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Abstract  1 

Sensory signals from the outside world are transduced at the periphery, passing through 2 

thalamus before reaching cortex, ultimately giving rise to the sensory representations that 3 

enable us to perceive the world. The thalamocortical circuit is particularly sensitive to the 4 

temporal precision of thalamic spiking due to highly convergent synaptic connectivity. 5 

Thalamic neurons can exhibit burst and tonic modes of firing that strongly influence timing 6 

within the thalamus.  The impact of these changes in thalamic state on sensory encoding in 7 

the cortex, however, remains unclear. Here, we investigated the role of thalamic state on 8 

timing in the thalamocortical circuit of the vibrissa pathway in the anesthetized rat. We 9 

optogenetically hyperpolarized thalamus while recording single unit activity in both thalamus 10 

and cortex. Tonic spike triggered analysis revealed temporally precise thalamic spiking that 11 

was locked to white-noise sensory stimuli, while thalamic burst spiking was associated with a 12 

loss in stimulus-locked temporal precision. These thalamic state dependent changes 13 

propagated to cortex such that the cortical timing precision was diminished during the 14 

hyperpolarized (burst biased) thalamic state. While still sensory driven, the cortical neurons 15 

became significantly less precisely locked to the white-noise stimulus. The results here 16 

suggest that tonic thalamic spiking is more temporally precise than burst firing, which leads to 17 

distinct differences in sensory information representation at the level of both the thalamus and 18 

the cortex, as assessed using spike triggered analysis. This difference in spike timing precision 19 

enables a dynamic encoding scheme for sensory information as a function of thalamic state.   20 
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New and Noteworthy 21 

The majority of sensory signals are transmitted through the thalamus. There is growing 22 

evidence of complex thalamic gating through coordinated firing modes that have a strong 23 

impact on cortical sensory representations. Optogenetic hyperpolarization of thalamus pushed 24 

it into burst firing that disrupted precise time-locked sensory signaling, with a direct impact on 25 

the downstream cortical encoding, setting the stage for a timing-based thalamic gate of 26 

sensory signaling.  27 
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Introduction  28 

Sensory thalamus plays a critical role in gating information flow from sensors in the 29 

periphery to cortex, ultimately shaping how we perceive the world. Importantly, thalamic gating 30 

properties are not static, but instead vary dynamically through a range of modulatory 31 

mechanisms, including local membrane and synaptic properties (Wolfart et al., 2005), stimulus 32 

history (Whitmire et al., 2016), and neuromodulatory inputs (Castro-alamancos, 2002; Mease 33 

et al., 2014).  Although arising from different mechanisms, these modulatory inputs have the 34 

net effect of altering the baseline membrane polarization level in the thalamus, referred to here 35 

as “thalamic state”, which plays an important role in determining the encoding properties of 36 

the thalamic neurons that serve as primary inputs to sensory cortex. Perhaps most 37 

prominently, modulation of the baseline membrane potential in thalamic neurons enables 38 

distinct tonic and burst firing modes due to the selective engagement of low threshold calcium 39 

channels during prolonged hyperpolarization (Suzuki and Rogawski, 1989). It has long been 40 

posited that these two firing modes could dynamically control information processing 41 

(Sherman 2001), but the precise way in which this could happen has remained speculative 42 

and the way in which cortical coding properties are shaped is unknown.  43 

Although the large majority of studies of T-type calcium channel bursts in thalamus 44 

have been focused on the underlying detailed biophysical mechanisms enabled by brain slice 45 

recordings, there have been a number of investigations of the intact circuitry in-vivo.  At the 46 

thalamocortical synapse, in-vivo studies have shown that spontaneous burst spikes are more 47 

effective at driving cortical spiking (Swadlow and Gusev, 2001) and evoke larger cortical 48 

depolarizations (Bruno and Sakmann, 2006) than tonic spikes. The in-vivo properties of burst 49 

and tonic spiking have been explored perhaps most extensively in the visual pathway (Alitto 50 

et al., 2005; Denning and Reinagel, 2005; Lesica and Stanley, 2004; Reinagel et al., 1999; 51 

Wang et al., 2007), with burst firing shown to be reliably elicited across trials in response to 52 

visual stimulation (Lesica and Stanley, 2004; Martinez-Conde et al., 2002; Wang et al., 2007), 53 

associated with an “all-or-none” type of response to facilitates detection of changes in the 54 

visual scene (Lesica and Stanley, 2004) consistent with mechanisms that would serve as a 55 
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“wake-up call” to cortex (Sherman, 2001). Furthermore, although historically controversial, it 56 

has been shown in a number of studies that thalamic bursting is not just observed in sleep 57 

states or under anesthesia, but is present, albeit reduced, in the awake brain (Borden et al., 58 

2019; Guido and Weyand, 1995; Whitmire et al., 2016). However, the implication for 59 

downstream cortical encoding remains elusive because of the complexity of the 60 

thalamocortical circuitry. It has been estimated that 50-100 thalamic neurons converge as the 61 

primary drivers of a single cortical neuron (Bruno and Sakmann, 2006), where the concerted 62 

effort of a relatively large number of synaptic inputs is needed to drive suprathreshold cortical 63 

activity.  Without a mechanism to manipulate the population activity of thalamic neurons 64 

converging on a common cortical target independent of the sensory drive, the role of 65 

tonic/burst firing in driving downstream cortical activity remains elusive.  66 

To address this, we used optogenetic manipulation of thalamic state to systematically 67 

bias the thalamic population towards a burst firing regime to quantify the role of thalamic state 68 

on precise timing of spiking activity in the thalamocortical circuit of the rodent whisker pathway 69 

using a two-stage, linear-nonlinear framework. The first stage represents the sensory feature 70 

selectivity, and the second stage represents the overall sensitivity of the input-output 71 

relationship (Estebanez et al., 2012; Petersen et al., 2008; Ramirez et al., 2014). This 72 

characterization was performed for neurons recorded extracellularly in the ventro posterior-73 

medial (VPm) thalamus and in primary somatosensory cortex (S1) in the fentanyl-anesthetized 74 

rat, for both first order (spike-triggered average) and higher order (spike-triggered covariance) 75 

selectivity. For thalamic neurons, we found that tonic spiking was associated with whisker-76 

stimulus feature selectivity consistent with previous findings (Petersen et al., 2008). However, 77 

analysis of burst firing suggested that while bursting activity was clearly sensory driven, the 78 

spike-triggered analysis revealed a lack of precise stimulus-locked spiking in response to 79 

white-noise whisker stimulation. This was further confirmed using optogenetic 80 

hyperpolarization of VPm to switch the thalamus into a burst mode.  In the cortical neurons, 81 

when the thalamus was dominated by tonic firing, the cortical neurons exhibited similar feature 82 

selectivity as observed in VPm. However, when the thalamus was optogenetically 83 
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hyperpolarized, the spike-triggered analysis revealed a reduction in precise stimulus-locked 84 

spiking in S1 units in response to the white-noise whisker stimulus, yet maintained a consistent 85 

overall stimulus-driven firing rate. Given the sensitivity of the cortex to precise timing of 86 

thalamic projection neurons, these results suggest that shifts in thalamic state disrupt precise 87 

timing of thalamic inputs to cortex that are compensated for by the potency of the thalamic 88 

bursts, setting the stage for a timing-based gating of information flow to cortex.  89 
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Methods 90 

