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Summary  1 

Thalamic neurons dynamically encode sensory information in a state-dependent manner as a 2 

mechanism for gating information flow to the cortex. Here, we investigated the role of thalamic 3 

state on precise feature selectivity in the thalamocortical circuit of the rat vibrissa pathway. In 4 

thalamic neurons, tonic spike triggered averaging revealed clear feature selectivity, while the 5 

feature selectivity associated with burst spikes could not be recovered with this approach. 6 

These thalamic state dependent changes propagated to cortex such that the cortical feature 7 

selectivity was diminished during the optogenetically hyperpolarized (burst biased) thalamic 8 

condition. Further analysis revealed that the perceived loss of feature selectivity was likely not 9 

due to a true loss of stimulus selectivity but instead to changes in the precision of the temporal 10 

spiking in burst firing modes. Therefore, alterations to thalamic state enable a dynamic 11 

interplay between spike timing and spike rate that shapes stimulus encoding in the 12 

thalamocortical circuit.    13 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 10, 2018. ; https://doi.org/10.1101/439778doi: bioRxiv preprint 

https://doi.org/10.1101/439778
http://creativecommons.org/licenses/by/4.0/


3 
 

Introduction  14 

Sensory thalamus plays a critical role in gating information flow from our sensors in 15 

the periphery to sensory cortex, ultimately shaping how we perceive the world. Importantly, 16 

thalamic gating properties are not static, but instead vary dynamically through a range of 17 

modulatory mechanisms, including local membrane and synaptic properties (Wolfart et al., 18 

2005), stimulus history (Whitmire et al., 2016), and neuromodulatory inputs from brainstem 19 

and cortex (Castro-alamancos, 2002; Mease et al., 2014).  Although arising from different 20 

mechanisms, these modulatory inputs have the net effect of altering the baseline membrane 21 

polarization level in the thalamus, which we refer to here as “thalamic state”, which plays an 22 

important role in determining the encoding properties of the thalamic neurons that serve as 23 

primary inputs to sensory cortex. Perhaps most prominently, modulation of the baseline 24 

membrane potential in thalamic neurons enables distinct tonic and burst firing modes due to 25 

the selective engagement of low threshold calcium channels during prolonged 26 

hyperpolarization (Suzuki and Rogawski, 1989). In addition to their roles in thalamocortical 27 

oscillations (Steriade et al., 1993), it has long been posited that these two firing modes could 28 

be a mechanism for dynamically controlling information processing (Sherman 2001). At the 29 

thalamocortical synapse, spontaneous burst spikes are more effective at driving cortical 30 

spiking (Swadlow and Gusev, 2001) and evoke larger cortical depolarizations (Bruno and 31 

Sakmann, 2006) than tonic spikes. It has been proposed that both burst and tonic spikes carry 32 

stimulus information (Reinagel et al., 1999), but the relationship between burst and tonic firing 33 

in representing temporal stimulus information in tactile encoding remains unclear.  34 

In the visual pathway, the role of thalamic state in sensory processing has identified 35 

distinct sensory selectivity associated with burst versus tonic firing (Alitto et al., 2005; Denning 36 

and Reinagel, 2005; Lesica and Stanley, 2004; Reinagel et al., 1999; Wang et al., 2007). The 37 

burst response can be reliably elicited across trials in response to sensory stimulation (Lesica 38 

and Stanley, 2004; Martinez-Conde et al., 2002; Wang et al., 2007) and the feature selectivity 39 

of the bursts are characterized by a prolonged inhibitory stimulus before the depolarizing input 40 

that occurs immediately prior to the spike onset. This demonstrated that bursting activity is not 41 
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just an indicator of state, but it is also repeatably evoked by the sensory stimulation and is 42 

present in the awake animal (Guido and Weyand, 1995). However, how these results extend 43 

to other sensory modalities, such as touch, and the implication for downstream sensory 44 

encoding remains unknown. 45 

Here, we quantified the role of thalamic state on temporal feature selectivity in the 46 

thalamocortical circuit of the rodent whisker pathway by implementing a class of models that 47 

maps sensory inputs to observed neuronal activity. Specifically, we characterized neurons 48 

using a two-stage, linear-nonlinear framework, the first stage of which represents the sensory 49 

feature selectivity, and the second stage of which represents the overall sensitivity of the input-50 

output relationship. This characterization was performed for neurons recorded extracellularly 51 

both in the ventro posterior-medial (VPm) thalamus and in layer 4 of primary somatosensory 52 

cortex (S1) in the fentanyl-anesthetized rat.  For thalamic neurons, we found that tonic spiking 53 

was associated with clear whisker-stimulus feature selectivity consistent with previous findings 54 

(Petersen et al., 2008). However, analysis of burst firing suggested a lack of feature selectivity, 55 

a finding which was further confirmed using optogenetic hyperpolarization of VPm to switch 56 

the thalamus into a burst state.  An assessment of the temporal precision of the sensory-driven 57 

thalamic firing identified an increase in the timing jitter of burst spikes relative to tonic spikes 58 

that could underlie the differences in the recoverability of the feature selectivity. In the cortical 59 

neurons, we found that when thalamus was dominated by tonic firing, the cortical neurons 60 

exhibited similar feature selectivity as observed in VPm. However, when the thalamus was 61 

optogenetically hyperpolarized to push the local thalamic population further into a burst firing 62 

mode, this had a detrimental effect on the spike time precision of the downstream cortical 63 

neurons as well as the feature selectivity reflected by the model. Given the sensitivity of the 64 

thalamocortical circuit to precise timing of thalamic projection neurons, the results here 65 

suggest an important relationship between thalamic state, or membrane polarization, and the 66 

dynamic regulation of timing fidelity across thalamic firing modes that could have profound 67 

implications for coding during varying behavioral conditions.   68 
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Methods 69 

Experimental Procedures 70 

Acute Surgery: All procedures were approved by the Georgia Institute of Technology 71 

