 174 
protein coefficients of variation for individual protein coding genes across lines. (B) Distribution of RNA-175 
protein correlation coefficients for individual genes across lines (pearson r). Shown are densities for all 176 
genes or when selecting the top 20% variable RNA or protein. (C) Quantified variance components of 177 
individual RNA and protein, considering different technical and biological factors. Shown is the 178 
distribution of variance contributions of different factors (upper panel), and numbers of proteins with 179 
greater than 20% explained variance for each factor (lower panel). Also shown are the number of 180 
proteins that retain greater than 20% contribution for each factor when accounting for RNA variation 181 
(light blue; see Methods). (D) Median variability and RNA-protein correlations (Spearman r) across 51 182 
protein co-expression modules. Specific modules of interest are labelled (1-5). (E) Left: Coexpression 183 
heatmap for proteins in modules labelled in D, displaying pairwise correlation coefficients between 184 
proteins (Supp. Table 17). Right: Variants components for the median protein and RNA levels of each 185 
module, as well as pairwise correlation (Pearson r). 186 
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Mapping cis genetic effects on protein abundance 187 

Next, we mapped cis quantitative trait loci at both the RNA and protein levels (on autosomes; 188 
MAF>5%; within +/- 250 kb around the gene; using a linear mixed model; Methods). The 189 

number of pQTLs identified was greatly increased by adapting PEER adjustment to account 190 

for non-genetic sources of variation previously developed for mapping of RNA 20 to protein 191 
traits (Methods; Supp. Fig. 10). Proteomic QTL analysis identified 712 genes with a pQTL 192 

(FDR<10%; 10,675 proteins tested corresponding to 9,564 genes), compared to 5,744 genes 193 

with an eQTL when considering RNA levels (14,148 protein-coding and non-coding genes 194 
tested; 3,641 genes tested at both protein and RNA level; Fig. 3A; Supp. Table 7,8,9).  195 

 196 

To investigate which DNA sequence variants affected both protein and RNA expression levels, 197 
we assessed the ‘replication’ of pQTLs at the RNA level and vice versa (nominal significance 198 

at P<0.01 and same direction of effects; Methods). This revealed 478 pQTLs (69%) that were 199 
also detected at the RNA level. Conversely, analysis of 3,641 protein-coding eQTL genes with 200 
protein expression identified 897 eQTLs (25%) that were also detected at the protein level. 201 

Globally, eQTL and pQTL effect sizes were moderately correlated (Supp. Fig. 11). An 202 
example of an eQTL with a corresponding effect at the protein level is the lead eQTL variant 203 

rs1129187 for the PEX6 gene (Fig. 3B), a known risk variant for Alzheimer's disease in APOE 204 

e4+ carriers 21. 205 

 206 

Next, we used multivariate logistic regression to systematically characterize the technical and 207 
biological determinants affecting whether eQTLs result in detectable protein changes  (Fig. 208 
3C). This identified the eQTL effect size as the most relevant positive factor, followed by the 209 

protein coefficient of variation and the average protein abundance (Fig. 3C; Supp. Table 12, 210 

13). eQTLs for genes that are the subunits of protein complexes were less frequently 211 
detectable at the protein level. Notable examples include subunits of the mitochondrial 212 

ribosome and of the spliceosome, for which the eQTLs, while having highly significant effects 213 

at the RNA level, were buffered at the protein level (Supp. Table 14). This indicates that cis 214 
regulatory genetic effects on protein abundance in iPSCs can be tempered by post-215 

transcriptional mechanisms dependent on protein-protein interactions. For comparison, we 216 

also considered technical sources of variation at the protein level (coefficient of error), which 217 

were markedly less relevant than biological factors. Therefore, we propose that the observed 218 

buffering of eQTLs at the protein level primarily arises from a combination of biological factors, 219 

rather than technical limitations in protein quantification.  220 
 221 

 222 
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 223 

 224 
 225 
Figure 3 | human iPSC cis protein and RNA QTLs. (A) Number of genes with a protein (blue) or RNA 226 
(green) QTL (FDR<10%) and replicated effects across molecular layers. Left: Number of pQTL genes, 227 
either with (dark blue) or without (light blue) replicated RNA effect. Right: Number of eQTL genes, either 228 
with (dark green) or without (light green) replicated protein effect. Replication defined at nominal P<0.01 229 
with consistent effect direction. Grey fractions correspond to genes that could not be assessed at the 230 
other molecular layer (dark grey: not expressed, light grey: non-coding eQTL genes). (B) Manhattan 231 
plots for cis RNA (top) and protein (bottom) QTL mapping for PEX6. Boxplots show RNA and protein 232 
expression for different alleles at the eQTL lead variant rs1129187. (C) Logistic regression model 233 
trained on the replication status of eQTL at the protein level (defined as in A) considering technical and 234 
biological covariates (trained on 1,887 genes detected at protein and RNA level in all 202 lines; 235 
Methods). Left: Log odds ratio of individual covariates considered in the model. Right: Fraction of 236 
eQTLs with replicated protein effects, considering different gene strata. All genes correspond to no 237 
stratification. Considered covariates are: are eQTL effect size, average protein abundance, protein 238 
coefficient of variation across lines, number of identified protein peptides, protein technical coefficient 239 
of variation, membership in protein complexes, and whether the eQTL variant is associated with 240 
changes in expression of at least one coding transcript isoforms (only-nc-tQTLs). Percentages denote 241 
the replication rate. 242 
 243 

