| 1  | Mcidas mutant mice reveal a two-step process for the specification and                                                                              |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | differentiation of multiciliated cells in mammals                                                                                                   |
| 3  |                                                                                                                                                     |
| 4  | Hao Lu <sup>1</sup> , Priyanka Anujan <sup>1,2</sup> , Feng Zhou <sup>1,5</sup> , Yiliu Zhang <sup>1</sup> , Yan Ling Chong <sup>1</sup> , Colin D. |
| 5  | Bingle <sup>2</sup> and Sudipto Roy <sup>1,3,4,*</sup>                                                                                              |
| 6  |                                                                                                                                                     |
| 7  | <sup>1</sup> Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore 138673,                                                 |
| 8  | Singapore                                                                                                                                           |
| 9  | <sup>2</sup> Academic Unit of Respiratory Medicine, Department of Infection, Immunity and                                                           |
| 10 | Cardiovascular Disease, University of Sheffield, Sheffield S10 2JF, UK                                                                              |
| 11 | <sup>3</sup> Department of Pediatrics, Yong Loo Lin School of Medicine, National University of                                                      |
| 12 | Singapore, 1E Kent Ridge Road, Singapore 119288                                                                                                     |
| 13 | <sup>4</sup> Department of Biological Sciences, National University of Singapore, 14 Science Drive                                                  |
| 14 | 4, Singapore 117543, Singapore                                                                                                                      |
| 15 | <sup>5</sup> Present address: Global Academic Ventures, Suite 3, 531 Upper Cross Street, #03-11,                                                    |
| 16 | Singapore 050531                                                                                                                                    |
| 17 | *Author for correspondence: <a href="mailto:sudipto@imcb.a-star.edu.sg">sudipto@imcb.a-star.edu.sg</a>                                              |

2

# 18 ABSTRACT

| 19 | Motile cilia on multiciliated cells (MCCs) function in fluid clearance over epithelia.    |
|----|-------------------------------------------------------------------------------------------|
| 20 | Studies with Xenopus embryos and patients with the congenital respiratory disorder        |
| 21 | reduced generation of multiple motile cilia, have implicated the nuclear protein          |
| 22 | MCIDAS (MCI), in the transcriptional regulation of MCC specification and                  |
| 23 | differentiation. Recently, a paralogous protein, GMNC, was also shown to be               |
| 24 | required for MCC formation. Surprisingly, and in contrast to the presently held view,     |
| 25 | we find that <i>Mci</i> mutant mice can specify MCC precursors. However, these            |
| 26 | precursors cannot produce multiple basal bodies, and mature into single ciliated          |
| 27 | cells. We show that MCI is required specifically to induce deuterosome pathway            |
| 28 | components for the production of multiple basal bodies. Moreover, GMNC and MCI            |
| 29 | associate differentially with the cell-cycle regulators E2F4 and E2F5, which enables      |
| 30 | them to activate distinct sets of target genes (ciliary transcription factor genes versus |
| 31 | genes for basal body generation). Our data establish a previously unrecognized two-       |
| 32 | step model for MCC development: GMNC functions in the initial step for MCC                |
| 33 | precursor specification. GMNC induces <i>Mci</i> expression, which then drives the        |
| 34 | second step of basal body production for multiciliation.                                  |

# 36 **RUNNING TITLE:** MCIDAS function in mouse MCCs

- 37 KEY WORDS: cilia, multiciliated cell, GMNC, MCIDAS, E2F, deuterosome
- 38 **SUMMARY STATEMENT:** We show how two GEMININ family proteins function in
- 39 mammalian multiciliated cell development: GMNC regulates precursor specification
- 40 and MCIDAS induces multiple basal body formation for multiciliation.

## 42 INTRODUCTION

| 43 | Health of our airways is critically dependent on mucociliary clearance, a process by     |
|----|------------------------------------------------------------------------------------------|
| 44 | which pathogen- and pollutant-laden mucus is cleared out by the beating of hundreds      |
| 45 | of motile cilia that decorate the surfaces of MCCs (Bustamante-Marin and Ostrowski,      |
| 46 | 2017). Ineffective mucus clearance predisposes individuals to respiratory diseases, best |
| 47 | exemplified by congenital disorders like primary ciliary dyskinesia (PCD) and reduced    |
| 48 | generation of multiple motile cilia (RGMC) (Knowles et al., 2016). In PCD, MCCs form     |
| 49 | normally, but their cilia are immotile or have defective motility due to mutations in    |
| 50 | proteins of the motility apparatus. By contrast, in RGMC, differentiation of multiple    |
| 51 | cilia or the MCCs themselves is affected. MCCs are also present within brain ventricles, |
| 52 | where they drive circulation of cerebrospinal fluid as well as within reproductive       |
| 53 | organs, where they promote mixing of reproductive fluids and germ cell transportation    |
| 54 | (Zhou and Roy, 2015, Brooks and Wallingford, 2014).                                      |
| 55 | Post-mitotic MCC precursors support an explosive production of numerous                  |
| 56 | basal bodies that migrate to the apical surface and nucleate the biogenesis of multiple  |
| 57 | motile cilia. One key aspect of MCC development is the transcriptional program           |
| 58 | required to institute its fate and its unique differentiation program, which has just    |
| 59 | begun to be elucidated (Spassky and Meunier, 2017). Studies with Xenopus embryos,        |

.....

- 60 which differentiate epidermal MCCs for mucus clearance, have implicated a small
- 61 coiled-coil Geminin family protein, Mcidas (Mci; aka Multicilin), as a key regulator of

| 62 | MCC fate (Stubbs et al., 2012). Morpholino-mediated inhibition of Mci function in the             |
|----|---------------------------------------------------------------------------------------------------|
| 63 | frog resulted in a complete loss of the MCCs, indicating an essential role of the protein         |
| 64 | for their specification and differentiation. This phenotype is largely conserved in RGMC          |
| 65 | patients carrying mutations in MCIDAS, encoding human MCI, with their airways                     |
| 66 | populated by cells differentiating only one or two immotile cilia (Boon et al., 2014).            |
| 67 | Current evidence suggests that on the one hand MCI regulates transcription of genes               |
| 68 | encoding transcription factors (such as FOXJ1) that activate genes for ciliary                    |
| 69 | differentiation and motility, and on the other genes for the production of multiple basal         |
| 70 | bodies (such as <i>Ccno, Deup1, Cep152</i> and <i>Ccdc78</i> ) (Ma et al., 2014). MCI lacks a DNA |
| 71 | binding domain, and is thought to regulate transcription by associating with the cell-            |
| 72 | cycle regulators E2F4 or E2F5, and their obligatory dimerization partner DP1 (Ma et al.,          |
| 73 | 2014).                                                                                            |
| 74 | Recently, another MCI-related protein, GMNC (aka GEMC1), has been identified                      |
| 75 | as an essential regulator of MCC development (Zhou et al., 2015, Terré et al., 2016, Arbi         |
| 76 | et al., 2016). Zebrafish and mice with mutations in <i>Gmnc</i> completely lack MCCs.             |
| 77 | Although there is disagreement on whether GMNC functions with the E2F proteins                    |
| 78 | (Zhou et al., 2015, Terré et al., 2016), nevertheless, like MCI, it can fully activate the        |
| 79 | transcriptional program for MCC specification and differentiation. Both Mci and Gmnc              |
| 80 | are expressed quite specifically in developing MCCs: GMNC acts upstream of MCI and                |
| 01 | it is norminal for Mai summassion in MCC and arrange subgroups MCL is an able to induce           |

81 it is required for *Mci* expression in MCC precursors, whereas MCI is unable to induce

| 82  | <i>Gmnc</i> (Arbi et al., 2016, Terré et al., 2016, Zhou et al., 2015). What remains presently |
|-----|------------------------------------------------------------------------------------------------|
| 83  | unclear is how two related proteins, with purported similar transcriptional activities,        |
| 84  | can have near identical effects on the MCC developmental program. Given this                   |
| 85  | quandary, we re-investigated <i>Mci</i> function, this time by stably inactivating the gene in |
| 86  | mice. We now show that in contrast to the presently held belief that MCI regulates MCC         |
| 87  | specification as well as differentiation, Mci mutant mice can specify MCC precursors in        |
| 88  | normal numbers, which express a suite of genes for the transcriptional regulation of           |
| 89  | ciliary differentiation. However, these cells are unable to activate genes for basal body      |
| 90  | production, and consequently, differentiate single motile-like cilia. Moreover, we show        |
| 91  | that while MCI interacts with E2F4 and E2F5, GMNC forms a complex preferentially               |
| 92  | with E2F5, with distinct C-terminal domains of the two proteins determining this               |
| 93  | differential interaction. We argue that MCC precursor specification and induction of           |
| 94  | transcription factors for ciliary gene expression is regulated by GMNC. In the next step,      |
| 95  | MCI amplifies the expression of ciliary transcription factors and triggers the expression      |
| 96  | of genes required for biogenesis of multiple basal bodies. These basal bodies then seed        |
| 97  | the assembly of multiple cilia to complete the process of MCC differentiation. Thus, our       |
| 98  | study provides mechanistic insight into how the regulatory activities of two paralogous        |
| 99  | proteins coordinately organize the transcriptional program of a specialized ciliated cell-     |
| 100 | type.                                                                                          |

7

#### 102 **RESULTS**

#### 103 Mci mutant mice cannot differentiate MCCs with multiple cilia

104 We used the CRISPR/Cas9 technology to generate a mutant allele of mouse Mci. This 105 allele, a deletion of 32 bp in exon 2 of the Mci gene, is predicted to encode a severely C-106 terminally truncated MCI protein, lacking all of the important functional domains 107 (coiled-coil domain in the middle of the protein and the TIRT domain for E2F/DP1 interaction at the C-terminus (Ma et al., 2014)), implying a strong loss-of-function 108 condition (see methods and Fig. S1A-D). Heterozygous mice exhibited no phenotypic 109 110 abnormalities, and when intercrossed, homozygous wild-type, heterozygous as well as homozygous mutants were recovered in the correct Mendelian ratio. However, the 111 112 homozygous mutants were runted compared to their wild-type and heterozygous siblings, and showed progressive post-natal lethality (Fig. S2A-C). Since Gmnc mutant 113 mice also exhibit similar phenotypes, and their lethality was attributed to the 114 115 development of hydrocephalus (Terré et al., 2016), we examined the Mci mutants for 116 this defect. Indeed, histological analysis of the brains of two mutant animals (n = 2)showed hydrocephalus, suggestive of dysfunctional ependymal MCCs (data not shown, 117 118 but see Fig. S2D,E). Moreover, all homozygous mutants tested (males and females) failed to breed, when in-crossed as well as when out-crossed, indicating MCC defects in 119 120 the reproductive organs. To adduce evidence that the production of the wild-type MCI

| 121 | protein is indeed disrupted in the homozygotes, we cloned the mutant Mci cDNA from              |
|-----|-------------------------------------------------------------------------------------------------|
| 122 | tracheal tissue and confirmed the presence of the 32 bp deletion (Fig. S1E). Moreover,          |
| 123 | quantitation of <i>Mci</i> transcript levels from cultures of airway cells from the homozygotes |
| 124 | revealed severe reduction relative to wild-type (see Fig. 4 below).                             |
| 125 | We next investigated the status of MCCs in tissues where they are normally                      |
| 126 | known to differentiate – trachea, oviducts and brain ependyma (Brooks and                       |
| 127 | Wallingford, 2014, Spassky and Meunier, 2017, Zhou and Roy, 2015). In the wild-type,            |
| 128 | abundant MCCs with multiple motile cilia were visible decorating the luminal surface            |
| 129 | of these tissues, interspersed with other cell-types (Fig. 1A,B and data not shown). By         |
| 130 | contrast, in the mutants we found a complete loss of the multiple ciliated cells (Fig.          |
| 131 | 1C,D and data not shown). Instead, we could observe cells with a single cilium. The             |
| 132 | length and width of these monocilia were similar to the multiple cilia of MCCs, but             |
| 133 | distinctly different from the shorter, thinner primary cilia present on neighboring cells       |
| 134 | (Fig. 1C). Even though the Mci mutants develop hydrocephalus and are infertile,                 |
| 135 | because these mice are maintained under specific-pathogen-free (SPF) conditions, we             |
| 136 | did not detect any obvious symptoms of airway disease either at the behavioral level or         |
| 137 | through histological analysis of respiratory tissues (data not shown).                          |