Experimental Procedures 91 

Acute Surgery: All procedures were approved by the Georgia Institute of Technology 92 

Institutional Animal Care and Use Committee and were in agreement with guidelines 93 

established by the National Institutes of Health. 19 female albino rats (Sprague-Dawley, 250-94 

300g) were anesthetized intravenously using a fentanyl cocktail (fentanyl (5 µg/kg), midazolam 95 

(2 mg/kg), dexmedetomidine (150 µg/kg)). A craniotomy was performed over VPm (2-4 mm 96 

caudal to bregma, 1.5-3.5 mm lateral to the midline), and in a subset of animals, a second 97 

craniotomy was performed over S1 (1-3 mm caudal to bregma, 4.5-6 mm lateral to the 98 

midline). At the termination of the experiment, the animal was euthanized with an overdose of 99 

sodium pentobarbital (euthasol, 0.5 mL at 390 mg/mL). All optogenetically transfected animals 100 

that underwent cortical probe recordings were perfused and their brains were imaged for 101 

verification of opsin location and cortical probe location.  102 

Electrophysiology: Tungsten microelectrodes were lowered into the thalamus (depth: 4.5-6 103 

mm) using a micropositioner (Kopf, Luigs-Neumann). Multielectrode probes (A1x32-10mm-104 

50-177, NeuroNexus) were lowered perpendicular to S1 (45° relative to vertical; depth: 2 mm). 105 

The topographic location of the electrode was identified through manual stimulation of the 106 

whisker pad. Upon identification of the primary whisker for the recorded unit(s), the primary 107 

whisker was threaded into the galvo motor to permit stimulation of a single whisker.  108 

Sensory Stimulus: Mechanical whisker stimulation was delivered using a precisely controlled 109 

galvo motor (Cambridge Technologies, custom Matlab software). The mechanical stimulus 110 

applied to the whisker in the rostral-caudal direction consisted of sensory white-noise (low 111 

pass filtered at 200 Hz, standard deviation of the noise was 0.6° or 223°/s). Feedback from 112 

the whisker stimulator were used for further spike triggered analysis across all units (down 113 

sampled to 4.88 kHz). 114 
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Optogenetics surgeries: All surgical procedures followed sterile protocol. A small craniotomy 115 

was made above VPm (3 mm lateral, 3 mm caudal to bregma). A 10 µL syringe (Neuros 116 

Syringe, Hamilton, Inc) filled with the virus (rAAV5-CamKIIa-Jaws-KGC-GFP-ER2 or rAAV5-117 

CamKIIa-eNpHR3.0-EYFP, UNC Viral Vector Core Services) was lowered to depth of 5.2 mm 118 

before injecting 1 µL of virus at a rate of 0.2 µL/min (iSi system, Stoelting). The syringe 119 

remained in place for five minutes after the injection was complete to allow the virus to diffuse. 120 

Opsin expression was fully realized at 2-3 weeks post-surgery. 121 

Optogenetic Stimulus:  Optical manipulation was administered with a controlled pulse of light 122 

through a custom optrode consisting of an optical fiber (200µm diameter; Thorlabs) and an 123 

electrode (Tungsten microelectrode; FHC) that was lowered into the VPm. Upon identifying a 124 

whisker sensitive cell, light sensitivity was assessed by the post-inhibitory rebound spiking 125 

response using a train of 250 millisecond light pulses (λ = 590 or 617nm for Halorhodopsin 126 

and Jaws, respectively). The whisker was then stimulated without (baseline) and with 127 

(hyperpolarized) light provided directly to the thalamus (50 mW/mm2). Optogenetic stimulus 128 

conditions (light on/hyperpolarized, light off/baseline) were interleaved to avoid long-term 129 

adaptation effects. 130 

Analytical Methods: Spike sorting for single channel recordings was performed online and 131 

validated offline using Waveclus (Quiroga et al., 2004). Spike sorting for multichannel 132 

electrodes was performed offline using the KlustaKwik software suite (Rossant et al., 2015). 133 

Isolation of the unit was confirmed by the waveform amplitude (absolute and relative to the 134 

background noise >3) and the interspike-interval distributions (VPm: mean of 0.22%, S1: 135 

mean of 0.38% of spikes in absolute refractory period of 1ms).  136 

Although spike-triggered analysis for exploration of feature selectivity has been utilized widely 137 

in the thalamocortical circuit of the visual (Butts et al., 2007; Jones and Palmer, 1987; Lesica 138 

and Stanley, 2004; Reid and Alonso, 1995) and auditory (Eggermont et al., 1983; Theunissen 139 

et al., 2000) pathway , the application of this approach in the somatosensory pathway has 140 
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been limited to a fairly small number of studies across thalamus (Petersen et al., 2008) and 141 

cortex (Estebanez et al., 2012; Maravall et al., 2007; Ramirez et al., 2014).  Here we 142 

implemented spike-triggered analysis across VPm thalamus and S1 cortical layer 4.  143 

Specifically, feature selectivity was first estimated for each recorded unit using a simple spike 144 

triggered average (STA) (Schwartz et al., 2006).   145 

𝑆𝑇𝐴 =
1
𝑁
'𝑠(𝑡!)
!

 146 

Where N is the number of spikes and 𝑠 is the stimulus segment in a window surrounding each 147 

spike (-30 to +5 ms, spike-triggered ensemble). The burst and tonic triggered averages were 148 

computed from burst and tonic spikes, respectively. Burst spikes were classified here from the 149 

extracellular recordings as two or more spikes with an inter-spike interval of less than four 150 

milliseconds with the first spike in the burst preceded by 100 milliseconds of silence. The 151 

baseline/hyperpolarized condition triggered averages were computed from all spikes in a 152 

given stimulus condition. The bootstrap estimate of the confidence intervals on the spike 153 

triggered average was computed as the +/- 2 standard deviation of the shuffled STA 154 

distribution across 500 repetitions (Schwartz et al., 2006). Note that we implemented multiple 155 

techniques of estimating the feature selectivity of the neurons including spike triggered 156 

covariance, generalized linear models, and nonlinear-input models (McFarland et al., 2013). 157 

The results were qualitatively consistent across all methods employed, so we chose to use 158 

spike triggered average throughout the manuscript due to its simplicity.  159 

The signal-to-noise ratio of the recovered STA was quantified as the peak-to-peak amplitude 160 

of the STA within 10 milliseconds of the spike (where the significant filter activity is contained) 161 

divided by the peak-to-peak amplitude of the STA from 30 to 20 milliseconds before the spike 162 

(where there is no expected filter information). An SNR value of 1 means the amplitude of the 163 

STA near the spike time is not different from the amplitude of the noise fluctuations. Therefore, 164 

any units with an SNR value less than 2 were excluded from further analysis.   165 
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There was significant diversity in the resultant STA structure across recorded neurons. 166 

Utilizing the approach of Estebanez et al. to make comparisons of the feature selectivity across 167 

the population of recorded neurons, we conducted a principle components analysis of the 168 

recovered STA (Estebanez et al., 2012). The first two principle components accounted for the 169 

majority of the variance (71.8% VPm, 78.4% S1), and were interpreted as representative of 170 

the primary structure in the sensory input relevant for spiking in the population.  171 