 244 
 245 

 246 

Isoforms affect eQTLs acting at the protein level 247 
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Next, we investigated the utility of RNA and protein quantification with isoform resolution to 248 
explain which eQTLs manifest in detectable protein effects. For this analysis we considered 249 

54,965 transcript isoforms (quantified using Salmon22) and 126,758 peptides for QTL 250 

mapping, which identified 5,734 genes with a transcript QTL and 740 genes with a peptide 251 
QTL (Supp. Fig. 13, Methods, Supp. Table 4,10,11). Overlaying the iPSC transcript QTLs 252 

with gene-level eQTLs identified 84 eQTLs that were exclusively associated with abundance 253 

changes of a non-protein coding transcript isoform (nominal P<0.01). QTL analysis with 254 
transcript isoform resolution thus explains why some of the eQTLs identified by conventional 255 

RNA analysis cannot give rise to protein QTLs (Fig. 3C). For example, rs2709373, an eQTL 256 

variant for METTL21A, was associated specifically with the abundance of the non-coding 257 
transcript isoform ENST00000477919, without any detectable effect on the abundance of any 258 

protein-coding transcript isoforms and thus did not alter protein expression levels from this 259 

locus (Fig. 4A). 260 

 261 

The transcript QTLs also provided insights into why some pQTLs were not detected as eQTLs. 262 
Out of 234 pQTLs for which no corresponding eQTL was found, we identified 66 pQTLs with 263 
a significant transcript QTL (Supp. Fig. 13). Interestingly, for 16 of these genes, including 264 

MMAB (Fig. 3C), we observed genetic effects with opposite directions on coding and non-265 
coding transcript isoforms. These data show that the accurate mapping of RNA-level eQTLs 266 
can be confounded for loci that give rise to multiple transcript isoforms. In particular, transcript 267 

isoforms from the same gene may be differently affected by the same DNA variant, while only 268 
a subset of the transcripts may contribute to protein expression from the locus. 269 

 270 

Finally, we used the peptide-level QTL information to explore, at higher resolution, isoform-271 
specific transcript QTLs. We identified 53 genes with transcript QTLs that were not detected 272 

at either gene resolution RNA or protein levels (i.e. no eQTL or pQTL), but which were 273 
detectable as a peptide QTL. One example is the gene CTTN (Fig. 4C), where an increase in 274 
the expression of one transcript isoform was accompanied by a decrease in the expression of 275 

a second isoform. At the protein level, the same variant exerted a detectable effect on a 276 

peptide sequence that uniquely maps to the first transcript isoform. 277 

 278 

Taken together, our results illustrate a variety of different RNA-protein relationships, and how 279 

they are affected by genetic variation between donors. These results show important roles of 280 

transcriptional regulation underlying cis pQTL effects, highlight mechanisms explaining the 281 
differences in observed genetic effects, and in particular show that isoform-specific effects, 282 

invisible to standard eQTL mapping approaches, can be detected at the protein level. 283 
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 284 

 285 
 286 
Figure 4 | Isoform-resolution analysis of RNA and protein QTLs. (A) eQTL with no detectable 287 
protein effect (rs2709373; gene METTL21A), which can be explained by an underlying transcript QTL 288 
acting on the non-coding isoform ENST00000477919 (grey). No genetic effect is observed on the 289 
protein-coding isoform ENST00000425132 (light blue), and consequently no protein effect. (B) pQTL 290 
without RNA replication (rs6606721; gene MMAB), with a directional opposite effect on a coding and a 291 
noncoding isoform (light blue: ENST00000540016; grey: ENST00000537496), resulting in no overall 292 
change in gene expression level. (C) Transcript QTL that is neither an eQTL nor a pQTL. The variant 293 
rs12795503 has opposite directional effects on the two coding transcripts ENST00000301843 (light 294 
blue) and ENST00000346329 (light red), resulting in no detectable effects on either the RNA or protein 295 
level. The transcript-specific effect on ENST00000301843 is detectable for the peptide 296 
QDSAAVGFDYK (uniquely mapping to exon 11 of ENST00000301843), while no effect is observed for 297 
peptides shared by both protein isoforms. Subplot shows genetic effect sizes for all peptides mapped 298 
to CTTN. Shared: peptides mapping to isoforms 1 and 2; Unique: peptide uniquely mapping to isoform 299 
1.  300 
 301 
 302 
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trans protein effects of cis QTLs 303 

We extended our analysis to map proteome-wide associations, considering variants with 304 
either significant cis RNA, or cis protein, QTLs (Fig. 5A). Overall, our data show that cis pQTLs 305 

have trans effects on protein levels more frequently than eQTLs without a corresponding cis 306 

pQTL (Fig. 5B, see Methods). Genome-wide we identified 89 cis-pQTL lead variants with 307 
trans effects on 173 genes (FDR<10%; Supp. Table 15). 308 

 309 

We observed that groups of proteins detected with ‘shared genetic regulation’, defined here 310 
as proteins whose abundance is affected, either in cis, or trans, by the same genetic variant, 311 

were enriched for protein complex subunits (odds ratio=15, P= 1.24⋅10-14, Fisher’s exact test; 312 