9

# In *Mci* mutants, MCC precursors are specified but fail to generate multiple basal bodies

| 141 | To begin to uncover the developmental defect underlying MCC absence in Mci mutants,                  |
|-----|------------------------------------------------------------------------------------------------------|
| 142 | we first analyzed the expression of FOXJ1, a protein that is required to activate the                |
| 143 | motile cilia-specific transcriptional program (Yu et al., 2008, Stubbs et al., 2008, Choksi          |
| 144 | et al., 2014a). Previous studies with Xenopus embryos and human airway cells have                    |
| 145 | shown that <i>Foxj1</i> is a transcriptional target of MCI (Boon et al., 2014, Stubbs et al., 2012). |
| 146 | Strikingly, and contrary to these earlier findings, FOXJ1 expression was not affected in             |
| 147 | MCC harboring tissues of Mci mutant mice. While FOXJ1 was present in the nucleus of                  |
| 148 | wild-type MCCs, in the mutants, we found nuclear-localized FOXJ1 in cells bearing                    |
| 149 | single long cilium (Fig. 1E,F and Fig. S2D,E). Based on this observation, we reasoned                |
| 150 | that the absence of MCI function perhaps does not compromise the specification of                    |
| 151 | MCC precursors, but instead is required in these cells to differentiate multiple cilia. To           |
| 152 | bolster this view, we analyzed the expression of a suite of additional transcription                 |
| 153 | factors, which, like FOXJ1, have been implicated in motile ciliogenesis: RFX2, RFX3 and              |
| 154 | TAP73 (Choksi et al., 2014b, Jackson and Attardi, 2016). Again, like FOXJ1, expression               |
| 155 | of these transcription factors was not appreciably affected (Fig. 2A-F). These findings              |
| 156 | suggest that in the absence of MCI function, MCC precursors get specified normally,                  |
| 157 | but they then differentiate a single cilium instead of multiple cilia. To garner evidence            |
| 158 | that this single cilium possesses attributes of motile cilia, we stained tracheal sections           |

| 159 | with antibodies against RSPH1 and RSPH9, two radial spoke-head proteins that are                    |
|-----|-----------------------------------------------------------------------------------------------------|
| 160 | unique structural components of motile cilia (Frommer et al., 2015). The single cilium of           |
| 161 | Mci mutants showed localization of both these proteins along the axoneme (Fig. 2G-J                 |
| 162 | and Fig. S3A-D). We also examined the status of the MCCs in the trachea using                       |
| 163 | scanning electron microscopy (SEM). Unlike in the wild-type, where hundreds of motile               |
| 164 | cilia were present at the apical surface of the MCCs, Mci mutant trachea showed cells               |
| 165 | with a single cilium whose dimensions were similar to the individual motile cilium of               |
| 166 | the wild-type MCCs (Fig. 2K,L).                                                                     |
| 167 | Since MCC differentiation is contingent upon the generation of multiple basal                       |
| 168 | bodies, we next investigated the status of these organelles. Staining with anti-                    |
| 169 | PERICENTRIN antibodies revealed multiple basal bodies in wild-type MCCs, neatly                     |
| 170 | arrayed along their apical membranes (Fig. 3A). By contrast, in <i>Mci</i> mutants, we could        |
| 171 | observe a single basal body associated with the single cilium (Fig. 3B). We obtained                |
| 172 | similar data with antibodies to $\gamma$ -tubulin, which also labels ciliary basal bodies (data not |
| 173 | shown; but see next section). Thus, the program for multiple basal body generation is               |
| 174 | significantly derailed in <i>Mci</i> mutants. We used transmission electron microscopy (TEM)        |
| 175 | to analyze the basal body phenotype in greater subcellular detail. While cilia-bearing              |
|     |                                                                                                     |
| 176 | multiple basal bodies were readily visible in wild-type MCCs, in the mutants, they were             |
| 177 | absent from several sections that we examined (Fig. 3C,D).                                          |

178

#### In vitro culture of Mci mutant airway cells revealed a strong impairment in 179

expression of basal body generation genes 180

| 181 | To uncover the earliest developmental defects in <i>Mci</i> mutant MCCs, we resorted to |
|-----|-----------------------------------------------------------------------------------------|
|     |                                                                                         |

- 182 culture of mouse tracheal epithelial cells (mTECs) in vitro, followed by differentiation
- 183 under air-liquid interface (ALI) condition. Consistent with our observations from
- tracheal sections, mTECs from Mci mutant mice differentiated single cilium bearing 184
- cells, unlike the wild-type where MCCs readily formed (Fig. 3E,F). Moreover, 185
- 186 expression of FOXJ1 was not affected in Mci mutant cultures (Fig. 3G,H), implying that
- like *in vivo*, loss of MCI does not compromise the ability to adopt the MCC precursor 187
- identity (RSPH proteins also localized to the single cilium of ALI cultured cells (data not 188
- shown)). Moreover, γ-tubulin staining revealed absence of multiple basal bodies, 189
- whereas wild-type MCCs showed clouds of basal bodies at their apical surface (Fig. 3I-190
- 191 L). We obtained a similar result with antibodies against the CENTRIN protein that also
- marks the basal bodies (Fig. S3E-H). Thus, in vivo as well as in vitro, loss of MCI 192
- specifically compromises the ability of MCC precursors to generate multiple basal 193

194 bodies.

We next used RT-qPCR analysis to interrogate the transcriptional profile of the 195 Mci mutant cells. While Mci transcripts were strongly reduced, expression of genes 196

| 197 | encoding upstream transcription regulatory factors such as GMNC, FOXJ1 and the RFX                      |
|-----|---------------------------------------------------------------------------------------------------------|
| 198 | family members RFX2 and RFX3, were not appreciably affected or were slightly                            |
| 199 | reduced relative to wild-type (Fig. 4A-E). This lack of a major reduction is consistent                 |
| 200 | with our observations using immunofluorescence analysis, described above. By                            |
| 201 | contrast, genes implicated in the production of multiple basal bodies – Deup1, Ccdc78,                  |
| 202 | <i>Ccno</i> and <i>Cdc20b</i> - were all strongly reduced, indicating that MCI is specifically required |
| 203 | to activate their transcription (Fig. 4F-I).                                                            |
| 204 |                                                                                                         |
| 205 | In <i>Mci</i> mutant MCC precursors, deuterosomes are severely reduced in numbers and                   |
| 206 | are dysfunctional                                                                                       |
| 207 | Current view posits two distinct pathways for multiple basal body generation in MCCs.                   |
| 208 | Some of the basal bodies are believed to be generated by the mother centriole-                          |
| 209 | dependent (MCD) pathway, through the activity of proteins like CEP63, CEP152, PLK4                      |
| 210 | and SAS6, which also function in centriole duplication during regular cell division (Al                 |
| 211 | Jord et al., 2014, Spassky and Meunier, 2017). In addition to this, a dedicated pathway                 |
| 212 | exists in the MCCs for basal body generation. The vast majority of basal bodies are                     |
| 213 | produced by this alternative mechanism – the deuterosome-dependent (DD) pathway –                       |
| 214 | in which DEUP1, CCNO, CCDC78 and CDC20B are believed to be dedicated                                    |
|     |                                                                                                         |

| 216 | Funk et al., 2015, Revinski et al., 2017). Here, electron dense structures called                      |
|-----|--------------------------------------------------------------------------------------------------------|
| 217 | deuterosomes are first generated by the oligomerization of the CEP63 paralog, DEUP1.                   |
| 218 | Although, whether the deuterosomes are nucleated by existing centrioles or arise <i>de</i>             |
| 219 | novo is presently a matter of debate (Al Jord et al., 2014, Zhao et al., 2018), what is clear          |
| 220 | is that after formation, they recruit CEP152 and other MCD pathway proteins (PLK4,                     |
| 221 | SAS6 etc) to generate multiple procentrioles. These procentrioles then mature into                     |
| 222 | centrioles, detach and migrate apically to dock with the plasma membrane and form                      |
| 223 | ciliary basal bodies.                                                                                  |
| 224 | We found that despite the strong reduction in <i>Deup1</i> mRNA levels in <i>Mci</i>                   |
| 224 | we found that despite the strong reduction in Deup1 mixivA levels in Mici                              |
| 225 | mutants, DEUP1-positive deuterosomes nevertheless formed, albeit in severely reduced                   |
| 226 | numbers (Fig. 5A-E). However, since we consistently failed to detect multiple centrioles               |
| 227 | in Mci mutant MCCs in vitro as well as in vivo, these must be defective deuterosomes                   |
| 228 | incapable of supporting centriole biogenesis. The complete absence of centriole                        |
| 229 | duplication in <i>Mci</i> mutants suggests that even the MCD pathway is defective. To                  |
| 230 | investigate this issue further, we examined expression of the MCD pathway gene <i>Cep63</i> ,          |
| 231 | as well as <i>Cep152</i> , <i>Plk4</i> and <i>Sas6</i> (which are shared by both DD and MCD pathways), |
| 232 | but failed to detect major differences in their expression levels (Fig. 5F-I).                         |
| 233 |                                                                                                        |
| 234 | GMNC and MCI have distinct effects on the MCC-specific transcriptional program                         |

| 235 | In <i>Gmnc</i> mutant mice, the expression of the entire MCC-specific transcriptional       |
|-----|---------------------------------------------------------------------------------------------|
| 236 | program is significantly dampened (Terré et al., 2016). This includes (i) genes for ciliary |
| 237 | transcription factors like FOXJ1 and MCI as well as (ii) genes for DD (but not MCD)         |
| 238 | pathway proteins. On the other hand, our current analysis shows that MCI loss               |
| 239 | preferentially affects the DD pathway genes. To examine this differential effect, we first  |
| 240 | over-expressed the human homologs of GMNC and MCI individually in HEK293T                   |
| 241 | cells, and monitored the expression of genes from the two sets mentioned above. Terré       |
| 242 | et al. have previously demonstrated that HEK293T cells can be used effectively to assess    |
| 243 | the transcriptional activities of GMNC and MCI (Terré et al., 2016). GMNC could             |
| 244 | induce MCI; however, over-expression of MCI could not induce GMNC (Fig. 6A,B),              |
| 245 | which is consistent with previous reports (Arbi et al., 2016, Terré et al., 2016).          |
| 246 | Interestingly, both GMNC and MCI were able to induce FOXJ1 (Fig. 6C). With respect          |
| 247 | to DD pathway genes, MCI alone or MCI together with GMNC strongly up regulated              |
| 248 | DEUP1, CCNO and CDC20B (Fig. 6D-F), although there was no obvious additive effect           |
| 249 | from the co-expression. Whereas, GMNC alone could only weakly induce these genes            |
| 250 | (Fig. 6D-F). These data support the idea that MCI preferentially affects the expression of  |
| 251 | DD pathway genes (also see below).                                                          |
| 252 | Since MCI, and also GMNC, have been reported to interact with E2F4 and E2F5                 |

for transcription, we next checked the transcriptional abilities of GMNC and MCI when co-expressed with E2F4 or E2F5. The ability of GMNC to induce *MCI* and *FOXJ1* was