The STA represents structure in the sensory input that is captured in the mean across spiking 172 

activity, and cannot capture any structure that may be in higher order statistical properties of 173 

the stimulus. Spike-triggered covariance (STC) can also be calculated as an alternative, as 174 

an attempt to uncover high-order structure in the sensory stimulus that is associated with 175 

neuronal firing (Estebanez et al., 2012). Note that while implemented in this analysis, STC 176 

analysis of both VPm and S1 neurons did not reveal significantly different structure for the 177 

neurons recorded under our experimental conditions, and are thus not shown here, and even 178 

more importantly, this analysis did not reveal a shift in feature selectivity across thalamic 179 

states.  180 

The non-linearity (𝑃(𝑠𝑝𝑖𝑘𝑒|𝑦)) was estimated as the ratio of the probability of spike-triggered 181 

stimuli (𝑃(𝑦|𝑠𝑝𝑖𝑘𝑒)) to the probability of any stimulus segment in the stimulus (𝑃(𝑦)) multiplied 182 

by the mean firing rate of the neuron(𝑃(𝑠𝑝𝑖𝑘𝑒)) (Schwartz et al., 2006): 183 

𝑝(𝑠𝑝𝑖𝑘𝑒|𝑦) = 𝑝(𝑠𝑝𝑖𝑘𝑒)
𝑝(𝑦|𝑠𝑝𝑖𝑘𝑒)

𝑝(𝑦)
 184 

Where y is defined as the stimulus (s) convolved with the feature selectivity of the unit (STA) 185 

(Lesica et al., 2007), referred to as filtered stimulus. Because the slope of the static non-186 

linearity is determined by the separation between the spike triggered ensemble and the 187 

Gaussian distributed white-noise, as the spike triggered ensemble distribution becomes more 188 

selective (i.e. the mean moves away from the filtered stimulus distribution), the separability of 189 

the distributions increases, and the slope of the non-linearity also increases. Intuitively, this 190 
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means that the shape of the non-linearity gives an estimate of the separability of the spike 191 

triggered ensemble and the stimulus distribution, or how strongly tuned a neuron is for that 192 

particular feature, given by the STA. A steeper slope in the non-linearity suggests a stronger 193 

tuning than a shallower slope. Therefore, we also assessed the spiking nonlinearity as a 194 

function of the spike classification. For all conditions, the best estimate of the STA was defined 195 

as tonic spike triggered average for thalamic units and the baseline thalamic state (i.e. not 196 

optogenetically manipulated) for the cortical units. Throughout the manuscript, we separate 197 

the firing rate (p(spike)) from the shape of the non-linearity (p(y|spike)/p(y)) to avoid 198 

confounding differences in firing rate with differences in tuning.  199 

The precision in the noise evoked firing was estimated for each spike classification (tonic, 200 

burst, baseline, hyperpolarized). The precision was defined as:  201 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
∑ 𝜏!"##$%&'
('

∑ 𝜏!"##$%)
()

 202 

Or the number of spikes with 𝜏!"##$% values of +/- 1 ms duration normalized by the total number 203 

of spikes. 𝜏!"##$% is defined for each spike as the temporal lag (tlag) for the peak correlation 204 

between the STA and the stimulus segment surrounding that spike (-30 ms to +5 ms). 205 

𝜏!"##$% = 𝑎𝑟𝑔
𝑚𝑎𝑥
𝑡*+, 	𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 ?𝑆𝑇𝐴, 𝑠A𝑡!BC 206 

The 𝜏!"##$% distribution was normalized by the total number of spikes in each condition (tonic, 207 

burst, baseline, hyperpolarized).  208 

All pairwise statistical comparisons were computed using a Wilcoxon signed rank test unless 209 

otherwise noted.  210 
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Results 211 

Spike triggered analysis in the thalamus and cortex 212 

We recorded thalamic and cortical extracellular spiking activity in response to sensory 213 

white-noise stimulation of a single whisker in the vibrissa pathway of the fentanyl-cocktail 214 

anesthetized rat to enable long-duration, controlled measurements needed for precise 215 

estimates of feature selectivity (Figure 1A, see Methods). We estimated the feature selectivity 216 

for each unit as the spike triggered average (STA), which captures the features of the sensory 217 

stimulus that tended to precede spiking, and the static, point nonlinearity, which captures the 218 

translation into suprathreshold spiking activity (Figure 1B; see methods). Although this 219 

quantification was performed on longer unique noise segments, we also recorded the 220 

response to short (4-10 second) frozen white-noise segments to examine the response across 221 

trials. Figure 1C shows an example recording from a simultaneously recorded pair of neurons 222 

in topographically aligned regions of the thalamus (left column, ventral posteromedial nucleus, 223 

VPm) and cortex (right column, primary somatosensory cortex, S1) in response to the 224 

repeated presentation of a single frozen white-noise segment (top of each column). Across 225 

trials, the repeatability of the response to the noise stimulus is apparent in the raster plot, with 226 

clear vertical patterns across trials. Spike-triggered analysis has been widely utilized in 227 

studying feature selectivity in the visual (Butts et al., 2007; Jones and Palmer, 1987; Lesica 228 

and Stanley, 2004; Reid and Alonso, 1995) and auditory (Eggermont et al., 1983; Theunissen 229 

et al., 2000) pathway, but has been utilized in the somatosensory pathway in only a relatively 230 

small number of studies (Estebanez et al., 2012; Maravall et al., 2007; Petersen et al., 2008; 231 

Ramirez et al., 2014). Here, to explore the feature selectivity of these recorded neurons, the 232 

spike-triggered average (STA) was computed for the thalamic and cortical unit for stimulus 233 

segments from -30 milliseconds prior to the spike to +5 milliseconds afterwards at a 0.2ms 234 

resolution (Figure 1C, bottom). The VPm STA shows clear feature selectivity in the 10-15 235 

milliseconds prior to the thalamic spike as evidenced by the large amplitude of the STA relative 236 

to the shuffled case (grey confidence intervals). Beyond 15 milliseconds prior to the spike, the 237 
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VPm STA is essentially flat and within the confidence bounds on the shuffled process. This 238 

suggests that, on average, the thalamic unit is only sensitive to the stimulus occurring in the 239 

previous 10-15 milliseconds. The S1 unit also displays feature selectivity as evidenced by the 240 

shape and amplitude of the S1 STA immediately prior to the cortical spike relative to the 241 

shuffled case. Although the VPm STA is nearly ten times as large in amplitude as the S1 STA, 242 

the similarity in the temporal dynamics can be visualized by shifting the VPm STA by 2 243 

milliseconds relative to the S1 STA (Figure 1C, bottom, S1 STA black, VPm STA shifted by 2 244 

milliseconds and scaled by a factor of 0.1 as grey dashed line).  245 

While this simple comparison provides an interesting observation for a single pair of 246 

topographically aligned neurons, we also made comparisons of the feature selectivity across 247 

the population of recorded STAs for thalamus and cortex. First, we visualized the shape of the 248 

spike triggered average for a sample of example thalamic (Figure 1D left; greyscale) and 249 

cortical (Figure 1D right; greyscale) units. These STA filters cannot be simply averaged 250 

together to give an estimate of the population filter due to differences in the phase and 251 

directionality of the recovered STA across different recorded units. Instead, utilizing an 252 

approach from Estebanez et al., we performed a principle component analysis on the set of 253 

recovered thalamic and cortical STA filters across recordings to identify salient filter properties 254 

that generalized (Figure 1E, Estebanez et al., 2012). The first two principle components for 255 

the spike triggered averages of both thalamus and cortex explain the majority of the variance 256 

for the set of recovered filters, similar to what has been seen previously for cortex (Estebanez 257 

et al., 2012). Furthermore, a simple time shift of 2.5 milliseconds for the VPm principle 258 

components relative to the S1 principle components (Figure 1F, dashed lines) demonstrates 259 

the similarity in the STA subspace spanned by these principle components. It seems that 260 

despite not necessarily being recorded simultaneously or even in the same animal, there is a 261 

high degree of overlap in the low dimensional subspace of feature selectivity for 262 

thalamocortical neurons in the whisker pathway. Note that we further analyzed the spike 263 

triggered covariance (STC) for the same data and found that the subspace spanned by the 264 
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recovered linear filters matched the subspace estimated using the linear filters recovered 265 

using STA, thus not revealing any higher-order feature selectivity in the data.  266 