Fig. 5C). The cis and trans effects showed similar effect directions and effect sizes, consistent 313 

with genetic effects mediated via stabilising protein-protein interactions (Fig. 5D). This 314 
hypothesis is supported by previous studies showing that protein modules sharing genetic 315 

effects in trans are enriched in protein interactions23, that somatic aberrations in human cancer 316 
cell lines are propagated in trans10,11, and by the enhanced co-expression of protein complex 317 
subunits and the significant donor variance component observed for many protein complexes 318 
(Fig. 5E; Supp. Fig. 9). 319 

 320 
For several protein complexes, we observed that cis genetic regulation of one subunit may 321 
lead to trans genetic regulation of other subunits (Supp. Table 16). This is illustrated by 322 

PEX26-PEX6-PEX1, a protein complex involved in peroxisome biogenesis (Fig. 5F). A strong 323 
association was detected between all complex subunits and the PEX6 cis eQTL rs1129187 324 

(Fig. 3B). This suggests that PEX6 acts as a limiting subunit of this complex in iPSCs. As 325 
noted above, this SNP is a known risk variant for Alzheimer's disease in APOE e4+ carriers21. 326 

Thus, our results suggest a biological mechanism underlying this risk variant, namely through 327 

changes in the abundance of the PEX26-PEX6-PEX1 complex. This is in line with the 328 
proposed roles of peroxisomal function in the development of Alzheimer’s disease24. 329 

 330 

Several variants also showed genetic effects of opposite directions in cis and trans. For 331 
example, rs1326138, the cis pQTL for SUCLA2, had opposite effects in trans on SUCLG2. 332 

These proteins are mutually exclusive binding partners of SUCLG1, with which they form the 333 

succinate coenzyme A ligase complex. A possible mechanism for this genetic effect is that an 334 
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increase in SUCLA2 reduces the availability of SUCLG1 to dimerise with SUCLG2, leaving 335 
the latter in a monomeric state where it is prone to protein degradation (Supp. Fig. 14). 336 
Figure 5 | trans effects on the iPS proteome. (A) Targeted strategy for mapping trans genetic effect 337 
on protein abundance. Lead cis eQTL or pQTL variants are considered for proteome-wide association 338 
analysis. (B) QQ-plot of negative log P values from trans pQTL analysis, either considering 712 lead 339 

cis pQTL variants (blue) or 2,744 lead eQTL variants without replicated pQTL effect (defined as in Fig. 340 
3A; light green) for proteome-wide association analysis. (C) Enrichment of protein-protein interactions 341 
among significant trans pQTLs. Shown is the fraction of cis-trans gene pairs linked by a trans pQTL 342 
with evidence of protein-protein interactions (based on the union of CORUM, IntAct, and StringDB),  for 343 
different trans pQTL discovery FDR thresholds. Dot size is proportional to the number of protein pairs. 344 
Vertical line corresponds to trans pQTL FDR<10%. (D) Juxtaposition of genetic effect sizes for protein 345 
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pairs that are regulated in cis and trans by the same variant (FDR<0.1). Red points indicate protein 346 
pairs with evidence for protein-protein interactions as defined in C. (E) Left: Protein coexpression of 347 
selected protein complex subunits defined based on CORUM, displaying pairwise Spearman correlation 348 
coefficients between proteins. Right: i) fraction of the average cluster protein expression level explained 349 
by donor effects; ii) subunit with the most significant cis pQTL; iii) fraction of subunits in association with 350 
the cis pQTL at nominal significance (P<0.01). (F) The PEX26-PEX6-PEX1 complex. The variant 351 
rs1129187 is associated in cis with changes in the RNA and protein abundance of PEX6 and in trans 352 
with changes in the protein abundance of PEX1 and PEX26. 353 
 354 

QTLs with protein level protein level effects are enriched for 355 

human disease variants 356 

To explore the functional physiological relevance of iPSC pQTLs, we tested for overlap with 357 

disease-linked variants identified in genome-wide association studies (GWAS). To do this, we 358 
queried QTLs that tag known GWAS variants 25 (i.e. are in LD r2>0.8; Methods), identifying 359 

10% of pQTLs and 7% of eQTLs, respectively, that tag a GWAS disease variant. This 360 
corresponds to an enrichment of 1.93-fold for pQTLs and 1.36-fold for eQTLs, over a matched 361 

set of random control QTL variants (Fig. 6A). The data show that QTLs affecting both RNA 362 

and protein expression levels are more likely to tag a disease variant, compared with either 363 

eQTL corresponding to non-protein coding genes, or eQTL that do not result in a detectable 364 
protein effect (Fig. 6B). Notably, these differences could not be explained by differences in 365 
the number of eQTL and pQTL discoveries (Supp. Fig. 15). 366 

 367 

Of note, 19 of the pQTLs without a detectable effect at the RNA level tag GWAS variants 368 
(Supp. Table 7). One such example is the cis pQTL of VRK2, rs1051061 (Supp. Fig. 17), a 369 

missense variant within the kinase domain of VRK2, which is associated with schizophrenia 370 
risk26. VRK2, a serine/threonine kinase, is known to be down-regulated in several neurological 371 

disorders, including schizophrenia27,28. We hypothesise that, independently of expression 372 

changes, the alternative allele of rs1051061 affects the protein structure and its capacity to 373 
bind, leaving the protein in an unstable state. This result contributes to the understanding of 374 

schizophrenia’s aetiology, supporting an important role for VRK2 and suggesting possible 375 

disease onset already in early development stages, i.e in pluripotent cells. 376 

 377 

In summary, our data strongly support the conclusion that analysis of pQTLs provides unique 378 

information regarding the functioning of disease risk variants and give insights, which are not 379 
identifiable using eQTL mapping, into mechanisms through which genetic effects modulate 380 

cell physiology.  381 

 382 
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 383 

 384 
 385 
Figure 6. Enrichment of disease variant tagging different RNA and protein QTLs  (A) Fold GWAS 386 
tagging enrichment over control variants for pQTLs (blue) and eQTLs (green) corresponding to protein 387 
coding genes. (B) Fold enrichment for eQTLs corresponding to protein-coding genes either with (dark 388 
green) or without (light green) replicated effects at the protein level, and for eQTLs that affect non-389 
coding genes (grey). 390 
 391 