Institutional Animal Care and Use Committee and were in agreement with guidelines 72 

established by the National Institutes of Health. 19 female albino rats (Sprague-Dawley, 250-73 

300g) were anesthetized intravenously using a fentanyl cocktail (fentanyl (5 µg/kg), midazolam 74 

(2 mg/kg), dexmedetomidine (150 µg/kg)). A craniotomy was performed over VPm (2-4 mm 75 

caudal to bregma, 1.5-3.5 mm lateral to the midline), and in a subset of animals, a second 76 

craniotomy was performed over S1 (1-3 mm caudal to bregma, 4.5-6 mm lateral to the 77 

midline). At the termination of the experiment, the animal was euthanized with an overdose of 78 

sodium pentobarbital (euthasol, 0.5 mL at 390 mg/mL). All optogenetically transfected animals 79 

that underwent cortical probe recordings were perfused and their brains were imaged for 80 

verification of opsin location and cortical probe location.  81 

Electrophysiology: Tungsten microelectrodes were lowered into the thalamus (depth: 4.5-6 82 

mm) using either a micropositioner (Kopf, Luigs-Neumann). Multielectrode probes (A1x32-83 

10mm-50-177, NeuroNexus) were lowered perpendicular to S1 (45° relative to vertical; depth: 84 

2 mm). The topographic location of the electrode was identified through manual stimulation of 85 

the whisker pad. Upon identification of the primary whisker for the recorded unit(s), the primary 86 

whisker was threaded into the galvo motor to permit stimulation of a single whisker.  87 

Sensory Stimulus: Mechanical whisker stimulation was delivered using a precisely controlled 88 

galvo motor (Cambridge Technologies, custom Matlab software). The mechanical stimulus 89 

applied to the whisker in the rostral-caudal direction consisted of sensory white noise (low 90 

pass filtered at 200 Hz, standard deviation of the noise was 0.6° or 223°/s). Feedback from 91 

the whisker stimulator were used for further spike triggered analysis across all units (down 92 

sampled to 4.88 kHz). 93 
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Optogenetics surgeries: All surgical procedures followed sterile protocol. A small craniotomy 94 

was made above VPm (3 mm lateral, 3 mm caudal to bregma). A 10 µL syringe (Neuros 95 

Syringe, Hamilton, Inc) filled with the virus (rAAV5-CamKIIa-Jaws-KGC-GFP-ER2 or rAAV5-96 

CamKIIa-eNpHR3.0-EYFP, UNC Viral Vector Core Services) was lowered to depth of 5.2 mm 97 

before injecting 1 µL of virus at a rate of 0.2 µL/min (iSi system, Stoelting). The syringe 98 

remained in place for five minutes after the injection was complete to allow the virus to diffuse. 99 

Opsin expression was fully realized at 2-3 weeks post-surgery. 100 

Optogenetic Stimulus:  Optical manipulation was administered with a controlled pulse of light 101 

through a custom optrode consisting of an optical fiber (200µm diameter; Thorlabs) and an 102 

electrode (Tungsten microelectrode; FHC) that was lowered into the VPm. Upon identifying a 103 

whisker sensitive cell, light sensitivity was assessed by the post-inhibitory rebound spiking 104 

response using a train of 250 millisecond light pulses (λ = 590 or 617nm for Halorhodopsin 105 

and Jaws, respectively). The whisker was then stimulated without (baseline) and with 106 

(hyperpolarized) light provided directly to the thalamus (50 mW/mm2). Optogenetic stimulus 107 

conditions (light on/hyperpolarized, light off/baseline) were interleaved to avoid long-term 108 

adaptation effects. 109 

Analytical Methods: Spike sorting for single channel recordings was performed online and 110 

validated offline using Waveclus (Quiroga et al., 2004). Spike sorting for multichannel 111 

electrodes was performed offline using the KlustaKwik software suite (Rossant et al., 2015). 112 

Isolation of the unit was confirmed by the waveform amplitude (absolute and relative to the 113 

background noise >3) and the interspike-interval distributions (VPm: mean of 0.22%, S1: 114 

mean of 0.38% of spikes in absolute refractory period of 1ms).  115 

Feature selectivity was estimated for each recorded unit using the spike triggered average 116 

(STA) (Schwartz et al., 2006). 117 

𝑆𝑇𝐴 ൌ
1
𝑁

෍ 𝑠ሺ𝑡௝ሻ
௝

 118 
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Where N is the number of spikes and 𝑠 is the stimulus segment in a window surrounding each 119 

spike (-30 to +5 ms, spike-triggered ensemble, STE). The burst and tonic triggered averages 120 

were computed from burst and tonic spikes, respectively. The baseline/hyperpolarized 121 

condition triggered averages were computed from all spikes in a given stimulus condition. The 122 

bootstrap estimate of the confidence intervals on the spike triggered average was computed 123 

as the +/- 2 standard deviation of this shuffled STA distribution across 500 repetitions 124 

(Schwartz et al., 2006). Note that we implemented multiple techniques of estimating the 125 

feature selectivity of the neurons including spike triggered covariance, generalized linear 126 

models, and nonlinear-input models (McFarland et al., 2013). The results were qualitatively 127 

consistent across all methods employed, so we chose to use spike triggered average 128 

throughout the manuscript due to its simplicity.  129 

The signal-to-noise ratio of the recovered STA was quantified as the peak-to-peak amplitude 130 

of the STA within 10 milliseconds of the spike (where the significant filter activity is contained) 131 

divided by the peak-to-peak amplitude of the STA from 30 to 20 milliseconds before the spike 132 

(where there is no expected filter information). An SNR value of 1 means the amplitude of the 133 

STA near the spike time is not different from the amplitude of the noise fluctuations. Therefore, 134 

any units with an SNR value less than 2 were excluded from further analysis.   135 

To make comparisons of the feature selectivity across the population of recorded neurons, we 136 

computed a principle component analysis of the recovered STA (Estebanez et al., 2012). The 137 

first two principle components accounted for the majority of the variance (71.8% VPm, 78.4% 138 

