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Abstract

Building on our previous work and expanding the range of species consid-
ered, we highlight the prevalence of signals of positive selection on genes
coding for glutamate receptors (most notably kainate and metabotropic
receptors) in domesticated species and anatomically modern humans. Re-
lying on their expression in the central nervous system and phenotypes
associated with mutations in these genes, we claim that regulatory changes
in kainate and metabotropic receptor genes have led to alterations in lim-
bic function and Hypothalamic-Pituitary-Adrenal axis regulation, with
potential implications for the emergence of unique social behaviors and
communicative abilities in (self-)domesticated species.

1 Introduction
Under one account of recent human evolution, selective pressures on prosocial
behaviors led not only to a species-wide reduction in reactive aggression and the
extension of our social interactions [1], but also left discernible physical mark-
ers on the modern human phenotype, including our characteristically “gracile”
anatomy [2, 3].

It has long been noted that these morphological differences resemble those
of domesticated species when compared with their wild counterparts [4]. Ex-
perimental observation of domestication unfolding in wild farm-bred silver foxes
has unequivocally shown that selection for tameness alone can affect develop-
mental trajectories to bring about a suite of physiological and behavioral traits
indicative of the “domestication syndrome” [5]. This raises the possibility that
morphological changes in Homo sapiens resulted from selective pressures on
reduced reactivity to encounters with conspecifics. This predicts overlapping
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regions of selection and convergent physiological effects in the genomes of do-
mesticated species and modern humans.

In a recent comparative study, we have shown that genes with signals of
positive selection pooled across different domesticated species — dog, cattle,
cat, and horse — have above-chance overlap with genes exhibiting signals of
selection in AMH, suggestive of convergent evolutionary processes [3]. Signals
on glutamate receptor genes were identified more consistently than any other
gene class across human and domesticate selective-sweep studies, and will be
the focus of this paper.

Glutamate is the primary excitatory neurotransmitter in the vertebrate ner-
vous system, essential for fast synaptic transmission and plasticity, learning,
memory, and modulation of Hypothalamic-Pituitary-Adrenal (HPA) activity.
[6]. The 26 glutamate receptors are primarily localized at synaptic nerve ter-
minals in the brain and are divisible into two broad families (ionotropic and
metabotropic). There are various widely used names for each receptor and
corresponding gene in the literature. For ease of reference, see Table 1.

Ionotropic
NMDA AMPA Kainate

HUGO Aliases HUGO Aliases HUGO Aliases
GRIN1 NR1 GluN1 GRIA1 GLUR1 GLUA1 GRIK1 GLUR5 GLUK1
GRIN2A NR2A GluN2A GRIA2 GLUR2 GLUA2 GRIK2 GLUR6 GLUK2
GRIN2B NR2B GluN2B GRIA3 GLUR3 GLUA3 GRIK3 GLUR7 GLUK3
GRIN2C NR2C GluN2C GRIA4 GLUR4 GLUA4 GRIK4 KA1 GLUK4
GRIN2D NR2D GluN2D GRIK5 KA2 GLUK5
GRIN3A NR3A GluN3A
GRIN3B NR3B GluN3B Delta

GRID1 GLUD1
GRID2 GLUD2

Metabotropic
Group I Group II Group III

HUGO Aliases HUGO Aliases HUGO Aliases
GRM1 mGluR1 mGlu1 GRM2 mGluR2 mGlu2 GRM4 mGluR4 mGlu4
GRM5 mGluR5 mGlu5 GRM3 mGluR3 mGlu3 GRM6 mGluR6 mGlu6

GRM7 mGluR7 mGlu7
GRM8 mGluR8 mGlu8

Table 1: Glutamate receptors. (Throughout the present study we use HUGO nomen-
clature to refer to both receptor genes and proteins.)

2

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 11, 2018. ; https://doi.org/10.1101/439869doi: bioRxiv preprint 

https://doi.org/10.1101/439869
http://creativecommons.org/licenses/by-nc-nd/4.0/


Given their importance for the normal functioning of the organism, glu-
tamate receptors are rarely subject to extensive structural changes from one
species to the next [7, 8]. Despite this high structural conservation, there are
significant differences between humans and chimpanzees in the cortical expres-
sion of glutamate receptor genes [9, 10], suggesting that changes to regulatory
regions may have had important functional consequences for the emergence of
the human cognitive phenotype. Similarly, the vast majority of selective sweeps
or high-frequency changes on glutamate receptor genes in AMH relative to ar-
chaic Homo are found in regulatory regions that control gene expression [11, 12].