Discussion 392 

We have performed the first in-depth characterisation of gene expression and the human iPSC 393 
proteome, and, to our knowledge, provided the largest dataset with parallel RNA/protein 394 

profiling in human cells. By quantifying protein and transcript expression variation across more 395 
than 200 human iPSC lines, we identified genetic and non-genetic mechanisms underlying 396 

variation at both the protein and RNA levels. We have mapped more than 700 protein 397 
Quantitative Trait Loci (pQTLs) and analysed in detail how these relate to eQTLs. While 398 
previous studies have established overlap and colocalization of eQTL and disease-linked 399 

GWAS associations29, a key finding from this study is that the subset of QTLs with an effect 400 

at the protein level were significantly more likely to be associated to disease traits. These 401 
results demonstrate the importance of the systematic identification of mechanisms through 402 

which genetic variation can affect cell physiology and disease. 403 

 404 
We have identified the specific proteins that show most variation in abundance between iPSC 405 

lines. These are often co-expressed in groups of proteins with shared biological functions. 406 

Thus, the major variation is seen with proteins affecting processes such as cell differentiation 407 
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and cell-cell adhesion. Importantly, we detected many proteins that varied in abundance 408 
without a parallel variation in the abundance of their cognate RNAs. These observations 409 

indicate an important role for post-transcriptional mechanisms in contributing to genetic 410 

variation in the human population and identify genes whose important roles are invisible in 411 
transcript mapping studies. 412 

 413 

Our data identified that donor-specific genetic factors were major contributors to the 414 
differences in protein expression detected across the iPSC lines. Another major factor was 415 

the cell culture conditions, indicating that protein expression in iPSCs is sensitive to the cellular 416 

growth environment. Consistent with the significant influence of donor genetics on variation in 417 
protein expression, we mapped 712 common genetic variants associated with changes in 418 

protein abundance. By the systematic comparison of matched protein and RNA data, including 419 

detailed resolution of separate isoforms, we identified that in cis, DNA variants act mainly 420 
through transcriptional mechanisms. This involves the variant either modulating total transcript 421 
abundance, or, in some cases, varying the proportions of different transcript isoforms 422 
produced from the locus. This extends previous results on the strong overlap between cis 423 
eQTLs and pQTLs7. 424 

 425 
Our data also illustrate the ability of protein-protein interactions to both buffer and propagate 426 
genetic effects. A long-standing hypothesis has been that many protein complexes have a 427 

rate-limiting subunit that determines complex abundance, with any excess subunits being 428 
rapidly degraded (e.g. because of exposure of hydrophobic residues). This has two 429 
implications. First, cis eQTLs for non-rate-limiting subunits should have minimal effect at the 430 
protein level, since the abundance of these proteins is determined by the abundance of the 431 

whole complex. Second, cis eQTLs for rate-limiting subunits should have effects in trans on 432 
the abundance of the whole complex, and on most, if not all, subunits therein. We found 433 

evidence for both phenomena in our analysis of cis and trans pQTLs. These observations, the 434 

first to our knowledge for common genetic variants in human, are consistent with previous 435 
results obtained on high heterozygosity samples, i.e outbred mice23, and somatic aberrations 436 

in human cancer cell lines10,11. 437 
 438 

Understanding the mechanisms through which genetic variations act in the human population 439 

is of great relevance to characterising risk factors and susceptibility to disease. There is 440 
growing interest in the potential for studying disease mechanisms using disease relevant 441 

tissues that are derived from panels of iPSCs30-33. Our study provides important information 442 
for advancing such studies on the genetic regulation of protein expression and disease-443 

relevant phenotypes in iPSC-derived model systems.  444 
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Methods 462 

RNA-seq data processing 463 

Raw RNA-seq data for 331 samples were obtained from the ENA project: ERP007111. CRAM 464 
files were merged on a sample level and were converted to FASTQ format. The reads were 465 

trimmed to remove adapters and low quality bases (using Trim Galore!34), followed by read 466 

alignment using STAR (version: 020201)35, using the two-pass alignment mode and the 467 
default parameters as proposed by ENCODE (c.f. STAR manual). All alignments were relative 468 

to the GRCh37 reference genome, using ENSEMBL 75 as transcript annotation36. 469 

Samples with low quality RNA-seq were discarded, if they had less than 2 billion bases 470 

aligned, had less than 30% coding bases, or had a duplication rate higher than 75% were. 471 

This resulted in 323 lines for analysis, for 202 of which matched proteome data was available. 472 

 473 

Gene-level RNA expression was quantified from the STAR alignments using featureCounts 474 