S1). 139 

The non-linearity (𝑃ሺ𝑠𝑝𝑖𝑘𝑒|𝑦ሻ) was estimated as the ratio of the probability of spike-trigged 140 

stimuli (𝑃ሺ𝑦|𝑠𝑝𝑖𝑘𝑒ሻ) to the probability of any stimulus segment in the stimulus (𝑃ሺ𝑦ሻ) multiplied 141 

by the mean firing rate of the neuron(𝑃ሺ𝑠𝑝𝑖𝑘𝑒ሻ) (Schwartz et al., 2006): 142 

𝑝ሺ𝑠𝑝𝑖𝑘𝑒|𝑦ሻ ൌ 𝑝ሺ𝑠𝑝𝑖𝑘𝑒ሻ
𝑝ሺ𝑦|𝑠𝑝𝑖𝑘𝑒ሻ

𝑝ሺ𝑦ሻ
 143 
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Where y is defined as the stimulus (s) convolved with the feature selectivity of the unit (STA) 144 

(Lesica et al., 2007), referred to as filtered stimulus. For all conditions, the STA was defined 145 

as the baseline or tonic spike triggered average. Throughout the manuscript, we separate the 146 

firing rate (p(spike)) from the shape of the non-linearity (p(y|spike)/p(y)) to avoid confounding 147 

differences in firing rate with differences in tuning.  148 

The precision in the noise evoked firing was estimated for each spike classification (tonic, 149 

burst, baseline, hyperpolarized). The precision was defined as:  150 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ  ෍ 𝜏௝௜௧௧௘௥ሺ𝑛ሻ

ାଵ

௡ୀିଵ

 151 

Or the number of spikes with 𝜏௝௜௧௧௘௥ values of +/- 1 ms duration normalized by the total number 152 

of spikes. 𝜏௝௜௧௧௘௥ is defined for each spike as the temporal lag (tlag) for the peak correlation 153 

between the STA and the stimulus segment surrounding that spike (-30 ms to +5 ms). 154 

𝜏௝௜௧௧௘௥ ൌ 𝑎𝑟𝑔
𝑚𝑎𝑥
𝑡௟௔௚

 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 ቀ𝑆𝑇𝐴, 𝑠൫𝑡௝൯ቁ 155 

The 𝜏௝௜௧௧௘௥ distribution was normalized by the total number of spikes in each condition (tonic, 156 

burst, baseline, hyperpolarized).  157 

All pairwise statistical comparisons were computed using a Wilcoxon signed rank test unless 158 

otherwise noted.  159 
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Results 160 

Feature selectivity is conserved across the thalamus and cortex 161 

We recorded thalamic and cortical extracellular spiking activity in response to sensory 162 

white noise stimulation of a single whisker in the vibrissa pathway of the fentanyl-anesthetized 163 

rat (Figure 1A, see Methods). We estimated the feature selectivity for each unit as the spike 164 

triggered average (STA), which captures the features of the sensory stimulus that tended to 165 

precede spiking, and the static, point nonlinearity, which captures the translation into 166 

suprathreshold spiking activity (Figure 1B; see methods). Although this quantification was 167 

performed on longer unique noise segments, we also recorded the response to short (4-10 168 

second) frozen white noise segments to examine the response across trials. Figure 1C shows 169 

an example recording from a simultaneously recorded pair of neurons in topographically 170 

aligned regions of the thalamus (left column, ventral posteromedial nucleus, VPm) and cortex 171 

(right column, primary somatosensory cortex, S1) in response to the repeated presentation of 172 

a single frozen white noise segment (top of each column). Across trials, the repeatability of 173 

the response to the noise stimulus is apparent in the raster plot, with clear vertical patterns 174 

across trials. The STA was computed for the thalamic and cortical unit for stimulus segments 175 

from -30 milliseconds prior to the spike to +5 milliseconds afterwards at a 0.2ms resolution 176 

(Figure 1C, bottom. The black dotted line indicates the time of the spike). The VPm STA shows 177 

clear feature selectivity in the 10-15 milliseconds prior to the thalamic spike as evidenced by 178 

the large amplitude of the STA relative to the shuffled case (grey confidence intervals). Beyond 179 

15 milliseconds prior to the spike, the VPm STA is essentially flat and within the confidence 180 

bounds on the shuffled process. This suggests that, on average, the thalamic unit is only 181 

sensitive to the stimulus occurring in the previous 10-15 milliseconds. The S1 unit also 182 

displays feature selectivity as evidenced by the shape and amplitude of the S1 STA 183 

immediately prior to the cortical spike relative to the shuffled case. Although the VPm STA is 184 

nearly ten times as large in amplitude as the S1 STA, the similarity in the temporal dynamics 185 

can be visualized by shifting the VPm STA by 2 milliseconds relative to the S1 STA (Figure 186 
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1C, bottom, S1 STA black, VPm STA shifted by 2 milliseconds and scaled by a factor of 0.1 187 

as grey dashed line).  188 

While this simple comparison provides an interesting observation for a single pair of 189 

topographically aligned neurons, we also made comparisons of the feature selectivity across 190 

 

Figure 1: Feature selectivity in the thalamocortical circuit of the rat whisker pathway. 

A. Experimental paradigm. B. Feature selectivity is assessed from the neural response to 

sensory white noise as the spike triggered average and the associated point nonlinearity. C. 