  

Figure 1: Spike-triggered analysis in the thalamocortical circuit of the rat whisker 
pathway. A. Experimental paradigm. B. Feature selectivity is assessed from the neural 

response to sensory white-noise as the spike triggered average and the associated point 

nonlinearity. C. Top: Example noise evoked response from simultaneously recorded 

topographically aligned pair of neurons. Bottom: Recovered STA for the example units. The 

black dotted vertical line indicates the time of the spike. D. Representative example thalamic 

and cortical STA (grey shades indicate different units). E. First two principle components 

computed using principle component analysis (PCA) of all recovered STA for thalamic 

neurons (n = 30) and cortical neurons (n = 32). F. Overlay of cortical STA PCs and temporally 

shifted thalamic PCs (shift of 2.5ms). 
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Tonic and burst spike triggered analysis in thalamus 267 

Inherent in the spike triggered analysis, however, is an assumption that the average 268 

filter is representative of the sensory stimulus preceding all spikes (Stanley, 2002). Yet 269 

neurons in the thalamus are well known for exhibiting two fundamentally different types of 270 

firing: tonic spiking and burst firing mediated through T-type calcium channels (Suzuki and 271 

Rogawski, 1989). Burst spikes were classified here from the extracellular recordings as two 272 

or more spikes with an inter-spike interval of less than four milliseconds with the first spike in 273 

the burst preceded by 100 milliseconds of silence (Figure 2A, see methods). Using this 274 

classification, we asked if or how the feature selectivity of an individual thalamic unit changes 275 

as a function of the spiking mechanism in the whisker pathway.  276 

In the thalamic recordings, tonic and burst spikes were interspersed throughout most 277 

of the recordings. For the example thalamic unit presented in Figure 1B, we computed the 278 

spike triggered average from all spikes (STA), the tonic spike triggered average from only tonic 279 

spikes (tSTA), and the burst spike triggered average from only spikes that are classified as 280 

being part of a burst (bSTA) (Figure 2B). The tSTA (grey) closely resembles the STA 281 

computed from all spikes (black) while the bSTA (red) is significantly degraded as evidenced 282 

by the flat shape of the filter. To compare the difference between burst and tonic feature 283 

selectivity across thalamic units, we quantified the signal-to-noise ratio of the STA (STASNR, 284 

see methods). Across all thalamic units, the STASNR was higher for tonic spikes (tSTASNR) than 285 

for burst spikes (bSTASNR) (Figure 2C). Note that again we calculated the STC under these 286 

conditions and found the same result that the STCSNR was higher for tonic spikes than for burst 287 

spikes (p = 2e-4), and that there was not a fundamental shift in representation between tonic 288 

and burst spiking.  289 

If the timing of spikes within a burst is not repeatable and structured, the presence of 290 

these additional spikes will serve to destroy the temporal structure in the feature selectivity as 291 

revealed by the spike triggered analysis. When the bSTA was computed from only the first 292 

spike in each burst (Figure 2B, red-dashed line), there was no apparent feature selectivity for 293 
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this example unit. This can also be visualized across units in the STASNR where the bSTASNR 294 

is plotted when computed from all burst spikes (black dot) and when computed from the first 295 

spike in each burst (red circle, Figure 2C). Therefore, including all spikes in a burst (or not) 296 

does not strongly impact the ability to estimate the feature selectivity from the STA. 297 

Given the estimated feature selectivity, we can compute the static non-linearity, or the 298 

input-output function, which provides a mapping between this filtered stimulus (y) and the 299 

spiking response of the neuron (p(spike|y)) by taking the ratio of the p(y|spike) to the p(y) 300 

(Figure 1B, see methods). Here, we used the tSTA as the filter for all spiking conditions when 301 

estimating the non-linearity. The probability of the filtered stimulus (p(y) remains unchanged 302 

when the filter is held constant. Therefore, any change in the non-linearity is then only due to 303 

changes in the probability of the filtered stimulus given that a spike occurred (p(y|spike)), or 304 

the spike triggered ensemble. In this example unit, we found that the tonic spikes were well 305 

tuned to the STA, as evidenced by the steep slope of the non-linearity while the burst spikes 306 

were not well tuned to the STA, as evidenced by the relatively flat non-linearity (Figure 2D). 307 

This trend was consistent across units where the burst spikes showed reduced tuning to the 308 

STA as compared to tonic spikes as assessed by the slope of the spiking nonlinearity (Figure 309 

2E). Here, we have separated the difference in the slope of the non-linearity from the 310 

difference in the prevalence of burst and tonic spikes (p(spike) or firing rate), which is markedly 311 

higher for tonic spikes than for burst spikes (Figure 2F). Furthermore, we tested alternative 312 

burst spike classifications and quantified the implication for the STA (Figure 2G, top). Across 313 

spiking classifications, increased periods of silence prior to the spike (tsilence) led to decreased 314 

STASNR while bursts of spikes (tisi<4 or <10) had consistently lower STASNR relative to tonic 315 

spikes (tisi>20) (Figure 2G, example unit in middle, population data in bottom). This suggests 316 

that any tonic spiking incorrectly classified as part of a burst would serve to increase the 317 

amplitude, and thus the SNR, of the burst-triggered average, but the conservative definition of 318 

a burst pattern that we have used here likely minimizes this effect. Therefore, our data 319 

suggests a reduction in stimulus selectivity for burst spiking perhaps not due to a true loss of 320 
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feature selectivity but instead due to the analytical framework which requires neurons having 321 

a high temporal precision relative to the timescale of the stimulus features.   322 
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Figure 2: Spike triggered analysis of burst and tonic spikes in thalamic neurons. A. Burst 

definition. B. STA from thalamic unit presented in Figure 1 estimated from all spikes (black 

solid line, n = 44105 spikes), tonic spikes (tSTA; grey solid line, n = 36558 spikes), a 

subsample of tonic spikes (tSTA; dashed line, n = 2363 of 36558 spikes) all burst spikes 

(bSTA; red solid line, n = 7547 spikes), and the first spike in the burst (bSTA; red dashed line, 

n = 2363 spikes). C. STASNR across recorded population (n = 30 units). Black dots depict the 

STASNR for all bSTA computed from all burst spikes while red circles indicate the STASNR for 

bSTA computed from only the first spike in the burst (p = 1e-6). Arrow depicts example unit in 