(v1.6.0)37, which was applied to the primary alignments using the “-B” and “-C” options in 475 
stranded mode, using the ENSEMBL 75 GTF file. Quantifications per sample were merged 476 

into an expression table using the following normalization steps. First, gene counts were 477 
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normalized by gene length. Second, the counts for each sample were normalized by 478 
sequencing depth using the edgeR adjustment38. 479 

Transcript isoform expression was quantified directly from the (unaligned) trimmed reads 480 
using Salmon22 (version: 0.8.2), using the “--seqBias”, “--gcBias” and “VBOpt” options in “ISR” 481 

mode to match our inward stranded sequencing reads. The transcript database was built on 482 

transcripts derived from ENSEMBL 75.  The TPM values as returned by Salmon were 483 
combined into an expression table 484 

Quantitative proteomics data generation 485 

All lines included in this study are part of the HipSci resource and were reprogrammed from 486 
primary fibroblasts as previously described1. We selected 217 lines for in depth proteomic 487 

analysis with Tandem Mass Tag Mass Spectrometry. A subset of 202 lines (112 normal and 488 

90 disease; Supp. Table 1) with matched mRNA and protein data were considered for further 489 

analysis. 490 

Sample preparation 491 

For protein extraction, frozen iPSC cell pellets were washed with ice cold PBS and redissolved 492 
immediately in 200 μL of lysis buffer (8 M urea in 100 mM triethyl ammonium bicarbonate 493 
(TEAB) and mixed at room temperature for 15 minutes. DNA in the cell lysates was sheared 494 

using ultrasonication (6 X 20 s at 10ºC).  The proteins were reduced using tris-495 
carboxyethylphosphine TCEP (25 mM) for 30 minutes at room temperature, then alkylated in 496 
the dark for 30 minutes using iodoacetamide (50 mM). Total protein was quantified using the 497 
fluorescence based EZQ assay (Life Technologies). The lysates were diluted 4-fold with 100 498 

mM TEAB for the first protease digestion with mass spectrometry grade lysyl endopeptidase, 499 
Lys-C (Wako, Japan), then diluted a further 2.5-fold before a second digestion with trypsin. 500 

Lys-C and trypsin were used at an enzyme to substrate ratio of 1:50 (w/w). The digestions 501 

were carried out for 12 hours at 37ºC, then stopped by acidification with trifluoroacetic acid 502 
(TFA) to a final concentration of 1% (v:v). Peptides were desalted using C18 Sep-Pak 503 

cartridges (Waters) following manufacturer’s instructions and dried. 504 

Tandem Mass Tag Mass Spectrometry analysis 505 

For Tandem Mass Tag (TMT)-based quantification, the dried peptides were redissolved in 506 

100mM TEAB (50 µL) and their concentration was measured using a fluorescent assay 507 
(CBQCA) (Life Technologies). 100 µg of peptides, from each cell line to be compared, in 100 508 

µL of TEAB were labelled with a different TMT tag (20 µg ml-1 in 40 µL acetonitrile) (Thermo 509 
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Scientific), for two hours at room temperature. After incubation, the labelling reaction was 510 
quenched using 8 µl of 5% hydroxylamine (Pierce) for 30 minutes and the different cell 511 

lines/tags were mixed and dried in vacuo. TMT-ten plex was used to label ten iPSC lines and 512 

quantify them in parallel. In total 24 TMT-ten plex experiments were performed, where one 513 
iPSC line (bubh_3) was chosen as a reference cell line and was kept constant in all TMT 514 

batches. The other nine quantification channels were used to label 9 different cell lines.  515 

The TMT samples were fractionated using off-line high pH reverse phase chromatography: 516 

samples were loaded onto a 4.6 x 250 mm XbridgeTM BEH130 C18 column with 3.5 µm 517 

particles (Waters).  Using a Dionex bioRS system, the samples were separated using a 25-518 
minute multistep gradient of solvents A  (10 mM formate at pH 9) and B (10 mM ammonium 519 

formate pH 9 in 80% acetonitrile), at a flow rate of 1 ml/min. Peptides were separated into 48 520 
fractions, which were consolidated into 24 fractions. The fractions were subsequently dried 521 

and the peptides redissolved in 5% formic acid and analysed by LC-MS. 522 

5% of the material was analysed using an orbitrap fusion tribrid mass spectrometer (Thermo 523 
Scientific), equipped with a Dionex ultra high-pressure liquid chromatography system (nano 524 
RSLC). RP-LC was performed using a Dionex RSLC nano HPLC (Thermo Scientific). 525 

Peptides were injected onto a 75 μm × 2 cm PepMap-C18 pre-column and resolved on a 75 526 
μm × 50 cm RP- C18 EASY-Spray temperature controlled integrated column-emitter 527 
(Thermo), using a four-hour multistep gradient from 5% B to 35% B with a constant flow of 528 

200 nL min-1. The mobile phases were: 2% ACN incorporating 0.1% FA (Solvent A) and 80% 529 
ACN incorporating 0.1% FA (Solvent B). The spray was initiated by applying 2.5 kV to the 530 