Example noise evoked response from simultaneously recorded topographically aligned pair 

of neurons. D. Representative example thalamic and cortical STA (grey scale shows different 

examples). E. Principle component analysis (PCA) of all recovered STA for thalamic neurons 

and cortical neurons. F. Overlay of cortical STA PCs and temporally shifted thalamic PCs 

(shift of 2.5ms). 
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the population of recorded STA for thalamus and cortex. First, we visualized the shape of the 191 

spike triggered average for a sample of example thalamic (Figure 1D left; greyscale) and 192 

cortical (Figure 1D right; greyscale) units. These STA filters cannot be simply averaged 193 

together to give an estimate of the population filter due to differences in the phase and 194 

directionality of the recovered STA across different recorded units. Instead, we performed a 195 

principle component analysis on the set of recovered thalamic and cortical STA filters across 196 

recordings to identify salient filter properties that generalized (Figure 1E). The first two 197 

principle components for the spike triggered averages of both thalamus and cortex explain the 198 

majority of the variance for the set of recovered filters, similar to what has been seen previously 199 

for cortex (Estebanez et al., 2012). Furthermore, a simple time shift of 2.5 milliseconds for the 200 

VPm principle components relative to the S1 principle components (Figure 1F, dashed lines) 201 

demonstrates the similarity in the STA subspace spanned by these principle components. It 202 

seems that despite not necessarily being recorded simultaneously or even in the same animal, 203 

there is a high degree of overlap in the low dimensional subspace of feature selectivity for 204 

thalamocortical neurons in the whisker pathway.  205 

  206 

Tonic and burst spike feature selectivity in thalamus 207 

Inherent in the spike triggered analysis, however, is an assumption that the average 208 

filter is representative of the sensory stimulus preceding all spikes (Stanley, 2002). Yet 209 

neurons in the thalamus are well known for exhibiting two fundamentally different types of 210 

firing: tonic spiking and burst firing mediated through T-type calcium channels (Suzuki and 211 

Rogawski, 1989). Burst spikes were classified here from the extracellular recordings as two 212 

or more spikes with an inter-spike interval of less than four milliseconds with the first spike in 213 

the burst preceded by 100 milliseconds of silence (Figure 2A, see methods). Using this 214 
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classification, we asked if or how the feature selectivity of an individual thalamic unit changes 215 

as a function of the spiking mechanism in the whisker pathway.  216 

 

Figure 2: Feature selectivity of burst and tonic spikes in thalamic neurons. A. Burst 

definition. B. STA from thalamic unit presented in Figure 1 estimated from all spikes (black 

solid line, n = 44105 spikes), tonic spikes (tSTA; grey solid line, n = 36558 spikes), a 

subsample of tonic spikes (tSTA; dashed line, n = 2363 of 36558 spikes) all burst spikes 

(bSTA; red solid line, n = 7547 spikes), and the first spike in the burst (bSTA; red dashed line, 

n = 2363 spikes). C. STASNR across recorded population (n = 30 units). Black dots depict the 

STASNR for all bSTA computed from all burst spikes while red circles indicate the STASNR for 

bSTA computed from only the first spike in the burst (p = 1e-6). Arrow depicts example unit in 

A. D. Example unit tonic and burst spike nonlinearity. E. Average non-linearity across all units. 

F. Burst and tonic firing rate (p(spike)) across recorded population (p = 2.6e-5). G. Spike 

triggered average using different spike classifications. 
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In the thalamic recordings, tonic and burst spikes were interspersed throughout most 217 

of the recordings. For the example thalamic unit presented in Figure 1B, we computed the 218 

spike triggered average from all spikes (STA), the tonic spike triggered average from only tonic 219 

spikes (tSTA), and the burst spike triggered average from only spikes that are classified as 220 

being part of a burst (bSTA) (Figure 2B). The tSTA (grey) closely resembles the STA 221 

computed from all spikes (black) while the bSTA (red) is significantly degraded as evidenced 222 

by the flat shape of the filter. To compare the difference between burst and tonic feature 223 

selectivity across thalamic units, we quantified the signal-to-noise ratio of the STA (STASNR, 224 

see methods). Across all thalamic units, the SNRSTA was higher for tonic spikes (tSTASNR) than 225 

for burst spikes (bSTASNR) (Figure 2C).  226 

Given the estimated feature selectivity, we can compute the static non-linearity, or the 227 

input-output function, which provides a mapping between this filtered stimulus (y) and the 228 

spiking response of the neuron (p(spike|y)) by taking the ratio of the p(y|spike) to the p(y) 229 

(Figure 1B, see methods). Here, we used the tSTA as the filter for all spiking conditions when 230 

estimating the non-linearity. The probability of the filtered stimulus (p(y) remains unchanged 231 

when the filter is held constant. Therefore, any change in the non-linearity is then only due to 232 

changes in the probability of the filtered stimulus given that a spike occurred (p(y|spike)), or 233 

the spike triggered ensemble. Because the slope of the static non-linearity is determined by 234 

the separation between the spike triggered ensemble and the Gaussian distributed white 235 

noise, as the spike triggered ensemble distribution becomes more selective (i.e. the mean 236 

moves away from the filtered stimulus distribution), the separability of the distributions 237 

increases, and the slope of the non-linearity also increases. Intuitively, this means that the 238 

shape of the non-linearity gives an estimate of the separability of the spike triggered ensemble 239 

and the stimulus distribution, or how strongly tuned a neuron is for that particular feature, given 240 

by the STA. A steeper slope in the non-linearity suggests a stronger tuning than a shallower 241 

slope. Therefore, we also assessed the spiking nonlinearity as a function of the spike 242 

classification. In this example unit, we found that the tonic spikes were well tuned to the STA, 243 
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as evidenced by the steep slope of the non-linearity while the burst spikes were not well tuned 244 

to the STA, as evidenced by the relatively flat non-linearity (Figure 2D). This trend was 245 

consistent across units where the burst spikes showed reduced tuning to the STA as 246 

compared to tonic spikes as assessed by the slope of the spiking nonlinearity (Figure 2E). 247 