| 255 | strongly increased with E2F5, but not with E2F4 (Fig. 6G,H). Likewise, a slight              |
|-----|----------------------------------------------------------------------------------------------|
| 256 | upregulation of DD pathway genes occurred when GMNC was over-expressed with                  |
| 257 | E2F5, but not with E2F4 (Fig. 6I-K). By contrast, MCI with E2F4 or E2F5 had stronger         |
| 258 | transcriptional effect on DEUP1, CCNO and CDC20B than MCI alone (Fig. 6I-K). With            |
| 259 | regard to FOXJ1, MCI with E2F4 as well as E2F5 could induce higher levels of                 |
| 260 | transcription than MCI alone, and MCI with E2F4 was more efficient than MCI with             |
| 261 | E2F5 (Fig. 6H). Thus, the transcriptional activity of GMNC appears to be much more           |
| 262 | effective with E2F5, whereas MCI regulates its target genes with either E2F4 or E2f5.        |
| 263 |                                                                                              |
|     |                                                                                              |
| 264 | Differential interaction of E2F4 and E2F5 with MCI and GMNC                                  |
| 265 | We previously showed that human GMNC is unable to interact effectively with E2F4             |
| 266 | (Zhou et al., 2015). However, Terré et al. demonstrated that GMNC can interact with          |
| 267 | E2F4 as well as E2F5 (Terré et al., 2016). Moreover, E2F5 has been previously shown to       |
| 268 | significantly potentiate the transcriptional activity of GMNC (Arbi et al., 2016). Since     |
| 269 | our current analysis shows that GMNC and MCI act in a step-wise manner and regulate          |
| 270 | distinct sets of targets, we reevaluated their interactions with the E2F factors. Consistent |
| 271 | with our earlier report, human as well as mouse GMNC interacted poorly, if at all, with      |
| 272 | human and mouse E2F4 and DP1, respectively (Fig. 7A,B). By contrast, we found robust         |
| 273 | interaction of human and mouse GMNC with human and mouse E2F5 and DP1,                       |

| 274 | respectively (Fig. 7A,B). On the other hand, as reported before (Ma et al., 2014), MCI |
|-----|----------------------------------------------------------------------------------------|
| 275 | proteins from both species interacted equally efficiently with E2F4 and E2F5 (Fig. 7A  |
| 276 | and Fig. S4A).                                                                         |

| 277 | The E2F/DP1 interaction domain in GMNC and MCI is located at the C-terminal               |
|-----|-------------------------------------------------------------------------------------------|
| 278 | end (approximately 40 amino acids – the TIRT domain) (Ma et al., 2014, Terré et al.,      |
| 279 | 2016). We replaced this domain in GMNC with the one from MCI (Fig. S4B), and then         |
| 280 | examined the interaction of the chimera (GM) with E2F4 and E2F5. Similar to MCI, but      |
| 281 | unlike wild-type GMNC, the GM chimera efficiently bound E2F4 as well as E2F5 (Fig.        |
| 282 | 7B). Despite this, GM over-expression alone or in combination with the E2F factors        |
| 283 | failed to elicit a transcriptional response in HEK293T cells, indicating that association |
| 284 | with E2F4 by itself is not sufficient to switch the transcriptional activity pattern of   |
| 285 | GMNC towards that of MCI (Fig. S4C,D).                                                    |
| 286 |                                                                                           |

287 MCI can substitute for GMNC, but GMNC cannot substitute for MCI in MCC
288 formation

Lastly, we investigated whether GMNC and MCI can substitute for each other in MCC
development. Since the function of GMNC in MCC formation is quite conserved
between zebrafish and mice (Arbi et al., 2016, Terré et al., 2016, Zhou et al., 2015), we
first over-expressed mouse MCI in *gmnc* mutant zebrafish embryos, which completely

| 293 | lack MCCs from all MCC bearing tissues, and found very efficient rescue of MCCs                              |
|-----|--------------------------------------------------------------------------------------------------------------|
| 294 | within the pronephric (kidney) ducts, where these cells promote urine flow (Fig. 8A-C).                      |
| 295 | For the converse experiment, we used lentivirus-mediated human GMNC over-                                    |
| 296 | expression in mTEC ALI cultures from <i>Mci</i> mutant and wild-type mice. While GMNC                        |
| 297 | produced ectopic MCCs in the wild-type, it failed to rescue MCC development in Mci                           |
| 298 | mutant cultures (Fig. 8D-G and Fig. S5A,B,D). Moreover, while GMNC over-expression                           |
| 299 | in Mci mutant cells could induce Mci, Foxj1 and Rfx3, DD pathway genes were not                              |
| 300 | upregulated at all (Fig. S6A,B,D-F and data not shown). This observation suggests that                       |
| 301 | the weak induction of DD pathway genes on over-expression of GMNC in HEK293T                                 |
| 302 | cells that we noted earlier (cf. Fig. 6D-F), must occur via GMNC-dependent induction of                      |
| 303 | MCI. By contrast, human MCI over-expression generated significant numbers of MCCs                            |
| 304 | in wild-type as well as <i>Mci</i> mutant cultures, denoting effective rescue, and also induced              |
| 305 | high levels of <i>Foxj1</i> and DD pathway genes (Fig. 8H,I and Figs. S5A,C,D and S6C-F).                    |
| 306 | Both the human GMNC and MCI genes were clearly over-expressed in these                                       |
| 307 | experiments (Fig. S5E,F), so the inability of GMNC to rescue is unlikely to be due to                        |
| 308 | inadequate over-expression. Moreover, <i>E2f4</i> , <i>E2f5</i> and <i>Dp1</i> levels were also not affected |
| 309 | in Mci mutant cells, and therefore, cannot also account for the lack of rescue of MCC                        |
| 310 | formation by GMNC (data not shown).                                                                          |

18

# 312 DISCUSSION

| 313 | Using Mci mutant mice, we have established two distinct steps in the developmental          |
|-----|---------------------------------------------------------------------------------------------|
| 314 | pathway for MCC formation that had remained previously unrecognized and are                 |
| 315 | genetically separable: first, GMNC acts to specify MCC precursors, whereas in the           |
| 316 | second step, MCI drives multiple basal body production and multiciliation. Thus, in the     |
| 317 | absence of GMNC function, the MCC-specific developmental program is blocked at the          |
| 318 | earliest step, and no MCC precursors are generated (Zhou et al., 2015, Terré et al., 2016,  |
| 319 | Arbi et al., 2016). By contrast, loss of MCI does not derail MCC precursor specification,   |
| 320 | but affects their subsequent differentiation into MCCs. Although we cannot rule out         |
| 321 | species-specific differences in MCI function, it is likely that the discrepancy between our |
| 322 | findings and the currently held notion of MCI activity (required for MCC specification      |
| 323 | and differentiation) stems from the different strategies used to interrogate MCI in mice    |
| 324 | and frogs (genetic mutant in mice versus morpholino knock-down in frogs) as well as         |
| 325 | methods used to examine MCC status on MCI loss in mice and humans (in vivo and in           |
| 326 | vitro analysis of MCCs from multiple mouse ciliated tissues versus RGMC patient             |
| 327 | MCCs obtained using nasal brush biopsy) (Stubbs et al., 2012, Boon et al., 2014).           |
| 328 | Analysis of various kinds of multiciliated epithelia from Mci mutant mice have              |
| 329 | revealed that in all instances, MCC precursors form and express several transcription       |
| 330 | factors necessary for ciliary differentiation and motility. Consistent with this, these     |

| 331 | precursors differentiate into cells with a single motile-like cilium. However, we could                      |
|-----|--------------------------------------------------------------------------------------------------------------|
| 332 | not detect multiple basal bodies with several makers of these organelles as well as TEM                      |
| 333 | analysis. Even though some deuterosomes do form, no mature basal bodies are                                  |
| 334 | ultimately generated. Indeed, expression of genes currently implicated in the DD                             |
| 335 | pathway – <i>Deup1, Ccdc78, Ccno</i> and <i>Cdc20b</i> - is significantly reduced in the <i>Mci</i> mutants. |
| 336 | Since some MCC basal bodies are thought to be produced via the MCD pathway (Al                               |
| 337 | Jord et al., 2014), our observation that there is consistently only one basal body in Mci                    |
| 338 | mutant MCCs suggests that this pathway is also strongly impaired. Yet, we did not                            |
| 339 | detect major changes in the levels of several important MCD pathway genes. Lack of                           |
| 340 | effect on the MCD pathway genes have also been reported previously for the <i>Gmnc</i>                       |
| 341 | mutant mice (Terré et al., 2016). Moreover, since MCC precursors devoid of both                              |
| 342 | mother and daughter centrioles can generate deuterosomes and multiple basal bodies                           |
| 343 | (Zhao et al., 2018), these data and our findings can be taken to indicate that the MCD                       |
| 344 | pathway may not function in MCCs at all, at least in the tracheal MCCs, which we have                        |
| 345 | investigated in sufficient detail, and all of the basal bodies in these cells could arise                    |
| 346 | exclusively via the DD pathway. Given all of the current ambiguity by which the                              |
| 347 | deuterosomes and basal bodies arise in the MCCs (Al Jord et al., 2014, Zhao et al., 2018),                   |
| 348 | the Mci mutant mice will be a valuable reagent for further investigations into the precise                   |
| 349 | mechanisms involved in these processes.                                                                      |

| 350 | Finally, we have provided biochemical evidence for the difference in the                          |
|-----|---------------------------------------------------------------------------------------------------|
| 351 | transcriptional activities of GMNC and MCI, which explains the distinct MCC                       |
| 352 | phenotypes observed when they are individually mutated. We found that GMNC                        |
| 353 | interacts much more efficiently with E2F5 than E2F4. In addition, replacement of the C-           |
| 354 | terminal portion of GMNC with that from MCI, conferred on the chimeric protein the                |
| 355 | ability to interact with E2F4. Furthermore, our data show that GMNC is more effective             |
| 356 | in inducing FOXJ1 and MCI, whereas MCI is more effective in inducing genes involved               |
| 357 | in basal body generation. When they are over-expressed with E2F4 or E2F5, GMNC is                 |
| 358 | able to induce its targets much more efficiently with E2F5, whereas MCI largely fares             |
| 359 | equally well with E2F4 and E2F5. These data suggest that GMNC, in association with                |
| 360 | E2F5, induces expression of <i>Mci</i> and <i>Foxj1</i> to generate MCC precursors, but does not  |
| 361 | activate genes for basal body production. MCI, being more promiscuous in its ability to           |
| 362 | interact with the E2F factors, then amplifies the expression of <i>Foxj1</i> (and genes for other |
| 363 | ciliary transcription factors) for the massive upregulation of the motile cilia                   |
| 364 | transcriptional program, but more importantly, induces genes for the production of                |
| 365 | multiple basal bodies. This molecular logic helps to clarify why GMNC cannot rescue               |
| 366 | MCC formation in <i>Mci</i> mutant ALI culture, but MCI is sufficient to restore MCC              |
| 367 | development in <i>gmnc</i> mutant zebrafish. Although the C-terminus is essential for             |
| 368 | conferring the differential interaction with E2F proteins, the N-terminal portion of              |
| 369 | GMNC appears to be equally important for its transcriptional ability. The chimeric GM             |

| 370 | protein not only failed to mimic the transcriptional activation profile of MCI, but also    |
|-----|---------------------------------------------------------------------------------------------|
| 371 | showed an overall impairment in transcriptional activating activity. This implies that      |
| 372 | either the N-terminal is important for interacting with other transcriptional cofactors     |
| 373 | (since the coiled coil domain resides in this region) or it makes an important              |
| 374 | contribution to the formation of a functional E2F/DP1 ternary complex. As a corollary of    |
| 375 | this observation, we propose that the N-terminus of MCI could also have a similar role      |
| 376 | in determining its transcriptional activity. Since the precise mechanism by which the       |
| 377 | MCI/GMNC-E2F-DP1 complex regulates transcription is not understood, and it is also          |
| 378 | not clear whether other co-factors are involved (especially in the regulation of the        |
| 379 | distinct sets of target genes), further biochemical experiments will be required to resolve |
| 380 | these questions.                                                                            |

381 In conclusion, our study of the Mci mutant mouse will be of direct relevance to the role of MCCs in ciliopathies, especially for the pathobiology of RGMC, a relatively 382 383 new but acute airway disease that remains rather poorly defined. In addition, the ability of GMNC and MCI to generate ectopic MCCs provides a powerful avenue to devise 384 385 strategies for restoration of functional ciliated epithelia by gene therapy. This holds promise not only for rare disorders like RGMC, but also in acquired and more prevalent 386 387 airway pathologies such as chronic obstructive pulmonary disorder (COPD), where impairment of ciliary function has also been implicated (Yaghi and Dolovich, 2016). 388

#### 390 MATERIALS AND METHODS

#### 391 Ethics approvals

392 All mouse and zebrafish experimentation was performed under approval from the

393 Singapore National Advisory Committee on Laboratory Animal Research and

394 conformed to the stipulated ethical guidelines.