A. D. Example unit tonic and burst spike nonlinearity. E. Average non-linearity across all units. 

F. Burst and tonic firing rate (p(spike)) across recorded population (p = 2.6e-5). G. Spike 

triggered average using different spike classifications (Bottom plot: n = 30 thalamic units). 
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Optogenetic manipulation of thalamic state  324 

The previous analysis was conducted by presenting sensory white-noise stimuli and 325 

parsing measured thalamic spiking activity into tonic and burst classes, while these classes of 326 

spiking were intermingled throughout the recordings. However, the thalamus was in tonic firing 327 

mode, with relatively low burst firing rates (Figure 2F). Here, we used optogenetic 328 

hyperpolarization of the thalamic neurons not to silence the thalamic neurons, but instead to 329 

shift the thalamus into a burst firing mode during sensory white-noise stimulation (Figure 3A). 330 

Using this optogenetic manipulation, we asked whether the optogenetically manipulated firing 331 

mode (baseline and hyperpolarized conditions) of the thalamus impacts encoding and how 332 

this relates to the classified burst/tonic modes. 333 

Here, we recorded the thalamic response to sensory white-noise with and without the 334 

presence of a light stimulus (hyperpolarized and baseline conditions, respectively). We found 335 

no significant change in the thalamic firing rate between hyperpolarized and baseline 336 

conditions (Figure 3B), but the firing mode of the thalamus did shift towards burst firing 337 

(baseline burst ratio = 0.16 ± 0.15, hyperpolarized burst ratio = 0.36 ± 0.27, n = 10 units, Figure 338 

3C). Interestingly, the mean firing rate in VPm in response to sensory white-noise was not 339 

significantly different between the baseline and hyperpolarized conditions, reflecting a 340 

“replacement” of tonic firing with burst firing. It is also is apparent that the bursts in the baseline 341 

and hyperpolarized conditions are not occurring at similar times, despite a common sensory 342 

drive, suggesting some differences in the stimulus properties to which the bursts are sensitive 343 

across the two conditions. Bursts in the hyperpolarized condition showed a similar number of 344 

spikes per burst (Figure 3D) with a shorter inter-spike interval within a burst (Figure 3E). For 345 

an example unit, we have plotted the spiking response to a frozen white-noise segment without 346 

optogenetic stimulation (Figure 3F, baseline condition) and with optogenetic stimulation 347 

(Figure 3F, hyperpolarized condition). We have pseudo-colored the tonic spikes grey and the 348 

burst spikes red to qualitatively visualize the thalamic firing mode (Figure 3F). In the baseline 349 

condition, the response is primarily tonic as evidenced by the grey raster plots (Figure 3F, 350 
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Baseline, BR = 0.10). In the hyperpolarized condition (optically stimulated), the firing mode is 351 

biased towards a burst encoding scheme, as evidenced by the prevalence of red burst spikes 352 

(Figure 3F, Hyperpolarized, BR = 0.67).  The tonic STA showed pronounced feature selectivity 353 

for this unit while the burst STA did not (Figure 3G top), consistent with the earlier findings 354 

reflective of the loss in timing precision for the first spike of a burst (Figure 2). In the 355 

optogenetically manipulated states, the baseline STA has prominent feature selectivity while 356 

the hyperpolarized condition is much smaller in amplitude (Figure 3G bottom). Qualitatively, 357 

we can see that the STA from the hyperpolarized condition reflected the STA obtained from 358 

the burst spiking in the previous analysis.   Again, a subsequent analysis of the STC revealed 359 

representations that were redundant with the spike-triggered average, and no apparent shift 360 

in feature selectivity between the tonic and burst firing modes.  361 

The similarity between the burst spike response and hyperpolarized condition can also 362 

be seen in this example nonlinearity where the burst and hyperpolarized nonlinearities are 363 

effectively flat while the tonic spikes and baseline condition show obvious tuning (Figure 3H). 364 

Across units, we found an overall reduction in the STASNR for the hyperpolarized condition 365 

relative to the baseline condition (Figure 3I, p = 0.037). We also found that the tuning of the 366 

nonlinearity was lower for the hyperpolarized condition relative to the baseline condition as 367 

reflected in the overall gain/slope (Figure 3J). Importantly, the baseline and hyperpolarized 368 

conditions both contain burst and tonic spikes. Instead of completely separating the firing 369 

modes into all burst spikes or all tonic spikes, we have optogenetically altered the spiking 370 

probabilities such that the baseline condition has more tonic spikes and the hyperpolarized 371 

condition has more burst spikes (Figure 3C) while maintaining similar numbers of spikes 372 

(Figure 3B). The similarities between the STA and the NL properties of the burst and 373 

hyperpolarized state as well as the tonic and baseline state suggest that there was no 374 

discernable difference for the estimation of feature selectivity when assessed based on the 375 

state of the thalamus at the time of the stimulus (hyperpolarized/baseline) versus the spike 376 

type classification (burst/tonic).  377 
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Figure 3: Optogenetic Manipulation of Thalamic State. A. Experimental paradigm. Scale 

bar: 1 mm. YFP signal (green) shows injection site in thalamus and axonal projections in 

cortex. B. Baseline and hyperpolarized firing rate (p(spike)) across recorded population (n = 

10 units. p>0.05). C. Characterization of the burst ratio (p = 0.021), D. the spikes per burst 

(p>0.05), and E. the within burst ISI (p=0.021) during baseline and hyperpolarized conditions 

across the population of thalamic units (n = 10 units). F. Example thalamic response to frozen 

white-noise segments without (baseline) and with (hyperpolarized) optogenetic stimulation. 

Tick marks in raster plot are pseudocolored to demonstrate classification as burst (red tick) or 

tonic (grey tick) spikes. G. Spike triggered average computed as a function of spike 

classification (burst/red, first spike in burst/red dashed, tonic/grey) or thalamic state 

(baseline/black, hyperpolarized/yellow). H. Example unit tonic/burst and 

baseline/hyperpolarized spike nonlinearity. I. STASNR across recorded population (n = 10 

units).  J. Average non-linearity across all units (n = 10 units).  
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Temporal precision of thalamic firing modes   379 

Given the difference between the recovered estimates of burst/hyperpolarized and 380 

tonic/baseline feature selectivity and the implications for timing precision in the thalamocortical 381 

circuit, we implemented a series of computational controls to identify any potential 382 

shortcomings of the methodologies that could underlie these results.  383 

The first issue we considered was the overall difference in spike rates. Spike triggered 384 

analyses require a large number of spikes to effectively estimate the underlying selectivity. 385 

The proportion of spikes classified as bursts was lower than the spikes classified as tonic 386 

(Figure 2F) as quantified by the burst and tonic firing rate. Therefore, it was possible that we 387 

could not recover an STA for the burst spike condition due to the reduced number of burst 388 

spikes relative to tonic spikes. In an example unit, we computed the tSTA using only a subset 389 

of the spikes (n = 2363 of 36558 spikes corresponding to n = 2363 bursts with n  = 7547 burst 390 

spikes) and found that the linear filter was essentially identical to the tSTA (Figure 2B, grey 391 

dashed line). We computed this for all thalamic units and again found that the burst-count 392 

matched tSTA was also significantly larger than the bSTA. Furthermore, there was no 393 

statistically significant difference in the firing rate between the baseline and hyperpolarized 394 

optogenetic conditions (Figure 3G), but still the difference in the STA persisted.  This suggests 395 

that simple spike counts alone were insufficient to explain the difference in the tonic/baseline 396 