EASY-Spray emitter and the data were acquired under the control of Xcalibur software in a 531 
data dependent mode using top speed and 4 s duration per cycle. The survey scan is acquired 532 

in the orbitrap covering the m/z range from 400 to 1400 Th, with a mass resolution of 120,000 533 

and an automatic gain control (AGC) target of 2.0 e5 ions.  The most intense ions were 534 
selected for fragmentation using CID in the ion trap with 30 % CID collision energy and an 535 

isolation window of 1.6 Th. The AGC target was set to 1.0 e4 with a maximum injection time 536 

of 70 ms and a dynamic exclusion of 80 s. 537 

During the MS3 analysis for more accurate TMT quantifications, 5 fragment ions were co-538 

isolated using synchronous precursor selection using a window of 2 Th and further fragmented 539 
using HCD collision energy of 55% 39 The fragments were then analysed in the orbitrap with 540 

a resolution of 60,000.  The AGC target was set to 1.0 e5 and the maximum injection time was 541 

set to 105 ms. 542 
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Proteomics data processing 543 

The TMT labeled samples (24 batches of TMT-ten plex) were analysed using MaxQuant v. 544 
1.6.0.13 40,41. Proteins and peptides were identified using the UniProt human reference 545 

proteome database (Swiss Prot + TrEMBL) release-2017_03, using the Andromeda search 546 

engine. Run parameters and the raw MaxQuant output have been deposited at PRIDE 547 
(PXD010557). 548 

The following search parameters were used: reporter ion quantification, mass deviation of 6 549 

ppm on the precursor and 0.5 Da on the fragment ions; Tryp/P for enzyme specificity; up to 550 
two missed cleavages, “match between runs”, “iBAQ”. Carbamidomethylation on cysteine was 551 

set as a fixed modification. Oxidation on methionine; pyro-glu conversion of N-terminal Gln, 552 

deamidation of asparagine and glutamine and acetylation at the protein N-terminus were set 553 
as variable modifications40-42. 554 

Peptides and protein groups were identified at a False Discovery Rate (FDR) of 5%. The same 555 
FDR was applied to the Post-Translational Modifications (PTM) Site and the Peptide Spectrum 556 
Matches (PSM). We performed the FDR calculation on an extended set and removed the 557 

Razor Protein FDR calculation constrain (for more details see reference 43). In total we 558 
identified 255,015 peptides detected in at least one sample (after removing reverse and 559 

contaminant peptides; on the 217 lines and 23 replicates of the reference line), which 560 

corresponds to 16,773 protein groups. 561 

Quality control and quantification 562 

To rule out technical confounding when performing genetic analyses of protein traits, we 563 
discarded 2,072 peptides that overlap a non-synonymous common variant (MAF>5% in 564 
European population) in expressed transcript (average TPM>1 based on RNA-seq). Protein 565 

group abundances were then estimated as the sum of peptide intensities mapped to a protein 566 

group. For peptide abundance we use the intensities reported in the “Peptides” file from 567 
MaxQuant. 568 

We discarded 10 lines with fewer than 67,000 identified peptides (corresponding to %75 of 569 
the median number of peptides identified; Supp. Fig. 1), resulting in a proteomics dataset 570 
consisting of 207 lines, 202 of which had matched RNA-Seq data and hence were considered 571 

for further analysis. In addition, the technical replicates for the included reference line in each 572 

TMT batch were retained to aide the normalization of protein quantifications between batches; 573 

see below. 574 
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In aggregate across all lines, we detected 16,218 protein groups. For downstream analysis, 575 
we considered protein groups that were detected in at least 30 of the 202 lines and 576 

analogously considered recurrently detected peptides (Supp. Fig. 2), resulting in a final 577 

dataset of 11,542 recurrent protein groups and 132,716 recurrent peptides. These protein 578 
groups could be mapped to 9,993 protein coding genes. 579 

To adjust for technical effects during the acquisition of protein data in TMT batches, we scaled 580 
the abundance estimate for each feature (i.e protein or peptide) as follows. For a feature and 581 

TMT batches, a scaling coefficient was computed as the ratio between the median intensity 582 

value across all lines versus the median intensity value across the subset of lines within the 583 
batch. 584 

Next, we employed quantile normalization across the feature abundance distribution in each 585 
line, using a normalization reference line (selected as the line with the highest number of total 586 

peptides detected), Briefly, for each line and feature we replaced the observed expression 587 
value with the expression level in the reference line having the same rank position in the line 588 

to be normalized: 𝑦{$%}
' = 𝑟[𝑟𝑎𝑛𝑘	𝑦{$%}], where y{12} are the intensity values for feature p and 589 

line l obtained after batch scaling, i.e. before normalisation, r is the sorted vector of intensities 590 

from the normalisation reference line, and y{12}
′  is the normalized value. 591 

Following the approach in 7, we assessed quantitative compression in our proteomics data by 592 
examining changes in peptides overlapping non-synonymous variants. A non-synonymous 593 

variant in a peptide prevents detection of that peptide, as its sequence will not exist in the 594 
proteome reference. Thus, in samples heterozygous for the non-synonymous variants, the 595 
measured peptide abundance is expected to be half of that of samples homozygous for the 596 

reference variant. Our data are consistent with this expectation, indicating that compression 597 
effects are minimal in our study (Supp Fig. 12). 598 

Comparisons of iPS proteome profiles to existing tissue datasets 599 

In order to compare our iPSC proteome dataset to the Human Proteome Map (HPM) 15 (Fig. 600 
1D), we first mapped the RefSeq IDs of proteins quantified in the HPM to UniProt IDs. We 601 

then considered the subset of 8,333 proteins with mappable IDs that were expressed in our 602 

iPSC dataset and in at least one HPM tissue. We then calculated spearman correlation 603 
coefficients between the aggregate iPS proteome abundance profile (averaged across lines) 604 

and each HPM tissue. 605 
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RNA-protein correlations 606 