395

#### 396 Generation of *Mci* knockout mice

Mci mutant mice were generated by CRISPR/Cas9 mediated deletion of a DNA 397 fragment within exon 2 of the Mci gene. Two guide RNAs (gRNAs) were designed to 398 399 target the exon 2, and were co-injected with Cas9 mRNA (25 ng/µl) into C57BL/6 onecell embryos at a concentration of 15 ng/µl each (see Table EV1 for sequences of gRNAs 400 401 and all primers used in this study). A total of 247 embryos were injected, out of which 402 130 were implanted into 9 pseudo-pregnant females. Founder animals were screened by PCR, and mutations were determined first by T7 endonuclease I assay, and then by 403 deep sequencing of PCR products (for selected founders). Out of 13 pups born alive, 9 404 were found to contain mutations at the *Mci* targeted region. Founders containing the 405 desired mutation were bred with the wild type C57BL/6J animals to produce F1 406 407 heterozygotes. The F1 mutants were identified by PCR and confirmed by sequencing.

#### 23

## 408 Zebrafish strains

The AB strain was used as the wild-type for all experiments. The *gmnc* mutant strain
has been described previously (Zhou et al., 2015).

411

#### 412 DNA constructs

- 413 Coding sequences for human and mouse DP1, E2F4, E2F5 were cloned into the pCS2
- 414 vector with 6x Myc-tags at the N-terminus. Coding sequences for human and mouse
- 415 GMNC and MCI were cloned into the pXJ40 vector with one HA tag at the N-terminus.
- 416 The human GM chimera was generated using overlapping extension PCR, and cloned
- 417 into pXJ40 vector with one HA tag at the N-terminus.

418

### 419 **Co-immunoprecipitation and immuno-blot**

420 Desired combinations of plasmids were co-transfected into HEK293T cells, in 10 cm

421 dishes (3 μg per plasmid, per dish) using Lipofectamine 2000 (Thermo Fisher Scientific).

422 After 24 hrs of incubation, transfected cells were lysed in 800 µl of RIPA buffer (Thermo

- 423 Fisher Scientific) supplemented with complete Mini protease inhibitors, EDTA-free
- 424 (Roche, #11836170001). The cell lysates were sonicated briefly and spun down. An
- 425 aliquot was taken from the clear cell lysate and boiled in 1X SDS loading buffer as input

| 426 | (TCL), and the rest was rotated over-night with 25 $\mu l$ of Protein A-agarose beads          |
|-----|------------------------------------------------------------------------------------------------|
| 427 | (Roche) and 2 $\mu g$ of mouse anti-HA antibody (monoclonal, Santa Cruz, SC7392). The          |
| 428 | beads were washed four times in the IP buffer and boiled in 50 $\mu l$ of 1X SDS loading       |
| 429 | buffer (IP:HA). Both TCL (15 $\mu l,$ 1 %) and IP (15 $\mu l,$ 30 %) were resolved by SDS-PAGE |
| 430 | gels, transferred to PVDF membranes, blocked in 2 % BSA, and probed with relevant              |
| 431 | primary antibodies (rabbit anti-HA (Santa Cruz, SC805); rabbit-anti-Myc (Santa Cruz,           |
| 432 | SC289) and secondary antibodies (anti-mouse HRP conjugate (Promega, #W4028), anti-             |
| 433 | rabbit HRP conjugate (Promega, #W4018)).                                                       |
| 434 |                                                                                                |
| 435 | Antibodies                                                                                     |

| 436 | Primary antibodies: mouse-anti-HA (Santa Cruz SC7392, 1:2500 for western blot, 1:500                       |
|-----|------------------------------------------------------------------------------------------------------------|
| 437 | for immunofluorescence (IF)); rabbit-anti-HA (Santa Cruz SC805, 1:2500 for western                         |
| 438 | blot, 1:500 for IF); mouse-anti-Myc (Santa Cruz SC40, 1:2500 for western blot); rabbit-                    |
| 439 | anti-Myc (Santa Cruz SC289, 1:2500 for western blot); mouse-anti-acetylated- $\alpha$ -tubulin             |
| 440 | (Sigma-Aldrich T 6793, 1:500 for IF); mouse-anti- $\alpha$ -tubulin (Sigma-Aldrich T6557, 1:500            |
| 441 | for IF); mouse-anti- $\gamma$ -tubulin (Sigma-Aldrich T6557, 1:500 for IF); rabbit-anti- $\gamma$ -tubulin |
| 442 | (Sigma-Aldrich T5192, 1:500 for IF); mouse-anti-γ-tubulin (Sigma-Aldrich T6557, 1:500                      |
| 443 | for IF); rabbit-anti-RFX2 (Sigma-Aldrich HPA048969, 1:250 for IF), rabbit-anti-RFX3                        |
| 444 | (Sigma-Aldrich HPA035689, 1:250 for IF); rabbit-anti-FOXJ1 (Sigma-Aldrich, HPA                             |

| 445 | 005714, 1:250 for IF); mouse anti-FOXJ1 (ebiosciences 14-9965-80, 1:100 for IF); rabbit-   |
|-----|--------------------------------------------------------------------------------------------|
| 446 | anti-TAP73 (Abcam ab40658, 1:250 for IF); rabbit-anti-RSPH1( Sigma-Aldrich                 |
| 447 | HPA017382, 1:250 for IF); rabbit-anti-RSPH9 (Sigma-Aldrich HPA031703, 1:250 for IF);       |
| 448 | rabbit-anti-PERICENTRIN (Abcam ab4448, 1:250 for IF); mouse anti-CENTRIN (EMD              |
| 449 | Millipore Corp 04-1624, 1:200 for IF) and rabbit-anti-DEUP1 (kind gift of X. Zhu,          |
| 450 | Shanghai Institute of Biochemistry and Cell Biology, 1:200 for IF). Secondary antibodies   |
| 451 | (all used at 1:500 for IF): Alexa 488 goat-anti mouse (Invitrogen A-11029); Alexa 488 goat |
| 452 | anti-rabbit (Invitrogen A-11034); Alexa 555 goat anti-rabbit (Invitrogen A-21428); Alexa   |
| 453 | 555 goat anti-mouse (Invitrogen A-28180).                                                  |
| 454 |                                                                                            |
| 455 | Cell and ALI culture                                                                       |

- 456 HEK293T and HEK293FT cells were cultured in DMEM with 4500 mg/l glucose and 10
- 457 % FBS (HyClone, SH30071.03HI). mTEC culture was performed according to published
- 458 protocol (Vladar and Brody, 2013). Briefly mTEC cells were grown on transwells with
- 459 transparent PET membrane (Life Science, 353095) in mTEC plus+RA medium
- 460 (DMEM/F12; Life Science, 11330-032), Fungizone (Life Technologies, 15290-018, 0.1 %
- 461 v/v), Insulin (Sigma-Aldrich, 11882, 10 mg/ml), Epidermal growth factor (BD
- 462 Biosciences, 354001, 25 ng/ml), Transferrin (Sigma T1147, 5 mg/ml), Cholera toxin
- 463 (Sigma-Aldrich C8052, 0.1 mg/ml), Fetal bovine Serum (Life Technologies 26140-079, 5%
- 464 v/v), ROCK inhibitor (ATCCY27632 ,10 μM), Retinoic acid (Sigma-Aldrich R2625, 50

| 465 | nM) and Penicillin-Streptomycin (Life Technologies 15140-148, 100 U Pen, 100 mg Strep |
|-----|---------------------------------------------------------------------------------------|
| 466 | per ml). When cells on the apical side of the transwell chambers reached 100 $\%$     |
| 467 | confluence, ALI was established by aspirating the culture medium from the transwell   |
| 468 | chambers, and addition of differentiation medium (mTEC Plus medium without fetal      |
| 469 | bovine serum and ROCK inhibitor) to the basal chamber on 24 well-plates. The mTEC     |
| 470 | cells were maintained on transwells by changing the differentiation medium in the     |
| 471 | basal chamber every 2 days.                                                           |
|     |                                                                                       |

472

### 473 Immunofluorescence

For IF analysis, mTEC cells grown on transwells were fixed in 4 % paraformaldehyde 474 (PFA) at room temperature (RT) for 10 minutes and permeabilised with PBTX (PBS, 0.5 475 476 % Triton X-100) for 2 hrs and washed in phosphate buffered saline (PBS). Cells were 477 then blocked with 2 % bovine serum albumin in PBS for 1 hr, followed by 1 hr with 478 primary antibody at RT. After 3 washes in PBS, cells were incubated with secondary 479 antibodies and DAPI for 1 hr. After briefly washing with PBS, the cells were mounted 480 on glass slides with fluorescence mounting medium and imaged using an Olympus 481 FluoView upright laser scanning confocal microscope. Cryosections of mouse tissues were prepared by the histopathology unit and the slides stored at -80°C. On the day of 482 staining, slides were thawed and dried before drawing borders around the sections 483 with a PAP pen (Abcam ab2601). The slides were then fixed with 4% PFA for 15 min at 484

| 485 | RT in Coplin jars (all subsequent steps performed in Coplin jars unless stated           |
|-----|------------------------------------------------------------------------------------------|
| 486 | otherwise). They were rinsed twice with cold PBS followed by permeabilisation with 0.2   |
| 487 | % Triton (in PBS) for 15min. They were washed 3 times, 5 min each in PBS and blocked     |
| 488 | with 2 % BSA in PBS for 2 hrs at RT. The slides were then transferred to a humidified    |
| 489 | box. Primary antibodies in PBS (with 0.1 % Tween20 and 1 % BSA) were pipetted onto       |
| 490 | the sections and incubated over-night at 4°C. The following day, slides were washed      |
| 491 | with PBS on a shaker, 6 times, 10 min each, at RT. Secondary antibodies in PBS (with 0.1 |
| 492 | % Tween20 and 1 % BSA) were then added, and the slides incubated in the humidified       |
| 493 | box for 5 hrs at RT. Finally, the slides were washed 6 times (10 min each) with PBS at   |
| 494 | RT, dried, and mount with Vectashield.                                                   |
| 495 |                                                                                          |

## 496 RT-qPCR

cDNA preparations were generated using the SuperScript III First-Strand Synthesis 497 System (Invitrogen 18080051). Gene-specific primers for qPCR were designed using the 498 499 Primer3 software (Primer3 (v.0.4.0)) and are listed in Table EV1. qPCRs were performed 500 with the EXPRESS SYBR GreenER Super Mix (Invitrogen A10315) on an Applied BioSystems 7900HT Fast Real-Time PCR System using the SDS2.4 software. Technical 501 502 triplicate reactions were performed for each sample. Using Microsoft Excel, gene expression fold differences were calculated from the Ct values after normalizing against 503 the internal control Gapdh/GAPDH. 504

28

| 505 |
|-----|
|-----|

#### 506 Microinjection of zebrafish eggs and processing for IF analysis

- mRNA encoding mouse MCI ( $300 \text{ ng/}\mu$ l, 0.75 nl per egg) was injected into one cell stage
- <sup>508</sup> eggs derived from in-cross of *gmnc* heterozygous fishes. At 48 hours post fertilization
- 509 (hpf), the injected embryos were fixed with Dent's fixative (80 % methanol, 20 % DMSO)
- 510 for 3 hrs at RT and then subjected to IF staining using routine protocol.
- 511

### 512 Lentivirus generation and infection

513 Gene expression lentiviruses were generated using ViraPower<sup>™</sup> Lentiviral Expression

514 Systems Version C (Invitrogen 25-0501). Briefly, coding sequences of different genes

515 were cloned into PLVX vector, followed by transfection into HEK293FT cells together

516 with the Lentiviral Packaging Mix (Invitrogen, K4975-00). Viruses were harvested by

517 collecting the cell culture medium 3 days after transfection. Viral titration was

518 performed by infecting 293FT cells with the control GFP lentivirus which was generated

519 together with gene-specific expression lentiviruses (*GMNC* and *MCI*), and then

520 determined by the percentage of GFP positive cells 3 days after infection. For confluent

521 mTEC cells viral infection, the cells were treated with 12 mM EGTA (Sigma-Aldrich,