Here, we have separated the difference in the slope of the non-linearity from the difference in 248 

the prevalence of burst and tonic spikes (p(spike)), which is markedly higher for tonic spikes 249 

than for burst spikes (Figure 2F). Furthermore, we tested alternative burst spike classifications 250 

and quantified the implication for the STA (Figure 2G, top). Across spiking classifications, 251 

increased periods of silence prior to the spike (tsilence) led to decreased STASNR while bursts of 252 

spikes (tisi<4 or <10) had consistently lower STASNR relative to tonic spikes (tisi>20) (Figure 2G, 253 

example unit in middle, population data in bottom). Therefore, our data do not provide 254 

evidence to support a difference in feature selectivity for tonic and burst spiking in this 255 

pathway, but instead suggests a reduction in stimulus selectivity in burst spiking within this 256 

analytic framework.  257 

 258 

Thalamic state dependent feature selectivity 259 

The previous analysis was conducted by presenting sensory white-noise stimuli and 260 

parsing measured thalamic spiking activity into tonic and burst classes, while these classes of 261 

spiking were intermingled throughout the recordings. However, the thalamus was in tonic firing 262 

mode, with relatively low burst firing rates (Figure 2F). Here, we used optogenetic 263 

hyperpolarization of the thalamic neurons not to silence the thalamic neurons, but instead to 264 

shift the thalamus into a burst firing mode during sensory white noise stimulation (Figure 3A). 265 

Using this optogenetic manipulation, we asked whether the optogenetically manipulated firing 266 

mode (baseline and hyperpolarized conditions) of the thalamus impacts feature selectivity and 267 

how this relates to the classified burst/tonic modes. 268 
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Here, we recorded the thalamic response to sensory white noise with and without the 269 

presence of a light stimulus (hyperpolarized and baseline conditions, respectively) to shift the 270 

firing mode of the thalamus towards burst firing (baseline burst ratio = 0.16 ± 0.15, 271 

hyperpolarized burst ratio = 0.36 ± 0.27, n = 10 units). For an example unit, we have plotted 272 

 

Figure 3: Optogenetic Manipulation of Thalamic State. A. Experimental paradigm. Scale 

bar: 1 mm. B. Example thalamic response to frozen white noise segments without (baseline) 

and with (hyperpolarized) optogenetic stimulation. C. Spike triggered average computed as a 

function of spike classification (burst, tonic) or thalamic state (baseline, hyperpolarized). D. 

Example unit tonic/burst and baseline/hyperpolarized spike nonlinearity. E. STASNR across 

recorded population (n = 11 units). Arrow depicts example unit in B.  F. Average non-linearity 

across all units. G. Baseline and hyperpolarized firing rate (p(spike)) across recorded 

population (p>0.05).  
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the spiking response to a frozen white noise segment without optogenetic stimulation (Figure 273 

3B, baseline condition) and with optogenetic stimulation (Figure 3B, hyperpolarized condition). 274 

We have pseudocolored the tonic spikes grey and the burst spikes red to qualitatively visualize 275 

the thalamic firing mode (Figure 3B). In the baseline condition, the response is primarily tonic 276 

as evidenced by the grey raster plots (Figure 3B, Baseline, BR = 0.10). In the hyperpolarized 277 

condition (optically stimulated), the firing mode is biased towards a burst encoding scheme, 278 

as evidenced by the prevalence of red burst spikes (Figure 3B, Hyperpolarized, BR = 0.67).  279 

The tonic STA showed pronounced feature selectivity for this unit while the burst STA did not 280 

(Figure 3C top), consistent with the earlier findings (Figure 2). In the optogenetically 281 

manipulated states, the baseline STA has prominent feature selectivity while the 282 

hyperpolarized condition is much smaller in amplitude (Figure 3C bottom). Qualitatively, we 283 

can see that the STA from hyperpolarized condition reflected the STA obtained from the burst 284 

spiking in the previous analysis. 285 

The similarity between the burst spike response and hyperpolarized condition can also 286 

be seen in this example nonlinearity where the burst and hyperpolarized nonlinearities are 287 

effectively flat while the tonic spikes and baseline condition show obvious tuning (Figure 3D). 288 

Across units, we found an overall reduction in the STASNR for the hyperpolarized condition 289 

relative to the baseline condition (Figure 3E, p = 0.037). We also found that the tuning of the 290 

nonlinearity was lower for the hyperpolarized condition relative to the baseline condition as 291 

reflected in the overall gain/slope (Figure 3F). Importantly, the baseline and hyperpolarized 292 

conditions both contain burst and tonic spikes. Instead of completely separating the firing 293 

modes into all burst spikes or all tonic spikes, we have optogenetically altered the spiking 294 

probabilities such that the baseline condition has more tonic spikes and the hyperpolarized 295 

condition has more burst spikes while maintaining similar numbers of spikes (Figure 3G). The 296 

similarities between the STA and the NL properties of the burst and hyperpolarized state as 297 

well as the tonic and baseline state suggest that there was no discernable difference for the 298 
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estimation of feature selectivity when assessed based on the state of the thalamus at the time 299 

of the stimulus (hyperpolarized/baseline) versus the spike type classification (burst/tonic).  300 

 301 

Temporal precision of thalamic firing modes   302 

Given the difference between the recovered estimates of burst/hyperpolarized and 303 

tonic/baseline feature selectivity, we implemented a series of computational controls to identify 304 

any potential shortcomings of the methodologies that could underlie these results. The first 305 

issue we considered was whether or not the burst spike feature selectivity was unrecoverable 306 

due to the effect of subsequent spikes in the burst. If the timing of spikes within a burst is not 307 

repeatable and structured, the presence of these additional spikes will serve to destroy the 308 

temporal structure in the feature selectivity as revealed by the spike triggered analysis. When 309 

the bSTA was computed from only the first spike in each burst (Figure 2B, red-dashed line), 310 

there was no apparent feature selectivity for this example unit. This can also be visualized 311 

across units in the STASNR where the bSTASNR is plotted when computed from all burst spikes 312 

(black dot) and when computed from the first spike in each burst (red circle, Figure 2C). 313 