For global correlations of RNA and protein abundance across all genes (Fig 1C), the mean 607 
abundance of each RNA and protein (using TPM and iBAQ scales, respectively) was 608 

calculated across all samples, and then the Spearman correlation across all RNA-protein 609 

pairs. For correlations of RNA and protein abundance across samples for each gene (Fig 2B), 610 
Pearson’s correlations were calculated on the subset of samples for which both RNA and 611 

protein data were available (i.e. there no imputation or substitution of zeros for missing values 612 

in the protein data). In both cases, multi-mapping IDs between RNAs and proteins were 613 
resolved by choosing one mapping at random, dropping multi-mapping IDs from the set of 614 

protein IDs first, then from the set of gene IDs. 615 

RNA and protein variance component analysis 616 

In order to calculate the contribution of each factor k to variation in protein abundance, we 617 

fitted a random effects model: 𝑦 = 𝜇 + 𝛴6𝜇6 + 𝜖; 𝜇6 ∼ 𝑁(0, 𝜎6> ⋅ 𝑀6); 𝜖	 ∼ 	𝑁(0, 𝜎𝑟2 ⋅ 𝐼); MD[i, j] =618 

	{1	if		fD[i] = fD[j]; 	0	if		fD[i] ≠ fD[j]). Here y denotes the (N x 1) vector of log-scaled protein 619 

abundances (or, for a coexpression cluster, the log-scaled median abundance of proteins in 620 

the cluster), 𝜇6 are the random effects, 𝑀6 is the (N x N) covariance structure, 𝜎6 is the 621 

standard deviation, and 𝜖 is the residual (i.i.d. noise). The random effect components are 622 

defined based on a categorical covariance function defined on covariates 𝑓6, that is the vector 623 

of observed values for factor k (e.g. 𝑓6[𝑖] ∈ {′𝑚𝑎𝑙𝑒′, ′𝑓𝑒𝑚𝑎𝑙𝑒′} when k is the donor sex 624 

component). We considered donor identity, donor sex, donor age, culture medium, TMT batch, 625 
and TMT channel as random effect components. In order to accurately estimate donor 626 

variance component, we restricted this analysis to the set of lines from the subset of 51 donors 627 
for which 2 cell lines were assayed. Analogous analyses were considered for RNA abundance, 628 

leaving out the TMT-specific random effects. 629 

In order to account for the effects of RNA abundance on protein abundance, we also applied 630 

the variance decomposition analysis to protein abundance values after adjusting for RNA 631 

variation. Adjusted protein abundances were calculated by regressing out the effects of RNA 632 
abundance (i.e. gene-level quantifications of RNA) on protein abundance for each RNA-633 

protein pair. To do this, we fitted a linear model between RNA and protein abundances across 634 

lines (using the Numpy function poly1d in Python), taking the model residuals as the adjusted 635 
protein abundance values. Variance decomposition models were then fitted as described 636 

above. 637 
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All variance component models were fitted using the LIMIX package44 638 
(https://github.com/limix/limix). 639 

Protein co-expression and GO enrichment analysis 640 

Proteins were clustered into groups based on their patterns of coexpression. Coexpression 641 
was quantified by the Spearman correlation (r) between pairs of proteins. Clustering was 642 

performed using the affinity propagation algorithm 45, as implemented in the scikit-learn python 643 

library, with the preference parameter (determining the number of clusters identified) set to -644 
5.0 for protein, and the damping parameter set to 0.8. Median expression of each cluster in 645 

each line was calculated by mean-normalising each protein (i.e. setting mean abundance 646 

across all samples for each protein to 1), and taking the median across all proteins in each 647 
cluster in each sample. GO enrichments for each cluster were computed using the goatools 648 

package (https://github.com/tanghaibao/goatools), and are provided in Supp. Table 5. 649 

QTL mapping of RNA and protein traits 650 

cis QTL mapping 651 

We used PEER 20 to account for unwanted variation and confounding factors both for RNA 652 

and protein traits. PEER was applied to log normalized protein abundance and log normalized 653 
gene TPM, considering the most highly expressed 10,000 proteins and genes, respectively. 654 
We selected 7 factors for protein and 13 factors for RNA, settings that were determined as the 655 
largest number of uncorrelated PEER factors identified (r<0.7; Supp. Fig. 10).  656 

At protein level (protein and peptide traits), we considered the subset of lines with non-zero 657 

abundance for analysis. For RNA (gene and transcript isoform traits) all analyses are based 658 

on data from all 202 lines. 659 

For cis genetic analyses, we considered common variants (MAF>5%) in gene-proximal 660 

regions of 250k upstream and downstream of gene transcription start and end sites  661 
(GRCh37). We used a linear mixed model implemented in LIMIX 44, to control for both 662 

population structure and repeat lines from the same donor using kinship as a random effect 663 

component. The population structure random effect component was estimated as the realized 664 
relationship covariance, i.e. dot product of the genotype matrices. PEER factors were included 665 

as fixed effect covariates in all analyses. 666 

We used an approximate permutation scheme as in Fast QTL 46, based on a parametric fit to 667 

the null distribution, to adjust for multiple testing across cis variants for each gene. Briefly, for 668 
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each gene, we obtained p-values from 100 permutations of cis variants. We then estimated 669 
an empirical null distribution by fitting a parametric Beta distribution to the obtained p-values. 670 