522 E3889) in 10 mM HEPES (Sigma-Aldrich H3375-25G), pH 7.4 for 25 min at 37°C. After

523 washing the EGTA treated cells with PBS, a mix of specific amounts of lentivirus and

| 524 | Polybrene (Sigma-Aldrich, H9268, 5 $\mu$ g/ml final concentration) was added into the  |
|-----|----------------------------------------------------------------------------------------|
| 525 | culture medium. mTEC cells with the viruses were then centrifuged at 1,500g for 80 min |
| 526 | at 32°C, and grown at 37°C in a cell culture incubator.                                |

527

## 528 Electron microscopy of mouse trachea

529 For SEM analysis: Immediately after dissection, mouse tracheae were fixed by immersion in 4 % formaldehyde and 2 % glutaraldehyde (EM grade, Electron 530 Microscopy Sciences) in 0.1M Sodium cacodylate buffer (pH = 7.4) for 12 hrs. After 531 washing, samples were cut across the length into approximately 2 mm pieces, and 532 subsequently cut longitudinally to expose the interior surface. Trimmed samples were 533 post-fixed with 1 % Osmium tetroxide in distilled water for 2 hrs, washed with distilled 534 water and dehydrated in Ethanol series. Dehydrated samples were dried using critical 535 point drying (Leica EM CPD030), mounted onto aluminium stubs with trachea lumen 536 537 facing up and sputter coated with 4 nm layer of platinum (Leica EM SCD050). SEM analysis was performed using a JSM 6701F SEM (JEOL) microscope operating at 2.5kV. 538 Images were collected from random areas of the wild-type and mutant samples. For 539 540 TEM analysis: Dissected tracheae were fixed in 4 % paraformaldehyde, 2.5 % glutaraldehyde, and 0.2 % picric acid in 0.1 M Sodium cacodylate buffer. Samples were 541 washed in Sodium cacodylate buffer and post fixed with 1 % Osmium tetroxide. 542

| 543 | Samples were again washed in Sodium cacodylate buffer before dehydration through a     |
|-----|----------------------------------------------------------------------------------------|
| 544 | graded series of Ethanol. After dehydration, samples were infiltrated and embedded     |
| 545 | with Spurr resin (Electron Microscopy Sciences 14300) before polymerization at 60°C.   |
| 546 | Ultra-thin sections were obtained by cutting sample blocks on an ultramicrotome (Leica |
| 547 | ultracut UCT), stained with 4 % Uranyl acetate and 2 % Lead citrate before viewing the |
| 548 | sections with a TEM (Jeol 1010) microscope.                                            |
| 549 |                                                                                        |
| 550 | Statistical analysis                                                                   |

The statistical analysis, including standard error of the mean (SEM), standard deviation
(SD), and unpaired *t*-test, was performed using the software GraphPad Prism 7.04.

| $\mathbf{r}$ | 1 |
|--------------|---|
| -            |   |
| -            | - |

## 554 Acknowledgements

| 555 | We thank the Anim | al Gene Editing | Laboratory, | , Biological I | Resource Centre, | Agency for |
|-----|-------------------|-----------------|-------------|----------------|------------------|------------|
|-----|-------------------|-----------------|-------------|----------------|------------------|------------|

- 556 Science, Technology and Research for generating the *Mci* mutant mice, the Advanced
- 557 Molecular Pathology Laboratory for histological services, the Institute of Medical
- 558 Biology-Institute of Molecular and Cell Biology Joint Electron Microscopy Suite for
- electron microscopy analysis, V. Tergaonkar for assistance in obtaining appropriate
- clearance from the Institutional Animal Care and Use Committee (IACUC) for
- separate the *Mci* mutant mice, X. Zhu for DEUP1 antibodies and A. Guha and
- 562 members of our laboratory for discussion and comments on the manuscript.

563

#### 564 Competing interests

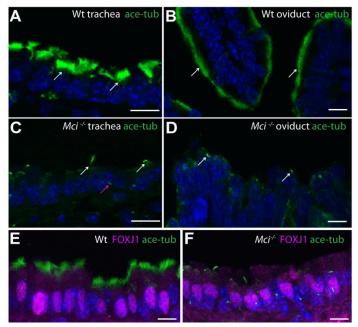
565 The authors declare no competing or financial interests.

566

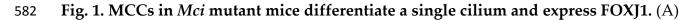
## 567 Author contributions

- 568 S.R. conceived the project. L.H. performed majority of the experiments including
- 569 analysis of mutants, ALI culture and transcriptional studies. P.A. established ALI
- 570 culture and gene expression analysis. F.Z. contributed to mutant analysis. Y.L.Z.
- 571 contributed data for protein interaction studies. Y.L.C. performed TEM analysis. S.R.

| 572 | and C.D.B. | supervised | he work. | All author | s critically | analyzed | the data. | L.H. and |
|-----|------------|------------|----------|------------|--------------|----------|-----------|----------|
|     |            |            |          |            |              |          |           |          |


573 Y.L.Z. assembled the figures. S.R. wrote the paper with input from all authors.

574


- 575 Funding
- 576 P.A. was supported by a University of Sheffield, UK-Agency for Science, Technology
- and Research (A\*STAR), Singapore doctoral studentship. This work was supported by
- 578 funds from the  $A^*STAR$  to S.R.

### 580 FIGURES AND LEGENDS

#### Fig. 1



581



Wild-type trachea section showing multiple cilia on MCCs (arrows). (B) Wild-type 583 584 oviduct section showing multiple cilia on MCCs (arrows). (C) Mci mutant trachea section showing cells with single cilium (white arrows). A primary cilium in a 585 neighboring cell is indicated (red arrow). (D) Mci mutant oviduct section showing cells 586 with single cilium (arrows). (E) Nuclear localized FOXJ1 expression in MCCs of wild-587 type trachea. (F) Nuclear localized FOXJ1 expression in monociliated cells of Mci 588 589 mutant trachea. In all preparations, cilia were stained with anti-acetylated tubulin antibodies (green) and nuclei with DAPI (blue). Wt, wild-type. Scale bars, 10 µm. For all 590 591 histological data presented in this and other figures, tissues from at least 2 wild-type and 3 *Mci* mutant mice were analyzed, unless otherwise mentioned. 592

593



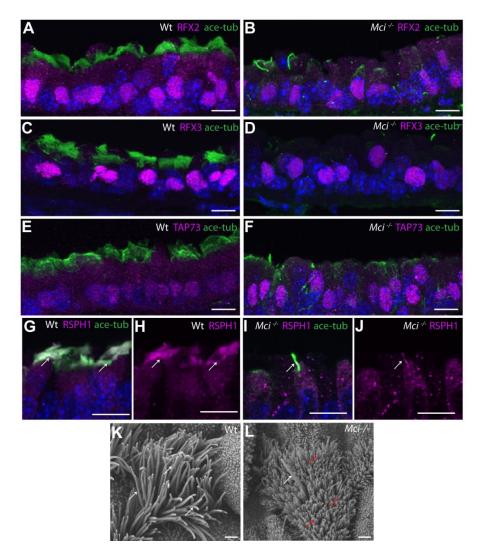
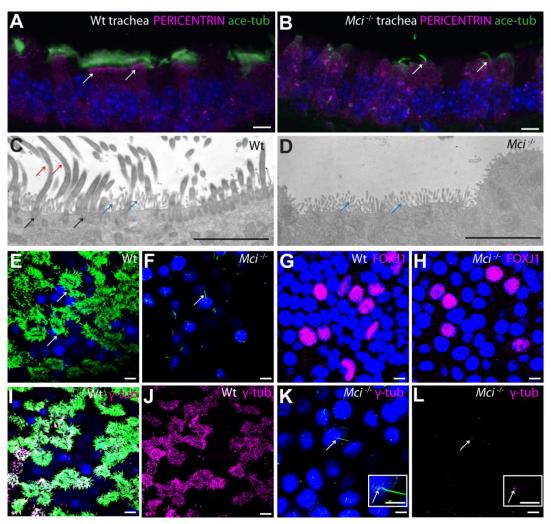




Fig. 2. *Mci* mutant MCCs precursors express a suite of ciliary transcription factors and
their single cilium localizes motile cilia-specific proteins. (A) Nuclear localized RFX2
expression in MCCs of wild-type trachea. (B) Nuclear localized RFX2 expression in
monociliated cells of *Mci* mutant trachea. (C) Nuclear localized RFX3 expression in
MCCs of wild-type trachea. (D) Nuclear localized RFX3 expression in monocilated cells

| 600 | of Mci mutant trachea. (E) Nuclear localized TAP73 expression in MCCs of wild-type               |
|-----|--------------------------------------------------------------------------------------------------|
| 601 | trachea. (F) Nuclear localized TAP73 expression in monociliated cells of Mci mutant              |
| 602 | trachea. (G) RSPH1 co-localization with acetylated tubulin to MCC cilia of wild-type             |
| 603 | trachea (arrows). (H) RSPH1 localization to MCC cilia of wild-type trachea (arrows;              |
| 604 | display of only RPSH1 staining from panel G). (I) RSPH1 co-localization with acetylated          |
| 605 | tubulin to single cilium of Mci mutant trachea (arrow). (J) RSPH1 localization to single         |
| 606 | cilium of <i>Mci</i> mutant trachea (arrow; display of only RSPH1 staining from panel I). (K)    |
| 607 | SEM analysis of a wild-type tracheal MCC showing multiple cilia (arrows). (L) SEM                |
| 608 | analysis of Mci mutant MCC with a single cilium (white arrow). The microvilli, which             |
| 609 | are quite long in the MCCs and normally remain obscured by the multiple cilia, are               |
| 610 | indicated (red arrows). One wild-type and one mutant trachea were scanned by SEM.                |
| 611 | The single cilium phenotype of the <i>Mci</i> mutant trachea is representative of several fields |
| 612 | of view scanned by SEM. In all preparations, cilia were stained with anti-acetylated             |
| 613 | tubulin antibodies (green) and nuclei with DAPI (blue). Scale bars, A-J = 10 $\mu$ m; K,L = 5    |
| 614 | μm.                                                                                              |






617 Fig. 3. *Mci* mutant MCC precursors are unable to generate multiple basal bodies. (A)

618 Wild-type trachea section showing apically aligned multiple basal bodies in MCCs

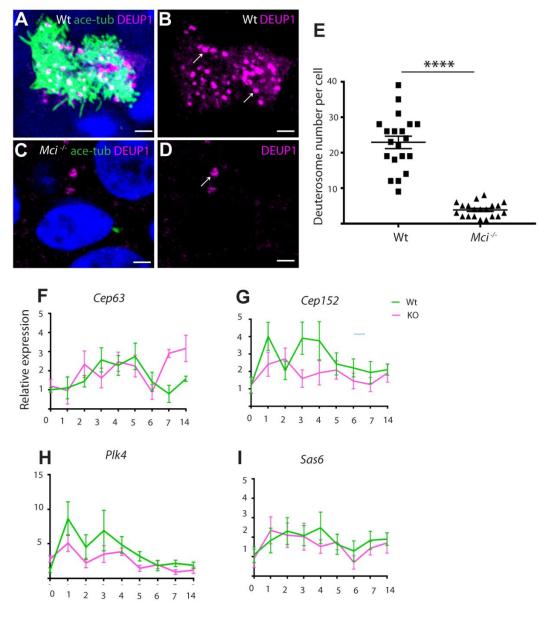
- 619 (arrows; stained with anti-PERICENTRIN antibodies). (B) Section of *Mci* mutant trachea
- 620 showing single basal body in monociliated cells (arrows). (C) TEM image showing
- multiple basal bodies (black arrows) and cilia (red arrows) in a wild-type MCC.
- 622 Microvilli are also indicated (blue arrows). (D) TEM image showing lack of multiple
- basal bodies and cilia in a *Mci* mutant MCC. Microvilli are indicated (blue arrows). 5

| 624 | sections each from 2 independent wild-type and mutant tracheae were sampled. (E)                            |
|-----|-------------------------------------------------------------------------------------------------------------|
| 625 | Wild-type MCCs differentiated in ALI culture with multiple cilia (arrows). (F) Mci                          |
| 626 | mutant airway cells differentiated in ALI culture with single cilium (arrow). (G) Wild-                     |
| 627 | type airway cells differentiated in ALI culture showing nuclear FOXJ1 expression. (H)                       |
| 628 | Mci mutant airway cells differentiated in ALI culture showing nuclear FOXJ1                                 |
| 629 | expression. (I) Wild-type MCCs differentiated in ALI culture with multiple basal bodies                     |
| 630 | (stained with anti- $\gamma$ -tubulin antibodies) and multiple cilia. (J) Display of only $\gamma$ -tubulin |
| 631 | staining from panel I. (K) Mci mutant cells differentiated in ALI culture with single                       |
| 632 | basal body (arrow) and single cilium. Inset shows single cilium and basal body (arrow).                     |
| 633 | (L) Display of only $\gamma$ -tubulin staining from panel K showing single basal body (arrow)               |
| 634 | Inset shows single basal body (arrow). In preparations shown in panels A,B,E,F,I,K cilia                    |
| 635 | were stained with anti-acetylated tubulin antibodies (green) and nuclei were stained                        |
| 636 | with DAPI (blue). Scale bars, $5\mu m$ . ALI cultures were done in 3 independent biological                 |
| 637 | replicates.                                                                                                 |





## 640 Fig. 4. RT-qPCR analysis of ciliary transcription factor and DD pathway genes


## 641 expression levels between wild-type and Mci mutant airway cells in ALI culture. (A-

- I) Relative expression levels have been plotted along the *y*-axis, and days in ALI culture
- along the *x*-axis. KO = *Mci* mutant. Error bars: standard error of the mean (SEM).
- 644 Analysis was done on 3 independent biological replicates.