Therefore, including all spikes in a burst (or not) does not strongly impact the ability to estimate 314 

the feature selectivity from the STA. 315 

The second issue we considered was the overall difference in spike rates. Spike 316 

triggered analyses require a large number of spikes to effectively estimate the underlying 317 

selectivity. The proportion of spikes classified as bursts was lower than the spikes classified 318 

as tonic (Figure 2F) as quantified by the burst and tonic firing rate. Therefore, it was possible 319 

that we could not recover an STA for the burst spike condition due to the reduced number of 320 

burst spikes relative to tonic spikes. In an example unit, we computed the tSTA using only a 321 

subset of the spikes (n = 2362 of 36558 spikes corresponding to n = 2363 bursts with n  = 322 

7547 burst spikes) and found that the linear filter was essentially identical to the tSTA (Figure 323 

2B, grey dashed line). We computed this for all thalamic units and again found that the burst-324 

count matched tSTA was also significantly larger than the bSTA. Furthermore, there was no 325 
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statistically significant difference in the firing rate between the baseline and hyperpolarized 326 

optogenetic conditions (Figure 3G), but still the difference in the STA persisted.  This suggests 327 

that simple spike counts alone were insufficient to explain the difference in the tonic/baseline 328 

STA and the burst/hyperpolarized STA.  329 

The third issue we considered was the inherent assumption that the feature selectivity 330 

for each unit could be recovered as the STA. It was possible that the burst STA was not 331 

recoverable because the burst firing mode was better estimated by a symmetric nonlinearity 332 

and therefore the filter could only be recovered using spike triggered covariance (STC) 333 

techniques. We therefore computed the STC for all recorded thalamic units and compared this 334 

for each spiking condition. Although the dataset was more limited because the number of units 335 

with a significant STC filter was lower than those with a significant STA filter (n = 13 units with 336 

STC filter compared to n = 30 units with STA filter), the same trends regarding the reduction 337 

in the amplitude of the filter (STCSNR) and the slope of the symmetric nonlinearity persisted 338 

(data not shown). Therefore, this suggests that the method of extracting the feature selectivity 339 

(STA compared to STC) was insufficient to explain the inability to estimate the feature 340 

selectivity in the hyperpolarized/burst spiking conditions.  341 

The fourth assumption made throughout the analysis was that burst spikes are actually 342 

driven by sensory stimuli such that there is a recoverable burst spike feature selectivity. The 343 

alternative explanation would be that burst spikes are not feature selective and instead occur 344 

randomly due to intrinsic or other non-sensory processes. To assess this, we quantified the 345 

trial-to-trial repeatability for bursts in response to frozen white noise segments. As can be seen 346 

in Figure 3B, the qualitative assessment of temporally aligned bursts in response to the frozen 347 

white noise segment suggests that the bursts are driven by the sensory stimulus in a 348 

repeatable way. For units with a sufficient number of repeated trials, we computed the 349 

reliability of the burst spiking as the correlation between the peristimulus time histogram of 350 

even and odd trials in response to the frozen white noise segment. We found that all units 351 

showed greater reliability than what is expected based on just the temporal correlations in the 352 
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burst spiking (shuffle control, p = 0.002, n = 10 thalamic units).  This suggests that the bursts 353 

are not randomly generated or due entirely to a non-stimulus related phenomenon.  354 

From these controls, we propose that the difference in the spike triggered encoding 355 

properties could not be attributed to differences in the overall spike rates, the temporal 356 

properties of the spikes within the burst, or the mechanism of filter estimation. Instead, we 357 

propose that the burst spikes are driven by the sensory stimulus and have an underlying 358 

feature selectivity, but that this cannot be recovered using spike triggered techniques due to 359 

the reduced temporal precision of burst spiking relative to tonic spikes.  360 

Recovering an STA relies on precise temporal spiking relative to the sensory stimulus. 361 

To simulate degradation of the spike timing precision, we added independent samples of 362 

normally distributed temporal jitter of varying amplitudes (standard deviation of the jitter 363 

distribution) to each tonic spike for an example unit and computed the STA (Figure 4A).  364 

Across units, we quantified the degradation of the STA as the jittered-STASNR normalized by 365 

the tSTASNR (0 ms jitter). The jittered-STASNR (black) is within the band expected for the 366 

bSTASNR with the addition of 4 milliseconds of jitter to the spike times (red shaded, Figure 4A, 367 

right). We propose that the effects of temporal jitter are particularly evident for whisker 368 

selectivity, presumably due to the short temporal duration of the filters (approximately 10-15 369 

milliseconds in duration, Figure 1F).  370 

Given the marked effects of jitter on the ability to recover the STA, we investigated the 371 

variability in the spike timing relative to the noise stimulus (Figure 4B). For this example unit, 372 

we have identified a segment in the noise stimulus that closely resembles the tonic STA for 373 

this unit and elicits a reliable spiking response (Figure 4B, top; stimulus – black, tSTA – grey 374 

dashed). The vertical dashed line indicates the spike time for the spike triggered average (t0) 375 

with the grey bar indicating the duration of the STA. If there was no variability in the neural 376 

spiking, the raster plots would all be perfectly aligned to t0 because the similarity between the 377 

stimulus and the STA would predict a spiking response at that time point. However, the timing 378 

of evoked neural responses is always variable to some extent and this can be visualized for 379 
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this example response segment as the temporal variability of the spike times surrounding this 380 

stimulus feature in the noise stimulus (Figure 4B, as indicated by the grey stimulus bars that 381 

extend from the first spike response to this particular sensory feature). For this example 382 

snapshot, it is also apparent that the burst spikes in the hyperpolarized condition show greater 383 

temporal variability than the tonic spikes in the baseline condition. 384 

To quantify this jitter across all spikes, we developed a τjitter metric that determines the 385 

time lag of the peak correlation between the STA and the stimulus segment (s(tj)) surrounding 386 

each spike (Figure 4C). Intuitively, this is a correlative method to identify the time lag between 387 

when we predict a spike is most likely to occur based on the STA and the stimulus (peak 388 

correlation) and when the spike actually occurred. For this analysis, we treated the tSTA as 389 

the true feature selectivity of the neuron across all spiking conditions because we could not 390 

recover a reliable estimate of the bSTA.  391 

We computed τjitter for each spike and plotted τjitter distributions for each spike condition 392 