STA and the burst/hyperpolarized STA.  397 

The second issue we considered was the inherent assumption that the feature 398 

selectivity for each unit could be recovered as the STA. It was possible that the burst STA was 399 

not recoverable because the burst firing mode was better estimated by a symmetric 400 

nonlinearity and therefore the filter could only be recovered using spike triggered covariance 401 

(STC) techniques. The STC approach has been previously implemented in the vibrissa 402 

pathway (Estebanez et al., 2012; Maravall et al., 2007; Petersen et al., 2008), revealing 403 

potential feature selectivity not captured with STA in some conditions, and was therefore 404 

important to consider here. We therefore computed the STC for all recorded thalamic units 405 
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and compared this for each spiking condition. Although the dataset was more limited because 406 

the number of units with a significant STC filter was lower than those with a significant STA 407 

filter (n = 13 units with STC filter compared to n = 30 units with STA filter), the same trends 408 

regarding the reduction in the amplitude of the filter (STCSNR) and the slope of the symmetric 409 

nonlinearity persisted (as described in results). Therefore, this suggests that the method of 410 

extracting the feature selectivity (STA compared to STC) was insufficient to explain the inability 411 

to estimate the feature selectivity in the hyperpolarized/burst spiking conditions. However, it is 412 

also possible that the feature selectivity for a given neuron shifts to a higher-order space as 413 

firing modes transition from tonic to burst firing. If the burst firing could be associated with 414 

higher-order structure in the sensory stimulus, it may only be revealed using STC analysis. 415 

We thus conducted a STC analysis of the recorded neurons. First, we found that the tonic 416 

STASNR was significantly larger than the burst STCSNR (p = 3e-6), suggesting that the feature 417 

selectivity did not simply shift from the first order estimate of the STA to higher order 418 

representations captured by the STC. Then we assessed the probability that a unit with a 419 

significant filter, as assessed using STA, also showed a significant filter, as assessed using 420 

STC. We found that all 13 units with significant filters also showed significant STA filters. This 421 

emphasizes the complexity of the stimulus representation, but further underscores that the 422 

stimulus representation did not simply shift from tonic to burst firing. Therefore, this analysis 423 

revealed that in general the high-order structure captured by STC was insignificant compared 424 

to the first order structure revealed by STA, and that when there was a loss of structure in the 425 

STA in the burst mode of firing, no new higher-order feature selectivity emerged through the 426 

STC analysis. 427 

The third assumption made throughout the analysis was that burst spikes are actually 428 

driven by sensory stimuli such that there is a recoverable burst spike feature selectivity. The 429 

alternative explanation would be that burst spikes are not feature selective and instead occur 430 

randomly due to intrinsic or other non-sensory processes. To assess this, we quantified the 431 

trial-to-trial repeatability for bursts in response to frozen white-noise segments. As can be seen 432 
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in Figure 3B, the qualitative assessment of temporally aligned bursts in response to the frozen 433 

white-noise segment suggests that the bursts are driven by the sensory stimulus in a 434 

repeatable way. For units with a sufficient number of repeated trials, we computed the 435 

reliability of the burst spiking as the correlation between the peristimulus time histogram of 436 

even and odd trials in response to the frozen white-noise segment. We found that all units 437 

showed greater reliability than what is expected based on just the temporal correlations in the 438 

burst spiking (shuffle control, p = 0.002, n = 10 thalamic units).  This suggests that the bursts 439 

are not randomly generated or due entirely to a non-stimulus related phenomenon.  440 

From these controls, we propose that the difference in the spike triggered encoding 441 

properties could not be attributed to differences in the overall spike rates, the temporal 442 

properties of the spikes within the burst, or the mechanism of filter estimation. Instead, we 443 

propose that the burst spikes are driven by the sensory stimulus and have an underlying 444 

feature selectivity, but that this cannot be recovered using spike triggered techniques due to 445 

the reduced temporal precision of burst spiking relative to tonic spikes.  446 

Recovering feature selectivity from spike-triggered analysis relies on precise temporal 447 

spiking relative to the sensory stimulus. To simulate degradation of the spike timing precision, 448 

we added independent samples of normally distributed temporal jitter of varying amplitudes 449 

(standard deviation of the jitter distribution) to each tonic spike for an example unit and 450 

computed the STA (Figure 4A).  Across units, we quantified the degradation of the STA as the 451 

jittered-STASNR normalized by the tSTASNR (0 ms jitter). The jittered-STASNR (black) is within 452 

the band expected for the bSTASNR with the addition of 4 milliseconds of jitter to the spike 453 

times (red shaded, Figure 4A, right). We propose that the effects of temporal jitter are 454 

particularly evident for whisker selectivity, presumably due to the short temporal duration of 455 

the filters (approximately 10-15 milliseconds in duration, Figure 1F).  456 

Given the marked effects of jitter on the ability to recover the STA, we investigated the 457 

variability in the spike timing relative to the noise stimulus (Figure 4B). For this example unit, 458 

we have identified a segment in the noise stimulus that closely resembles the tonic STA for 459 
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this unit and elicits a reliable spiking response (Figure 4B, top; stimulus – black, tSTA – grey 460 

dashed). The vertical dashed line indicates the spike time for the spike triggered average (t0) 461 

with the grey bar indicating the duration of the STA. If there was no variability in the neural 462 

spiking, the raster plots would all be perfectly aligned to t0 because the similarity between the 463 

stimulus and the STA would predict a spiking response at that time point. However, the timing 464 

of evoked neural responses is always variable to some extent and this can be visualized for 465 

this example response segment as the temporal variability of the spike times surrounding this 466 

stimulus feature in the noise stimulus (Figure 4B, as indicated by the grey stimulus bars that 467 

extend from the first spike response to this particular sensory feature). For this example 468 

snapshot, it is also apparent that the burst spikes in the hyperpolarized condition show greater 469 

temporal variability than the tonic spikes in the baseline condition. 470 

To quantify this jitter across all spikes, we developed a τjitter metric that determines the 471 

time lag of the peak correlation between the STA and the stimulus segment (s(tj)) surrounding 472 

each spike (Figure 4C). Intuitively, this is a correlative method to identify the time lag between 473 

when we predict a spike is most likely to occur based on the STA and the stimulus (peak 474 

correlation) and when the spike actually occurred. For this analysis, we treated the tSTA as 475 

the true feature selectivity of the neuron across all spiking conditions because we could not 476 

recover a reliable estimate of the bSTA.  477 

We computed τjitter for each spike and plotted τjitter distributions for each spike condition 478 

(tonic, burst, baseline, hyperpolarized). If a neuron was infinitely precise such that when the 479 

stimulus matched the spike triggered average, the neuron fired a spike without delay, this 480 

distribution would be represented by a delta function at τjitter equals zero. As the variability of 481 

the timing increases, the width of this distribution will also increase. For the tonic and baseline 482 

condition spikes, we found a clear peak in τjitter values at τjitter equals zero (Figure 4C, grey, 483 

black). For the burst and hyperpolarized condition spikes, we observe little-to-no peak in the 484 

τjitter metric at zero (Figure 4C, red, yellow). We computed the τjitter distribution across all 485 

thalamic units and found that the tonic and baseline spikes had higher peaks at τjitter equals 486 
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zero than the burst and hyperpolarized spike conditions (Figure 4D). We quantified this 487 

statistically by computing a precision metric (Figure 4C) that computes the proportion of spikes 488 

within ±1 millisecond of τjitter equals zero (Figure 4E). The tonic and baseline spike condition 489 

were more precise than burst and hyperpolarized conditions.  490 

These data suggest that tonic spikes showed greater temporal precision in response 491 

to the sensory white-noise than burst spikes and that this could underlie the difference in the 492 

recoverability of the feature selectivity in the thalamus between firing modes. It is well 493 

established that the timing of sensory inputs is particularly important in the thalamocortical 494 

circuit such that changes in thalamic spike timing could have large impacts on the downstream 495 

representation of sensory information in the cortex. Next, we investigated how these changes 496 

in temporal precision in optogenetically modulated thalamic states impact cortical encoding 497 

properties. 498 
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Figure 4: Thalamic timing variability in the response to the sensory white-noise. A. 