645



646



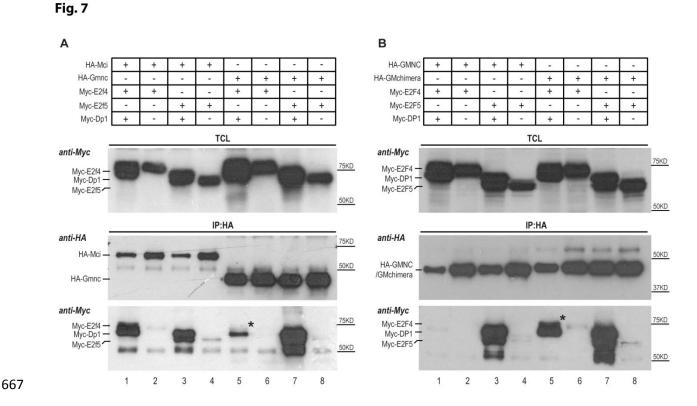
647 Fig. 5. In *Mci* mutants, the DD pathway for basal body production is strongly

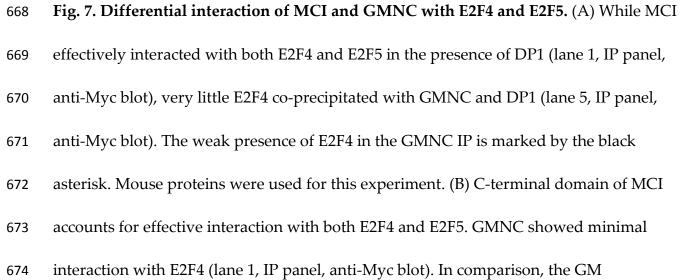
affected but not the MCD pathway. (A) ALI cultured wild-type MCCs showing
DEUP1-positive deuterosomes. (B) Display of only DEUP1 staining from panel A,
showing deuterosomes (arrows). (C) ALI cultured *Mci* mutant airway cells showing
DEUP1-positive deuterosomes. (D) Display of only DEUP1 staining from panel C,

| 652 | showing a deuterosome (arrow). Scale bars, 5 $\mu$ m. (E) Quantification of numbers of                   |
|-----|----------------------------------------------------------------------------------------------------------|
| 653 | DEUP1 <sup>+</sup> deuterosomes in differentiating wild-type and Mci mutant MCCs under ALI               |
| 654 | conditions. 20 cells were counted for each genotype at ALI day 3. p: **** $\leq$ 0.0001. (F-I)           |
| 655 | RT-qPCR analysis of MCD pathway gene expression levels between wild-type and Mci                         |
| 656 | mutant airway cells in ALI culture. Relative expression levels have been plotted along                   |
| 657 | the <i>y</i> -axis, and days in ALI culture along the <i>x</i> -axis. Error bars: SEM. Analysis was done |
| 658 | on 3 independent biological replicates.                                                                  |

41

Fig. 6





Fig. 6. RT-qPCR analysis of ciliary transcription factor and DD pathway genes
expression levels on over-expression of MCI, GMNC and E2F proteins in HEK293T
cells. (A-K) Relative expression levels have been plotted along the *y*-axis, and over-

42

### 664 expression conditions indicated along the *x*-axis. Error bars: SEM. Analysis was done on

## 665 3 independent biological replicates. p: \* $\leq$ 0.05, \*\* $\leq$ 0.01.





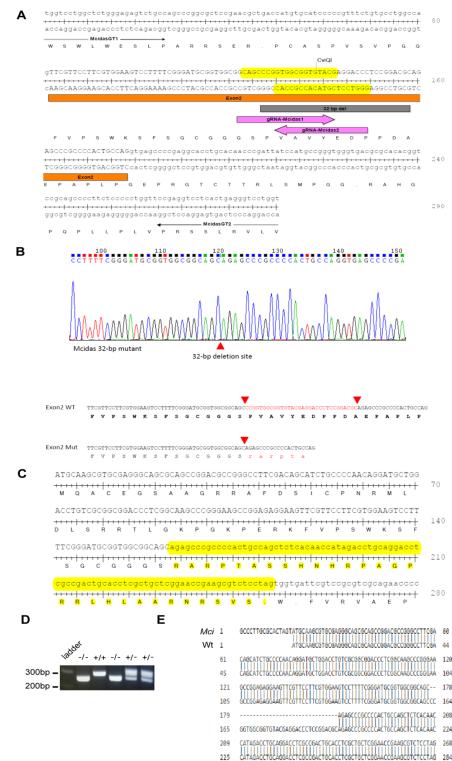
| 675 | (engineered by replacing the C-terminus domain of GMNC with that of MCI) chimera           |
|-----|--------------------------------------------------------------------------------------------|
| 676 | could co-precipitate with both E2F4 and E2F5, in the presence of DP1 (lane 5 and 7, IP     |
| 677 | panel, anti-Myc blot). The black asterisk marks the E2F4 band that is absent in lane 1 (IP |
| 678 | panel, anti-Myc blot). Human proteins were used for this experiment. The E2F and DP1       |
| 679 | proteins were tagged N-terminally with the Myc epitope and the GMNC and MCI                |
| 680 | proteins were tagged N-terminally with the HA epitope. TCL: Total cell lysate. IP:         |
| 681 | Immunoprecipitation. Data are representative of 2 independent biological replicates.       |
|     |                                                                                            |

44

# Fig. 8

|                                            | A     |         |                            | Wt ace-tub       |
|--------------------------------------------|-------|---------|----------------------------|------------------|
|                                            | B     |         | G                          | m̀nc -/- ace-tub |
|                                            | C     |         | Gmnc <sup>-/-</sup> mMci i | mRNA ace-tub     |
|                                            | Merge | ace-tub | GFP                        | DAPI             |
| Wt<br><i>GFP</i> lenti                     |       | D'      | D"                         | D'''             |
| <i>Mci-/-</i><br><i>GFP</i> lenti          |       | E'      | E"                         | E <sup></sup>    |
|                                            | Merge | ace-tub | GMNC                       | DAPI             |
| Wt<br><i>GMNC</i><br>lenti                 | F     | F       | F"                         | F'''             |
| <i>Mci<sup>-/-</sup><br/>GMNC</i><br>lenti | G     | G'      | G"                         | G"               |
|                                            | Merge | ace-tub | MCI                        | DAPI             |
| Wt<br><i>MCI</i> lenti                     |       |         | H"                         | H                |
| <i>Mci -<sup>,_</sup><br/>MCI</i> lenti    |       | Aller a | 2                          |                  |

45


# Fig. 8. MCI can substitute for GMNC activity, but not *vice versa*, in MCC

| 685 | differentiation. (A) Pronephric duct of a 48 hours post-fertilization (hpf) wild-type        |
|-----|----------------------------------------------------------------------------------------------|
| 686 | zebrafish embryo showing multiple cilia on MCCs (arrows). (B) Pronephric duct of a 48        |
| 687 | hpf gmnc mutant zebrafish embryo showing severe lack of MCCs. Monocilia, which are           |
| 688 | not affected by the loss of Gmnc, are indicated (arrows). (C) Pronephric duct of a 48 hpf    |
| 689 | gmnc mutant embryo showing rescue of MCCs (arrows) on over-expression of mouse               |
| 690 | Mci (mMci) mRNA. 16 zebrafish embryos over-expressing mouse MCI were genotyped.              |
| 691 | 5 were gmnc homozygotes of which 3 showed MCC rescue in pronephric ducts (partial            |
| 692 | to full rescue in one or both ducts). (D) Lentivirus-mediated over-expression of GFP in      |
| 693 | wild-type airway cell ALI culture does not affect MCC differentiation (D'-D''' shows         |
| 694 | individual channels). (E) Over-expression of GFP in Mci mutant airway cell ALI culture       |
| 695 | does not restore MCC differentiation (E'-E''' shows individual channels). (F) Over-          |
| 696 | expression of GMNC in wild-type airway cell ALI culture induces supernumerary MCC            |
| 697 | differentiation (F'-F''' shows individual channels). (G) Over-expression of GMNC in          |
| 698 | Mci mutant airway cell ALI culture does not rescue MCC differentiation (G'-G''' shows        |
| 699 | individual channels). (H) Over-expression of MCI in wild-type airway cell ALI culture        |
| 700 | induces supernumerary MCC differentiation (H'-H''' shows individual channels). (I)           |
| 701 | Over-expression of MCI in Mci mutant airway cell ALI culture rescues MCC                     |
| 702 | differentiation (I'-I''' shows individual channels). In all preparations, cilia were stained |
| 703 | with anti-acetylated tubulin antibodies (green in a-c; magenta in d-i), and nuclei with      |

- 704 DAPI (blue). Over-expressed GFP, GMNC and MCI were detected with anti-GFP and
- anti-HA antibodies, respectively (green in D-I). Lentivirus-mediated over-expression of
- GFP, MCI and GMNC in ALI cultures represents 2 independent biological replicates.
- 707 Scale bars, 5 μm.