(tonic, burst, baseline, hyperpolarized). If a neuron was infinitely precise such that when the 393 

stimulus matched the spike triggered average, the neuron fired a spike without delay, this 394 

distribution would be represented by a delta function at τjitter equals zero. As the variability of 395 

the timing increases, the width of this distribution will also increase. For the tonic and baseline 396 

condition spikes, we found a clear peak in τjitter values at τjitter equals zero (Figure 4C, grey, 397 

black). For the burst and hyperpolarized condition spikes, we observe little-to-no peak in the 398 

τjitter metric at zero (Figure 4C, red, yellow). We computed the τjitter distribution across all 399 

thalamic units and found that the tonic and baseline spikes had higher peaks at τjitter equals 400 

zero than the burst and hyperpolarized spike conditions (Figure 4D). We quantified this 401 

statistically by computing a precision metric (Figure 4C) that computes the proportion of spikes 402 

within ±1 millisecond of τjitter equals zero (Figure 4E). The tonic and baseline spike condition 403 

were more precise than burst and hyperpolarized conditions.  404 
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 405 

 

Figure 4: Thalamic timing variability in the response to the sensory white noise. A. 

Effect of increased jitter on thalamic STA (schematic: left, example: center). Across units, the 

normalized amplitude of the jittered STA (jitteredSTASNR/tSTASNR) was plotted across jitter 

intensities (black, right). The normalized amplitude of the burst STA (bSTASNR/tSTASNR) is 

shown in red (mean ± s.d.). B. In this example, the same stimulus (black; scale bar: 0.1°) 

was presented with and without optogenetic hyperpolarization (data from example unit 

presented in Figure 3 with associated STA (grey dotted line; scale bar: 0.025°)). C. Example 

unit τjitter distributions for burst, tonic, baseline, and hyperpolarized conditions. D. Average 

τjitter distributions for burst/tonic spikes (n = 31 units) and baseline/hyperpolarized condition (n 

= 11 units). (mean +/- sem). E. Precision for burst/tonic spikes (n = 31 units, p = 1e-6) and 

baseline/hyperpolarized condition (n = 11 units). (mean +/- sem, p=1e-3). 
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These data suggest that tonic spikes showed greater temporal precision in response 406 

to the sensory white noise than burst spikes and that this could underlie the difference in the 407 

recoverability of the feature selectivity in the thalamus between firing modes. It is well 408 

established that the timing of sensory inputs is particularly important in the thalamocortical 409 

circuit such that changes in thalamic spike timing could have large impacts on the downstream 410 

representation of sensory information in the cortex. Next, we investigated how these changes 411 

in temporal precision in optogenetically modulated thalamic states impact cortical encoding 412 

properties. 413 

 414 

Optogenetic modulation of thalamic firing modes directly impacts cortical representation of 415 

sensory information.   416 

Cortical neurons that receive direct thalamic input are integrating information over a 417 

population of thalamocortical neurons that can be operating in different firing modes. This 418 

makes it difficult to determine the impact of a single burst from a single neuron on information 419 

representation in the pathway. Instead, we used the optogenetic manipulation of thalamic state 420 

as presented in Figure 3 to bias the activity of the thalamic population towards burst firing 421 

(hyperpolarized condition) and investigated the effects on the cortex. Here, we transfected the 422 

thalamus with a hyperpolarizing opsin and lowered an optic fiber into the thalamus while 423 

recording the cortical activity extracellularly (Figure 5A) in response to sensory white noise 424 

with and without optogenetic manipulation of the thalamus (hyperpolarized VPm, baseline 425 

VPm).  426 
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For an example unit, we have plotted the cortical STA in the baseline and 427 

hyperpolarized VPm conditions (Figure 5B). Here, the amplitude of the cortical STA was 428 

smaller when the thalamus is hyperpolarized compared to when it is not (Figure 5B). This 429 

cortical unit also shows a reduced tuning to the STA when the thalamus was hyperpolarized 430 

(Figure 5C). Across the population of recorded cortical neurons, we saw the same effect seen 431 

in this example neuron of a reduced STASNR when the VPm was hyperpolarized compared to 432 

 

Figure 5: Optogenetic modulation of thalamic firing modes directly impacts cortical 

representation of sensory information. A. Experimental paradigm. Scale bar: 1 mm. B. 

Example STA for a cortical unit recorded during optogenetic manipulation of the thalamus. C. 

Example cortical nonlinearity as a function of thalamic state. D. STASNR across cortical units 

(n = 32 units. p = 1e-6). E. Spiking nonlinearity across cortical units. F. Cortical firing rate (p 

= 0.31).  G. Example cortical unit τjitter distributions for baseline and hyperpolarized thalamic 

conditions. H. Average τjitter distributions for baseline/hyperpolarized thalamic condition 

(mean +/- sem). I. Precision for cortical spikes during baseline/hyperpolarized thalamic 

condition (mean +/- sem, p=8e-6). 
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when it was not (Figure 5D) and a reduction in the tuning across all cortical units as quantified 433 

by the spiking nonlinearity (Figure 5E). These findings mirror what was seen for thalamic 434 

neurons when comparing the baseline and the optogenetically manipulated conditions 435 

demonstrating that the changes in thalamic encoding properties are propagated to cortex.  436 

Interestingly, there was no significant difference in the noise-evoked firing rate in the 437 

cortex as a function of the VPm condition (Figure 5F). This suggests that it was not overall 438 

spike counts influencing the cortical feature selectivity. Instead, we propose the temporal jitter 439 

in the thalamic spiking patterns propagated to cortex. We investigated the temporal precision 440 

of the cortical spiking in response to the sensory white noise using the same methodology 441 

employed for the thalamus. As we saw for the thalamus, the cortical spikes from this example 442 

unit also showed greater temporal precision in the baseline VPm condition compared to the 443 

hyperpolarized VPm condition (Figure 5G) as evidenced by the peak in the τjitter distribution 444 

around τjitter equals zero. This effect was consistent across the population of recorded cortical 445 

units (Figure 5H) and showed significant differences in the precision of the cortical firing 446 