Effect of increased jitter on thalamic STA (schematic: left, example: center). Across units (n = 

30), the normalized amplitude of the jittered STA (jitteredSTASNR/tSTASNR) was plotted across 

jitter intensities (black, right). The normalized amplitude of the burst STA (bSTASNR/tSTASNR) 

is shown in red (mean ± s.d.). B. In this example, the same stimulus (black; scale bar: 0.1°) 

was presented with and without optogenetic hyperpolarization (data from example unit 

presented in Figure 3 with associated STA (grey dotted line; scale bar: 0.025°)). C. Example 

unit τjitter distributions for burst (n = 2107 spikes), tonic (n = 23023 spikes), baseline (n = 

11361 spikes), and hyperpolarized conditions (n = 11662 spikes). D. Average τjitter 

distributions for burst/tonic spikes (n = 30 units) and baseline/hyperpolarized condition (n = 

10 units). (mean +/- sem). E. Precision for burst/tonic spikes (n = 30 units, p = 1e-6) and 

baseline/hyperpolarized condition (n = 10 units). (mean +/- sem, p=1e-3). 
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Optogenetic modulation of thalamic firing modes directly impacts cortical representation of 500 

sensory information.   501 

Cortical neurons that receive direct thalamic input are integrating information over a 502 

population of thalamocortical neurons that can be exhibiting different firing characteristics. 503 

This makes it difficult to determine the impact of a single burst from a single neuron on 504 

information representation in the pathway. Instead, we used the optogenetic manipulation of 505 

thalamic state as presented in Figure 3 to bias the activity of the thalamic population towards 506 

burst firing (hyperpolarized condition) while recording the cortical activity extracellularly 507 

(Figure 5A).  508 

For an example unit, we have plotted the cortical STA in the baseline and 509 

hyperpolarized VPm conditions (Figure 5B). Here, the amplitude of the cortical STA was 510 

smaller when the thalamus is hyperpolarized compared to when it is not (Figure 5B). This 511 

cortical unit also shows a reduced tuning to the STA when the thalamus was hyperpolarized 512 

(Figure 5C). Across the population of recorded cortical neurons, the same effect seen in this 513 

example neuron of a reduced STASNR when the VPm was hyperpolarized compared to when 514 

it was not (Figure 5D) and a reduction in the tuning was present across all cortical units as 515 

quantified by the spiking nonlinearity (Figure 5E). These findings mirror what was seen for 516 

thalamic neurons when comparing the baseline and the optogenetically manipulated 517 

conditions demonstrating that the changes in thalamic encoding properties are propagated to 518 

cortex. Note that we again conducted the STC analysis with the S1 neurons and found the 519 

same reduction in STCSNR when the VPm was hyperpolarized compared to when it was not (p 520 

= 9e-5), suggesting that the loss of feature selectivity in S1 with thalamic hyperpolarization 521 

was not just due to the transfer of feature selectivity to higher-order characteristics.  522 

Interestingly, there was no significant difference in the sensory white-noise-evoked 523 

firing rate in the cortex as a function of the VPm condition (Figure 5F). This suggests that it 524 

was not overall spike counts influencing the cortical feature selectivity. Instead, we propose 525 

the temporal jitter in the thalamic spiking patterns propagated to cortex. We investigated the 526 
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temporal precision of the cortical spiking in response to the sensory white-noise using the 527 

same methodology employed for the thalamus. As we saw for the thalamus, the cortical spikes 528 

from this example unit also showed greater temporal precision in response to white-noise 529 

whisker stimulation in the baseline VPm condition compared to the hyperpolarized VPm 530 

condition (Figure 5G) as evidenced by the peak in the τjitter distribution around τjitter equals zero. 531 

This effect was consistent across the population of recorded cortical units (Figure 5H) and 532 

showed significant differences in the precision of the cortical firing (Figure 5I). This suggests 533 

that the temporal jitter present in the thalamus is transmitted to the cortex where it also impacts 534 

the representation of sensory information.  535 

 536 
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 537 

 538 

  539 

 
Figure 5: Optogenetic modulation of thalamic firing modes directly impacts cortical 
representation of sensory information. A. Experimental paradigm. Scale bar: 1 mm. YFP 

signal (green) shows axonal projections into cortex. DiI stain was used on the probe to 

confirm recording location. B. Example STA for a cortical unit recorded during optogenetic 

manipulation of the thalamus (black: baseline thalamic condition, yellow: hyperpolarized 

thalamic condition). C. Example cortical nonlinearity as a function of thalamic state. D. 

STASNR across cortical units (n = 32 units. p = 1e-6). E. Spiking nonlinearity across cortical 

units during thalamic manipulation (n = 32 units). F. Cortical firing rate during thalamic 

manipulation (n = 32 units, p = 0.31).  G. Example cortical unit τjitter distributions for baseline 

(n = 12862 spikes) and hyperpolarized (n = 11848 spikes) thalamic conditions. H. Average 

τjitter distributions for baseline/hyperpolarized thalamic condition (n = 32 units, mean +/- sem). 

I. Precision for cortical spikes during baseline/hyperpolarized thalamic condition (n = 32 

units, mean +/- sem, p=8e-6). 
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Discussion 540 

Although there have been extensive investigations into the cortical state-dependent 541 

processing of the thalamocortical circuit, we know surprisingly little about how information is 542 

processed in a thalamic state-dependent manner. Here, using a combination of optogenetic 543 

manipulation and electrophysiological recording techniques, we have performed a series of 544 

experiments modulating the state of the thalamus (through constant optogenetic 545 

hyperpolarization) and quantified the effects on encoding in the thalamocortical circuit. Using 546 

this technique, we have coarse control of the firing mode in thalamus without altering the 547 

processing occurring from the whisker to thalamus, enabling us to decouple the changes in 548 

thalamic firing mode on thalamocortical processing from changes occurring in subthalamic 549 

processing. We found that, unlike the visual pathway, the feature selectivity of burst spikes in 550 

the vibrissa pathway could not be recovered using spike triggered techniques due to increased 551 

burst spike timing variability (loss of timing precision) relative to tonic spike timing. Recordings 552 

from barrel cortex during optogenetic manipulation of thalamic state demonstrated a loss in 553 

the temporal precision of the cortical spiking that also led to a degradation of the recovered 554 

feature selectivity. This suggests that bursts in the whisker pathway are less precise than tonic 555 

spikes during ongoing weak sensory stimulation and that this loss of temporal precision is 556 

propagated to cortex, which could have implications for the integration of complex patterns of 557 

sensory inputs. 558 

Although spike-triggered analysis has been widely applied in various pathways, there 559 

have been comparatively few studies of this nature in the vibrissa pathway despite the 560 

extensive utilization of this model system.  In this study, we focused primarily on timing in the 561 

thalamocortical circuit, and used the spike-triggered analysis as a vehicle to probe this issue 562 

rather than uncovering novel aspects of feature selectivity related to whisker kinematics. 563 