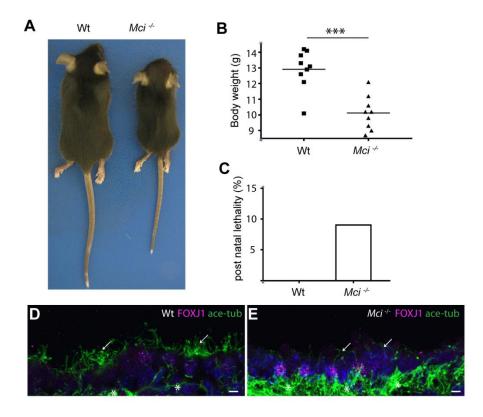
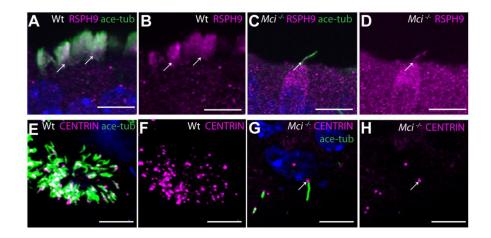
## 708 SUPPLEMENTAL INFORMATION

#### Fig. S1



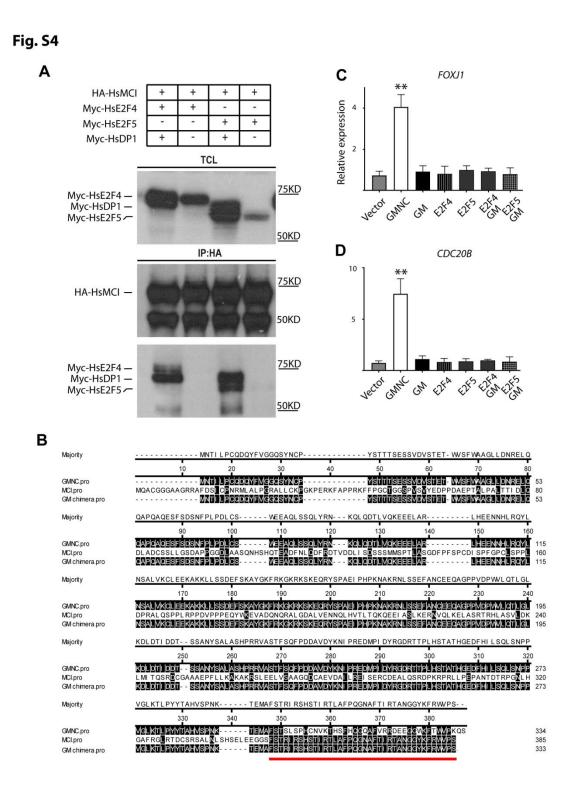
| 710 | Fig. S1. Generation of a deletion allele at the mouse <i>Mci</i> locus. (A) Partial genomic |
|-----|---------------------------------------------------------------------------------------------|
| 711 | sequence of the mouse <i>Mci</i> gene, showing the gRNAs (pink arrows) and their target     |
| 712 | sites on the forward and reverse strands (highlighted in yellow) used to induce a 32 bp     |
| 713 | deletion within exon 2. Binding sites for genotyping primers (McidasGT1 and                 |
| 714 | McidasGT2) are also indicated. (B) Electropherogram showing 32 bp deletion in Mci           |
| 715 | exon 2. Also shown below is the conceptual translation of the wild-type and mutant Mci      |
| 716 | coding sequence around the deletion site. (C) Conceptual translation of the predicted       |
| 717 | mutant Mci ORF shows a highly truncated MCI protein, retaining only 54 native amino         |
| 718 | acids at the N-terminus. Sequences highlighted in yellow indicate disruption of the         |
| 719 | reading frame before the premature STOP codon. (D) Gel image of DNA fragments               |
| 720 | amplified in wild-type, heterozygote and homozygous Mci mutants using primers               |
| 721 | flanking the 32 bp deletion. Size of the wild-type band is 290 bp and the mutant band is    |
| 722 | 258 bp. (E) Sequence analysis of Mci cDNA obtained from tracheal tissue of the              |
| 723 | homozygous mutants confirms a deletion of 32 bp.                                            |









Fig. S2. Gross phenotypes of *Mci* knockout mice. (A) *Mci* knockout mice are smaller in 726 727 size compared to the wild-type. (B) The body weight comparison between wild-type and *Mci* mutant mice at post-natal day (P) 28. n = 9 for each genotype. (C) Percentage of 728 lethality of wild type and *Mci* knockout mice at P28. n = 22 for each genotype. (D) 729 730 Nuclear localized FOXJ1 expression in MCCs of wild-type brain ependyma. Multicilia are indicated by arrows and the cytoskeletal microtubule network by asterisks. (F) 731 Nuclear localized FOXJ1 expression in monociliated cells of Mci mutant brain 732 733 ependyma. Monocilia are indicated by arrows and the cytoskeletal microtubule network by asterisks. Scale bars, 5 µm. 734

### Fig. S3



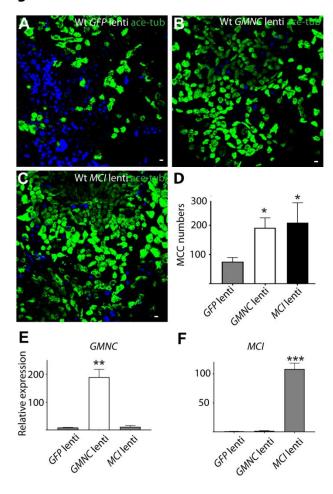
736 Fig. S3. Mci mutant MCCs precursors differentiate a single cilium that localizes 737 motile cilia-specific proteins but are unable to make multiple basal bodies. (A) RSPH9 co-localization with acetylated tubulin to MCC cilia of wild-type trachea 738 739 (arrows). (B) RSPH9 localization to MCC cilia of wild-type trachea (arrows; display of only RSPH9 staining from panel A). (C) RSPH9 co-localization with acetylated tubulin 740 to single cilium of Mci mutant trachea (arrow). (D) RSPH9 localization to single cilium 741 of Mci mutant trachea (arrow; display of only RSPH9 staining from panel C). (E) Wild-742 type MCC differentiated in ALI culture with multiple basal bodies (stained with anti-743 CENTRIN antibodies) and multiple cilia. (F) Display of only CENTRIN staining from 744 panel E. (G) Mci mutant cells differentiated in ALI culture with single basal body 745 (expressing CENTRIN, arrow) and single cilium. (H) Display of only CENTRIN staining 746 747 from panel G showing single basal body (arrow). In all preparations, cilia were stained

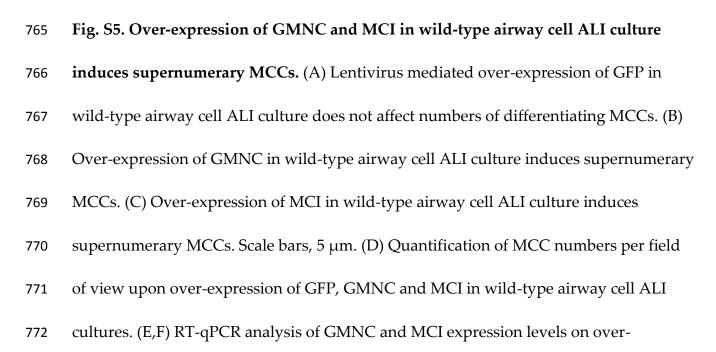
- with anti-acetylated tubulin antibodies (green) and nuclei with DAPI (blue). Scale bars
- 749 A-D = 10  $\mu$ m; E-H = 5  $\mu$ m.



#### 751

752 Fig. S4. Interaction of MCI with E2F factors and transcriptional activity of the


753 GMNC-MCI chimeric protein in HEK293T cells. (A) Co-immunoprecipitation data


| - | $\mathbf{r}$ |
|---|--------------|
| л | 5            |
| - | -            |

| 754 | showing interaction of MCI with E2F4 as well as E2f5. Human proteins were used for         |
|-----|--------------------------------------------------------------------------------------------|
| 755 | this experiment. (B) Amino acid sequence alignment of human GMNC, MCI and GM               |
| 756 | proteins. The C-terminal fragment from MCI used to generate GM is underlined in red.       |
| 757 | (C) Unlike wild-type GMNC, the GM chimeric protein is unable to induce FOXJ1               |
| 758 | expression by itself or together with the E2F factors. (D) The GM protein is not more      |
| 759 | efficient in inducing CDC20B expression than wild-type GMNC either by itself or with       |
| 760 | the E2F factors. For C and D, relative expression levels have been plotted along the $y$ - |
| 761 | axis, and over-expression conditions indicated along the <i>x</i> -axis. Error bars: SEM.  |
| 762 | Immunoblot and qPCR data are representative of 2 independent biological replicates. p:     |
|     |                                                                                            |

763 \*\*  $\leq 0.01$ .







- expression of GMNC and MCI in *Mci* mutant airway cells cultured under ALI
- conditions. Relative expression levels have been plotted along the *y*-axis, and over-
- expression conditions indicated along the *x*-axis. Lentivirus-mediated over-expression
- of GFP, MCI and GMNC in ALI cultures represent 2 independent biological replicates;
- qPCR analysis represents 2 independent technical replicates. Error bars: SEM. p: \* ≤
- 778 0.05, \*\* ≤ 0.01, \*\*\* ≤0.001.
- 779

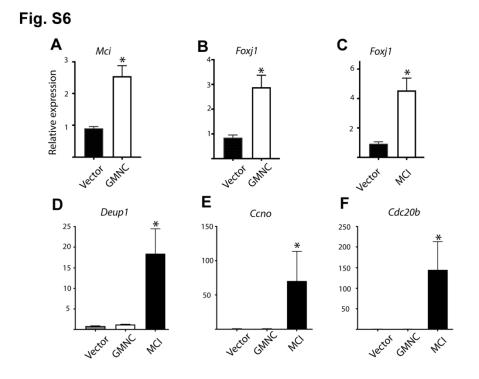



Fig. S6. RT-qPCR analysis of ciliary transcription factor and DD pathway genes
expression levels on over-expression of MCI and GMNC in *Mci* mutant airway cells
cultured under ALI conditions. (A-F) Relative expression levels have been plotted

56

along the *y*-axis, and over-expression conditions indicated along the *x*-axis. Error bars

represent SEM. Analysis was done on 3 independent biological replicates. p: \*  $\leq$  0.05.

786

## 787 Table S1

| Name of       | Sequence (5'-3')                 | Remarks           |
|---------------|----------------------------------|-------------------|
| gRNA/primer   |                                  |                   |
| gRNA-Mcidas1  | CAGCCCGGTGGCGGTGTACGGTTTTAGAGCTA | gRNA              |
|               | GAAATAGCAAGTTAAAATAAGGCTAGTCCGTT | sequences         |
|               | ATCAACTTGAAAAAGTGGCACCGAGTCGGTGC |                   |
|               | TTT                              |                   |
| gRNA-Mcidas2  | GGGTCCTCGTACACCGCCACGTTTTAGAGCTA |                   |
|               | GAAATAGCAAGTTAAAATAAGGCTAGTCCGTT |                   |
|               | ATCAACTTGAAAAAGTGGCACCGAGTCGGTGC |                   |
|               | TTT                              |                   |
| McidasGT1(for | TGGTCCTGGCTCTGGGAGAGTCTGCC       | Primers for       |
| ward)         |                                  | genotyping of     |
| McidasGT2(rev | ACCAGGACCCTCAGTGAGGACCTCGG       | <i>Mci</i> mutant |
| erse)         |                                  | mice              |
| Mci-L         | CGGAGCAGTACTGGAAGGAG             | qPCR primers      |
| Mci-R         | TTCGTTGTTGCCTTGATCTG             | for mouse         |
| Gmnc-L        | TCTGGAAGAGAAGGCCAAGA             | genes             |
| Gmnc-R        | CCCAGGTTGTTCCTCACAGT             |                   |
| Foxj1-L       | GAGCTGGAACCACTCAAAGG             |                   |
| Foxj1-R       | GGTAGCAGGGCAGTTGATGT             |                   |
| Rfx2-L        | TGTGAGCCGATCCTACAGTG             |                   |
| Rfx2-R        | ACCTTGGTCTGGATGACCTG             |                   |
| Rfx3-L        | CAGACAGTTCAGCAGGTCCA             |                   |
| Rfx3-R        | CTGGGCAGAACTTCCTTGAG             |                   |
| Deup1-L       | AGATGCGGGCTTTAGAGACA             |                   |
| Deup1-R       | CGGTGAATTTGGTTTTGCTT             |                   |
| Ccno-L        | GCTGAGCCTAACGGATTACG             |                   |
| Ccno-R        | TGATGGACACTAGCGTCTGC             |                   |
| Cdc20b-L      | GAAGGAAAATCTTGCCACCA             |                   |
| Ccdc20b-R     | TTGGCATGTGGAATGGTAGA             |                   |