(Figure 5I). This suggests that the temporal jitter present in the thalamus is transmitted to the 447 

cortex where it also impacts the representation of sensory information.  448 

  449 
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Discussion 450 

The highly interconnected thalamocortical pathway dynamically gates information flow 451 

between the periphery and higher cortical centers dependent on many factors including 452 

behavioral state (Niell and Stryker, 2010), task demands (Atiani et al., 2009), and sensory 453 

adaptation state (Whitmire et al., 2016). Although there have been extensive investigations 454 

into the cortical state-dependent processing of the thalamocortical circuit, we know 455 

surprisingly little about how this information is processed in a thalamic state-dependent 456 

manner. Here, using a combination of optogenetic stimulation and electrophysiological 457 

recording techniques, we have performed a series of experiments modulating the state of the 458 

thalamus (through constant optogenetic hyperpolarization) and quantified the effects on 459 

encoding in the thalamocortical circuit. Using this technique, we have coarse control of the 460 

firing mode in thalamus without altering the processing occurring from the whisker to thalamus, 461 

enabling us to decouple the changes in thalamic firing mode on thalamocortical processing 462 

from changes occurring in subthalamic processing. We found that, unlike the visual pathway, 463 

the feature selectivity of burst spikes in the vibrissa pathway could not be recovered using 464 

spike triggered techniques due to increased burst spike timing variability relative to tonic spike 465 

timing. Recordings from barrel cortex during optogenetic manipulation of thalamic state 466 

demonstrated a shift in the temporal precision of the cortical spiking that also led to a 467 

degradation of the recovered feature selectivity. This suggests that bursts in the whisker 468 

pathway are less precise than tonic spikes during ongoing sensory stimulation and that this 469 

loss of temporal precision is propagated to cortex. 470 

These results could be interpreted as consistent with the view that bursts are not 471 

representing detailed stimulus information. However, there is evidence that bursts may convey 472 

more information than the presence or absence of a burst through inter-burst spike timing and 473 

the number of spikes per burst (Mease et al., 2017), suggesting a role of temporally precise 474 

burst firing in information representation. Furthermore, thalamic bursting can be temporally 475 

precise within and across neurons in response to high intensity whisker stimuli (Whitmire et 476 
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al., 2016). Instead, we propose that the temporal precision of the thalamic firing is a function 477 

of both the state of the thalamus and the intensity of the sensory stimulus. It has previously 478 

been shown that the temporal precision of thalamic encoding increases with the intensity of 479 

the sensory stimulus (Desbordes et al., 2008; Whitmire et al., 2016) while here we have shown 480 

that the temporal precision of the thalamic firing decreases with sustained hyperpolarization. 481 

These two competing factors would enable the burst firing mode to encode high amplitude 482 

stimuli in a temporally precise fashion while low amplitude stimuli, such as the sensory white 483 

noise presented here, would not be able to overcome the variability present in the burst state.  484 

There are multiple mechanisms that could underlie the reduced temporal precision in 485 

the burst firing mode including variability introduced by the slow dynamics of the calcium 486 

depolarization, increased variability in the time to reach threshold due to the prolonged 487 

hyperpolarization of the baseline polarization, as well as potential changes in the integration 488 

properties of the thalamic neurons. Furthermore, these mechanisms could occur 489 

independently such that the variability across neurons is uncorrelated or these mechanisms 490 

could be coordinated in some way to enable correlated variability across the thalamic 491 

population. Both coordinated and uncoordinated jitter would have a detrimental effect on the 492 

ability to recover the STA because either the spike timing would no longer be locked to the 493 

stimulus itself or the input to the cortex would be temporally imprecise. However, coordinated 494 

jitter would maintain the information about the stimulus while uncoordinated jitter would 495 

degrade the recoverability of the stimulus features. Future work should investigate the jitter in 496 

the burst spiking across units to determine whether or not the variability in the spike timing is 497 

coordinated across thalamic units in this context. 498 

Given the importance of thalamic spike timing precision within and across neurons in 499 

transmitting information downstream to cortex (Bruno and Sakmann, 2006; Wang et al., 2010), 500 

alterations to thalamic state can shape multiple properties of the spiking inputs to cortex. 501 

Manipulation of the thalamic state can lead to changes in the stimulus evoked cortical 502 

dynamics (Whitmire et al., 2017) and spatiotemporal cortical activation (Borden et al., 2017). 503 
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We have primarily considered thalamic state-dependent encoding as a feedforward 504 

representation from thalamus to cortex, but the highly interconnected thalamocortical circuitry 505 

is a dynamic interaction that shapes coding properties in both feedforward and feedback 506 

manner. Changes in thalamic activity impact cortical activity which then provides feedback to 507 

thalamus to further alter activity (Crandall et al., 2015; Mease et al., 2014; Poulet et al., 2012; 508 

Reinhold et al., 2015; Wimmer et al., 2015). It is possible for thalamus to influence cortical 509 

state and for the cortex to influence thalamic state, but how this plays out during natural 510 

behaviors is not yet known and must be decoupled using more sophisticated techniques such 511 

as closed-loop control of neural activity (Bolus et al., 2018; Newman et al., 2015). The ability 512 

to shift the temporal precision of the thalamic spike timing through changes to the thalamic 513 

state, or the baseline membrane potential, provides a biophysical mechanism for the thalamus 514 

to gate information flow to cortex. Furthermore, this mechanism could be under both 515 

feedforward and feedback control. This sets the stage for a dynamic interaction between 516 

thalamic and cortical states to drive highly interactive patterns of neural activity.  517 
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