Using this null model, we estimated cis region adjusted p-values for QTL lead variants. For 671 

multiple testing adjustment across genes, we performed Benjamini-Hochberg adjustment. 672 
This procedure was applied to perform cis eQTL mapping. 673 

For protein, peptide and transcript QTLs, herein features, we reported results at gene level 674 
and accounted for multiple testing across features mapping to the same gene. Subsequent to 675 

the permutation-based adjustment for individual features per gene, we applied a Bonferroni 676 

correction to the cis region adjusted p-values. We then identify the lead QTL variant and 677 
feature at the gene level, i.e. the combination of the most associated variant and trait (cis 678 

region and across features adjusted). The Benjamini-Hochberg procedure was applied on the 679 
gene level lead QTLs for adjustment across genes. 680 

trans QTL mapping 681 

Trans QTLs mapping was applied in a targeted manner, considering lead cis QTLs (712 682 

pQTLs and 2,744 eQTLs not replicated at pQTL level; FDR <10%), testing each of the 11,542 683 
recurrently expressed proteins. Genome-wide Benjamini Hochberg adjustment was 684 

performed across all tests (8⋅106 variants × proteins for cis pQTLs). 685 

 686 

Downstream analysis of QTL results 687 

QTL replication 688 

We defined a lead QTL variant as ‘replicating’ across molecular layers if it had, for the same 689 

gene, a statistically significant effect and the same direction of effect on both layers. For the 690 
replicating layer, the statistical significance is defined using the nominal p-value (P<0.01), or 691 
the Bonferroni corrected value (P<0.01/N, where N is the number of features) if multiple 692 

features map to the same gene. 693 

cis eQTL and pQTL replication 694 

We trained a multivariate logistic regression model to the replication status of 1,887 genes 695 
with an eQTL for which the protein and the RNA were identified in all lines (Supp. Table 13). 696 

This stringent filter on the set of genes was used to mitigate effects due to differences in 697 

samples size (pQTLs  tests were performed on the set of in which the protein was detected). 698 
For each RNA-protein pair, we defined 7 factors. The “protein coefficient of error” factor was 699 

computed as the coefficient of variation across the set of technical replicates (i.e. across the 700 
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replicate measurements of the reference sample that was included in every TMT batch). The 701 
“protein complex membership” factor was assessed using existing annotation (CORUM 702 

release May 2017; 47), which was set to one if the gene encodes for the subunit of a protein 703 

complex and zero otherwise. The “only-nc-tQTLs” factor was obtained by assessing the 704 
replication of eQTLs for protein coding genes in transcript isoform QTLs (tQTLs), which was 705 

set to one if the eQTL was replicated in tQTL corresponding to a non-protein coding transcript 706 

isoform coding tQTL (but not in one corresponding to a protein coding isoform). When this 707 
assessment was not possible, or when the eQTL was replicated in at least one coding tQTL, 708 

we set the factor to 0. 709 

 710 
We enabled comparison across factors by binarizing the values for eQTL effect size, average 711 

protein abundance, protein coefficient of variation across lines, the number of peptide 712 

identified for each protein, and protein coefficient of error. The factor was considered to be 713 
present for values higher than the mean across all genes and zero otherwise. 714 

Annotation of cis-trans protein pairs with protein-protein interactions.  715 

Protein-protein interactions were obtained from the union of CORUM 47, IntAct 48 and protein-716 
binding interactions from StringDB 49. In CORUM, we considered pairwise interactions 717 
between all protein complex subunits. When assessing the consistency of cis-trans pQTL 718 

paris, we discarded any isoform extension from the protein UniProt IDs and intersected the 719 
gene pair with the aggregate protein-protein interactions reference list. 720 

Overlap with disease variants. 721 

Following the approach in 1, we defined proxy variants of each cis QTL as variants in high LD 722 
(r2 > 0.8; based on the UK10K European reference panel50) within the same cis window. A 723 

QTL was defined as GWAS-tagging if at least one such proxy variant was annotated in the 724 

NHGRI-EBI Gwas catalog (download on 10 April 2018; converted to hg19). We considered a 725 
stringent subset of 21,601 associations for analysis (out of 65,761 total associations), that 726 

were i) genome-wide significant (P<5⋅10-8) and ii) reported in studies with a sample sizes of 727 

at least 1,000, individuals, and iii) for which the effect size (odds ratio) was reported in the 728 
catalogue.    729 

To assess the enrichment of different QTL types for GWAS variants, we compared the fraction 730 
of GWAS-tagging QTL variants to sets of random matched control variants that were drawn 731 

from the European 1000G phase 3 50, matched for minor allele frequency, the number of 732 

variants in LD (‘LD buddies’; r2 > 0.5), distance to the nearest gene, and gene density, allowing 733 
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for maximum deviation of +/- 50% for each criterion. For each QTL type, we generated 100 734 
sets of control variants using SNPsnap51, based on the respective QTL variants as the input. 735 

Data availability 736 

RNA-Seq data for 331 samples are available on the European Nucleotide Archive (ENA): 737 

study PRJEB7388; accession ERP007111.  Proteomics quantifications (protein group and 738 

peptide resolution; MaxQuant output), and run parameters will be available on the PRIDE 739 
Archive (PXD010557). 740 

 741 

 742 

 743 
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