| 57 |
|----|
|    |

| Ccdc78-L     | ACCAGGTGCCACCATTAGAG     |              |
|--------------|--------------------------|--------------|
| Ccdc78-R     | AAGCCAGTTGCTGACCAGTT     |              |
| Gapdh-L      | AACTTTGGCATTGTGGAAGG     |              |
| Gapdh-R      | ACACATTGGGGGTAGGAACA     |              |
| Cep63-L      | TCTGTGAGTGCAACATGCAA     |              |
| Cep63-R      | GAGGAACACTTGGCAGAAGC     |              |
| Plk4-L       | AAACCAAAAAGGCTGTGGTG     |              |
| Plk4-R       | GGAGGTCTGTCAGCAAGAGG     |              |
| Cep152-L     | GCTGTGGACACTGCTTTCAA     |              |
| Cep152-R     | CACCCTGCTGTTCTCCTCTC     |              |
| Sas6-L       | CCTGCAGCTTACAAACCAGG     |              |
| Sas6-R       | CTGGCTAATCCGCGTAAAG      |              |
| MCI-L        | GCCTGAGCAATACTGGAAGG     | qPCR primers |
| MCI-R        | AGTTCCTTCAGCTGCACGTT     | for human    |
| GMNC-L       | CCCAAAAATGCCAAAAGAAA     | genes        |
| GMNC-R       | AATGTGCTGGCGACTCTTCT     |              |
| FOXJ1-L      | CACGTGAAGCCTCCCTACTC     |              |
| FOXJ1-R      | GGATTGAATTCTGCCAGGTG     |              |
| DEUP1-L      | CACAAAGAAAGCTGCCCTTC     |              |
| DEUP1-R      | TCGGAGCCTTTCATTCTCAT     |              |
| CCNO-L       | TCTACAGACCTTCCGCGACT     |              |
| CCNO-R       | TCCAGAGTGTTCACCGTCAG     |              |
| CDC20B-L     | GAAGACACCGCCTGAGAAAG     |              |
| CDC20B-R     | CACAGAGCTGCATTTTTCCA     |              |
| GAPDH-L      | GAGTCAACGGATTTGGTCGT     |              |
| GAPDH-R      | TTGATTTTGGAGGGATCTCG     |              |
| GM-N-N       | AGTCAGTCAAGCTTATGAAC     | Primers to   |
|              | ACCATTCTGCCT             | generate     |
| GM-C-N       | GGATGCGGGTGCTGAATGCCAT   | GMNC N-      |
|              | CTCTGTCTTG               | terminus and |
| GM-N-C       | CAAGACAGAGATGGCATTCAGC   | MCI C-       |
|              | ACCCGCATCC               | terminus     |
| GM-C-C       | AGTCAGTCGCGGCCGCACTGGGGA | chimera      |
|              | CCCAGCGGAAC              |              |
| GMNC-HA-     | GATCGATCCTCGAGGCCACCATGT | Primers to   |
| XhoI-pLvx    | ACCCATACGACGTGCCAGACTACG | clone HA-    |
|              | CAATGAACACCATTCTGCC      | tagged GMNC  |
| GMNC-C-XbaI- | GATCGATCTCTAGACTAAGACTGC | into PLVX    |
| pLvx         | TTAGGGAC                 | vector       |

| MCI-HA-XhoI- | GATCGATCCTCGAGGCCACCATGT | Primers to |
|--------------|--------------------------|------------|
| pLvx         | ACCCATACGACGTGCCAGACTACG | clone HA-  |
|              | CAATGCAGGCGTGCGGGGG      | tagged MCI |
| MCI-C-XbaI-  | GATCGATCTCTAGATCAACTGGG  | into PLVX  |
| pLvx         | GACCCAGCG                | vector     |

59

#### 790 **REFERENCES**

| 791 | AL JORD, A., LEMAITRE, A. I., DELGEHYR, N., FAUCOURT, M., SPASSKY, N. &        |
|-----|--------------------------------------------------------------------------------|
| 792 | MEUNIER, A. 2014. Centriole amplification by mother and daughter centrioles    |
| 793 | differs in multiciliated cells. Nature, 516, 104-7.                            |
| 794 | ARBI, M., PEFANI, DE., KYROUSI, C., LALIOTI, ME., KALOGEROPOULOU, A.,          |
| 795 | PAPANASTASIOU, A. D., TARAVIRAS, S. & LYGEROU, Z. 2016. GemC1                  |
| 796 | controls multiciliogenesis in the airway epithelium. EMBO reports, 17, 400-13. |
| 797 | BOON, M., WALLMEIER, J., MA, L., LOGES, N. T., JASPERS, M., OLBRICH, H.,       |
| 798 | DOUGHERTY, G. W., RAIDT, J., WERNER, C., AMIRAV, I., HEVRONI, A.,              |
| 799 | ABITBUL, R., AVITAL, A., SOFERMAN, R., WESSELS, M., O'CALLAGHAN, C.,           |
| 800 | CHUNG, E. M., RUTMAN, A., HIRST, R. A., MOYA, E., MITCHISON, H. M.,            |
| 801 | VAN DAELE, S., DE BOECK, K., JORISSEN, M., KINTNER, C., CUPPENS, H. &          |
| 802 | OMRAN, H. 2014. MCIDAS mutations result in a mucociliary clearance disorder    |
| 803 | with reduced generation of multiple motile cilia. Nat Commun, 5, 4418.         |
| 804 | BROOKS, ERIC R. & WALLINGFORD, JOHN B. 2014. Multiciliated Cells. Current      |
| 805 | Biology, 24, R973-R982.                                                        |
| 806 | BUSTAMANTE-MARIN, X. M. & OSTROWSKI, L. E. 2017. Cilia and Mucociliary         |
| 807 | Clearance. Cold Spring Harb Perspect Biol, 9.                                  |

| 808 | CHOKSI, S. P., BABU, D., LAU, D., YU, X. & ROY, S. 2014a. Systematic discovery of    |
|-----|--------------------------------------------------------------------------------------|
| 809 | novel ciliary genes through functional genomics in the zebrafish. Development,       |
| 810 | 141, 3410-9.                                                                         |
| 811 | CHOKSI, S. P., LAUTER, G., SWOBODA, P. & ROY, S. 2014b. Switching on cilia:          |
| 812 | transcriptional networks regulating ciliogenesis. <i>Development</i> , 141, 1427-41. |
| 813 | FROMMER, A., HJEIJ, R., LOGES, N. T., EDELBUSCH, C., JAHNKE, C., RAIDT, J.,          |
| 814 | WERNER, C., WALLMEIER, J., GROSSE-ONNEBRINK, J., OLBRICH, H.,                        |
| 815 | CINDRIC, S., JASPERS, M., BOON, M., MEMARI, Y., DURBIN, R., KOLB-                    |
| 816 | KOKOCINSKI, A., SAUER, S., MARTHIN, J. K., NIELSEN, K. G., AMIRAV, I.,               |
| 817 | ELIAS, N., KEREM, E., SHOSEYOV, D., HAEFFNER, K. & OMRAN, H. 2015.                   |
| 818 | Immunofluorescence Analysis and Diagnosis of Primary Ciliary Dyskinesia with         |
| 819 | Radial Spoke Defects. Am J Respir Cell Mol Biol, 53, 563-73.                         |
| 820 | FUNK, M. C., BERA, A. N., MENCHEN, T., KUALES, G., THRIENE, K., LIENKAMP, S.         |
| 821 | S., DENGJEL, J., OMRAN, H., FRANK, M. & ARNOLD, S. J. 2015. Cyclin O                 |
| 822 | (Ccno) functions during deuterosome-mediated centriole amplification of              |
| 823 | multiciliated cells. <i>Embo j,</i> 34, 1078-89.                                     |
| 824 | JACKSON, P. K. & ATTARDI, L. D. 2016. p73 and FoxJ1: Programming Multiciliated       |
| 825 | Epithelia. Trends Cell Biol, 26, 239-240.                                            |

| 826 | KLOS DEHRING, D. A., VLADAR, E. K., WERNER, M. E., MITCHELL, J. W., HWANG,         |
|-----|------------------------------------------------------------------------------------|
| 827 | P. & MITCHELL, B. J. 2013. Deuterosome Mediated Centriole Biogenesis. Dev          |
| 828 | <i>Cell,</i> 27.                                                                   |
| 829 | KNOWLES, M. R., ZARIWALA, M. & LEIGH, M. 2016. Primary Ciliary Dyskinesia. Clin    |
| 830 | Chest Med, 37, 449-61.                                                             |
| 831 | MA, L., QUIGLEY, I., OMRAN, H. & KINTNER, C. 2014. Multicilin drives centriole     |
| 832 | biogenesis via E2f proteins. Genes & development, 28, 1461-1471.                   |
| 833 | REVINSKI, D. R., ZARAGOSI, LE., BOUTIN, C., RUIZ-GARCIA, S., DEPREZ, M.,           |
| 834 | ROSNET, O., THOME, V., MERCEY, O., PAQUET, A., PONS, N., MARCET, B.,               |
| 835 | KODJABACHIAN, L. & BARBRY, P. 2017. CDC20B is required for deuterosome-            |
| 836 | mediated centriole production in multiciliated cells. <i>bioRxiv</i> .             |
| 837 | SPASSKY, N. & MEUNIER, A. 2017. The development and functions of multiciliated     |
| 838 | epithelia. Nature Publishing Group, 18, 423-436.                                   |
| 839 | STUBBS, J. L., OISHI, I., IZPISUA BELMONTE, J. C. & KINTNER, C. 2008. The forkhead |
| 840 | protein Foxj1 specifies node-like cilia in Xenopus and zebrafish embryos. Nat      |
| 841 | <i>Genet</i> , 40, 1454-60.                                                        |
| 842 | STUBBS, J. L., VLADAR, E. K., AXELROD, J. D. & KINTNER, C. 2012. Multicilin        |
| 843 | promotes centriole assembly and ciliogenesis during multiciliate cell              |
| 844 | differentiation. Nat Cell Biol, 14, 140-7.                                         |
|     |                                                                                    |
|     |                                                                                    |

|     | /             |                   |              |                   |        | /          |     |                                                       |
|-----|---------------|-------------------|--------------|-------------------|--------|------------|-----|-------------------------------------------------------|
| 045 | TEDDE D       | DIEDCIOVANNI      | $\mathbf{C}$ | CECTIDA DAVONIA C | CII    | COMEZ      |     | VOLICCEE C                                            |
| 845 | I E K K E, D. | , LIERGIOVAININI, | G.,          | SEGURA-BAYONA, S. | ., GIL | -GUNIEZ, U | J., | $I \cup \cup \cup \cup \cup \subseteq \Gamma, \cup$ . |
|     | ,,            | ,                 |              |                   | .,     |            | ,   | ,                                                     |

- 846 A., ATTOLINI, C. S.-O., WILSCH-BRÄUNINGER, M., JUNG, C., ROJAS, A. M.,
- 847 MARJANOVIĆ, M., KNOBEL, P. A., PALENZUELA, L., LÓPEZ-ROVIRA, T.,
- FORROW, S., HUTTNER, W. B., VALVERDE, M. A., DE BRUIN, A.,
- 849 COSTANZO, V. & STRACKER, T. H. 2016. GEMC1 is a critical regulator of
- multiciliated cell differentiation. *The EMBO journal*, 35, 942-60.
- VLADAR, E. K. & BRODY, S. L. 2013. Analysis of ciliogenesis in primary culture mouse
- tracheal epithelial cells. *Methods Enzymol*, 525, 285-309.
- 853 YAGHI, A. & DOLOVICH, M. B. 2016. Airway Epithelial Cell Cilia and Obstructive
- Lung Disease. *Cells*, 5.
- 855 YU, X., NG, C. P., HABACHER, H. & ROY, S. 2008. Foxj1 transcription factors are
- master regulators of the motile ciliogenic program. *Nature Genetics*, 40, 1445.
- ZHAO, H., CHEN, Q., HUANG, Q., YAN, X. & ZHU, X. 2018. Mother centrioles are
- dispensable for deuterosome formation and function during basal body
- 859 amplification. *bioRxiv*.
- 860 ZHAO, H., ZHU, L., ZHU, Y., CAO, J., LI, S., HUANG, Q., XU, T., HUANG, X., YAN, X.
- & ZHU, X. 2013. The Cep63 paralogue Deup1 enables massive de novo centriole
- biogenesis for vertebrate multiciliogenesis. *Nat Cell Biol*, 15, 1434-44.

- 863 ZHOU, F., NARASIMHAN, V., SHBOUL, M., CHONG, Y. L., REVERSADE, B. & ROY,
- 864 S. 2015. Gmnc Is a Master Regulator of the Multiciliated Cell Differentiation
- 865 Program. *Current Biology*, 25, 3267-3273.
- 866 ZHOU, F. & ROY, S. 2015. SnapShot: Motile Cilia. *Cell*, 162, 224-224.e1.