Nevertheless, it is important to note the similarities and differences between these studies. 564 

Spike-triggered averaging of VPm neurons in a study from Petersen et al. revealed very similar 565 

feature selectivity to what we report for VPm in baseline conditions here, with spiking tending 566 
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to be preceded by a very fast transient, biphasic whisker deflection (Petersen et al., 2008). 567 

Studies in cortex, however, reveal more complex properties. Although the basic feature 568 

selectivity that we uncovered for S1 neurons in baseline conditions using STA was very similar 569 

to what has been observed in a subset of recorded neurons in other cortical studies 570 

(Estebanez et al., 2012; Maravall et al., 2007), further analysis using STC as well as more 571 

complex whisker stimulation paradigms in these studies identified more complex encoding 572 

properties. It should be noted that we restricted analysis to cortical S1 neurons that exhibited 573 

significant feature selectivity in the baseline condition with STA, but also observed other 574 

cortical neurons that showed significant feature selectivity only using STC, consistent with 575 

these previous studies. For these neurons, the filters recovered using STC analysis for tonic 576 

spikes were lost when they were computed for burst spikes, as the STC analysis is also reliant 577 

on precise spike-timing relative to the sensory stimulus.  578 

Specific to our findings here related to thalamic firing modes, it is theoretically possible 579 

that in the optogenetically induced thalamic burst mode, the feature selectivity is not lost, but 580 

instead transformed to a type of selectivity that is not captured through the simple 581 

characteristics of the spike-triggered averaging or a stimulus selectivity that is fundamentally 582 

different from the tonic spike feature selectivity. As described above, previous studies have 583 

utilized STC analysis to successfully uncover complex feature selectivity in the visual (Touryan 584 

et al., 2005) and somatosensory (Estebanez et al., 2012; Maravall et al., 2007) pathways.  585 

However, when we extended the analysis here to the spike-triggered covariance (STC), it was 586 

not the case that the timing changes were captured through covariance analysis.  For both the 587 

thalamic VPm and cortical S1 recordings, there was no apparent shift in feature selectivity 588 

from first-order structure (STA) to higher-order structure (STC) with a change in thalamic firing 589 

mode or state. Units with significant filters in the tonic spiking condition did not show significant 590 

filters in the burst spiking condition, even when assessed using both STA and STC. As with 591 

the spike triggered analysis, further analysis to explore burst feature selectivity that is 592 

fundamentally different from the tonic feature selectivity could not be pursued due to the timing 593 
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variability of the spiking. We cannot identify this selectivity without a mechanism to measure, 594 

and compensate for, the increased spike timing jitter, as this framework is inextricably linked 595 

to the timing precision with which neurons spike relative to the sensory input. 596 

These results could be interpreted as consistent with the view that bursts are not 597 

representing detailed stimulus information. However, there is evidence that bursts may convey 598 

more information than the “all-or-none” presence or absence of a burst through inter-burst 599 

spike timing and the number of spikes per burst (Mease et al., 2017), suggesting a role of 600 

temporally precise burst firing in information representation. Furthermore, thalamic bursting 601 

can be temporally precise within and across neurons in response to high intensity whisker 602 

stimuli (Whitmire et al., 2016). Instead, we propose that the temporal precision of the thalamic 603 

firing is a function of both the state of the thalamus and the intensity of the sensory stimulus. 604 

It has previously been shown that the temporal precision of thalamic encoding increases with 605 

the intensity of the sensory stimulus (Desbordes et al., 2008; Whitmire et al., 2016) while here 606 

we have shown that the temporal precision of the thalamic firing decreases with sustained 607 

hyperpolarization, which would naturally have implications for what signals do and do not get 608 

conveyed through the relatively narrow cortical window of integration (Gabernet et al., 2005). 609 

These two competing factors would enable the burst firing mode to encode high amplitude 610 

stimuli in a temporally precise fashion while low amplitude stimuli, such as the sensory white-611 

noise presented here, would not be able to overcome the variability present in the burst state.  612 

There are multiple mechanisms that could underlie the reduced temporal precision in 613 

the burst firing mode including variability introduced by the slow dynamics of the calcium 614 

depolarization, increased variability in the time to reach threshold due to the prolonged 615 

hyperpolarization of the baseline polarization, as well as potential changes in the integration 616 

properties of the thalamic neurons. Furthermore, these mechanisms could occur 617 

independently such that the variability across neurons is uncorrelated or these mechanisms 618 

could be coordinated in some way to enable correlated variability across the thalamic 619 

population. Both coordinated and uncoordinated jitter would have a detrimental effect on the 620 
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ability to recover the STA because either the spike timing would no longer be locked to the 621 

stimulus itself or the input to the cortex would be temporally imprecise. However, coordinated 622 

jitter would maintain the information about the stimulus while uncoordinated jitter would 623 

degrade the recoverability of the stimulus features with the spike-triggered approach. Future 624 

work is needed to investigate the jitter in the burst spiking across the population to determine 625 

whether or not the variability in the spike timing is coordinated across thalamic units in this 626 

context. 627 

While we have primarily considered thalamic state-dependent encoding as a 628 

feedforward representation from thalamus to cortex, the highly interconnected thalamocortical 629 

circuitry shapes coding properties in both feedforward and feedback manner. Changes in 630 

thalamic activity impact cortical activity which then provides feedback to thalamus to further 631 

alter activity (Crandall et al., 2015; Mease et al., 2014; Poulet et al., 2012; Reinhold et al., 632 

2015; Wimmer et al., 2015). It is possible for thalamus to influence cortical state and for the 633 

cortex to influence thalamic state, but how this plays out during natural behaviors is not yet 634 

known and must be decoupled using more sophisticated techniques such as closed-loop 635 

control of neural activity (Bolus et al., 2018; Newman et al., 2015).  636 

Given the importance of thalamic spike timing precision within and across neurons in 637 

transmitting information downstream to cortex (Bruno and Sakmann, 2006; Wang et al., 2010), 638 

alterations to thalamic state can shape multiple properties of the spiking inputs to cortex. Here, 639 

we have shown that thalamic state directly impacts the spike timing precision in the thalamus 640 

and cortex. Manipulation of the thalamic state can also lead to changes in the stimulus evoked 641 

cortical dynamics (Whitmire et al., 2017) and spatiotemporal cortical activation (Borden et al., 642 

2019).  Alterations to the state of the thalamus, or the baseline membrane potential, provides 643 

a biophysical mechanism for the thalamus to gate information flow to cortex. Furthermore, this 644 

mechanism could be under both feedforward and feedback control. This sets the stage for a 645 

dynamic interaction between thalamic and cortical states to drive highly interactive patterns of 646 
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neural activity, ultimately controlling the integration of afferent signaling that underlies sensory 647 

percepts.   648 
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