Like the tameness of domesticates towards carers, prosociality among hu-
mans necessitates a reduction in fearful and aggressive reactions to encounters
with conspecifics. Fear, anxiety, and aggression are stress responses, mediated
across vertebrates by the hypothalamic-pituitary-adrenal (HPA) axis [13, 14],
the hypofunction of which has been proposed to be a key mechanism in the
development of tame behaviors in domesticates [15, 16]. Here we articulate
the hypothesis that increased modulatory actions of glutamate receptors have
brought about attenuation of the HPA stress response in ours and domesti-
cated species. We first characterize the extent to which certain (sub)families
of glutamate receptor genes exhibit shared signals of selection in domesticates
and modern humans. We then discuss the likely functional implications of these
changes with reference to gene expression data and evidence from developmental
and psychiatric disorders.

2 Results
In earlier work, we have pointed out the intersection of glutamate receptor genes
showing signals of selection in humans, dogs, cats, cattle, and horses [3]. Here
we take into account a much broader range of human and domestication studies
showing changes in AMH, dogs, cats, cattle, horses, foxes, sheep, pigs, rabbits,
yaks, goats, guinea pigs, chickens, and ducks. (Although we focus almost ex-
clusively on signals of selection on glutamate receptor genes, changes to other
glutamatergic signaling genes have also been identified in modern human and
domestication studies. These include glutamate transporter, accessory subunit,
and G-protein signaling genes. We review some of the most noteworthy of these
in Supplementary section S1.)

At least one glutamate receptor gene shows signals of selection in all the
species in Table 2. Among all the domesticated animals examined here, the
goat is perhaps the most conspicuous absence in terms of signals of selection of
glutamate receptor genes. Despite this, alterations to glutamatergic signaling
seem to have played an important role in the goat domestication process. In a
recent study of convergent signals of selection on domesticated goats and sheep,
Neurobeachin (NBEA), a gene that regulates glutamate and GABA receptor
expression at synapses, was highlighted as being one of the most likely genes to
be implicated in behavioral changes under domestication [17].
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AMH Dog Cattle Cat Horse Fox Yak Sheep Pig Rabbit Guinea Pig Chicken Duck
[18, 11, 19, 20, 12, 21] [22, 23, 24, 25, 26] [27] [28] [29] [30, 31] [32, 33] [34] [35, 36, 37] [38] [39] [40] [41]

GRIN1
GRIN2A q

GRIN2B p q

GRIN2C p

GRIN2D v

GRIN3A q u

GRIN3B
GRIA1 u

GRIA2 u u

GRIA3
GRIA4 q

GRIK1 u

GRIK2 uv q u u

GRIK3 u uuuv u q u

GRIK4 p

GRIK5 up

GRM1 u

GRM2 up

GRM3 u pv

GRM4 q v

GRM5
GRM6 p p

GRM7 p u

GRM8 (u) u u u

GRID1 u

GRID2 u

Table 2: Signals of selection, high-frequency changes, introgression, and differential expression of glutamate receptor genes in
AMH and domesticated species.
u Selective sweep study identifying differences between AMH and archaics or domesticates and their wild ancestors
(u) Selective sweep study identifying signals of selection in AMH (not relative to archaics as an outgroup)
p High frequency changes differentiating AMH and archaics or domesticates and their wild ancestors
v Differential brain expression between domesticated species and wild ancestors
q Introgression study

.
C

C
-B

Y
-N

C
-N

D
 4.0 International license

a
certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade available under 

T
he copyright holder for this preprint (w

hich w
as not

this version posted O
ctober 11, 2018. 

; 
https://doi.org/10.1101/439869

doi: 
bioR

xiv preprint 

https://doi.org/10.1101/439869
http://creativecommons.org/licenses/by-nc-nd/4.0/


Overlapping signals of selection were most consistently detected on kainate
and Group II and III metabotropic receptor genes across modern human and
animal domestication studies (see Table 2 and Figure 1).

Out of the twenty-eight instances where differences were detected on func-
tioning ionotropic receptor genes (NMDA, AMPA, or kainate), seventeen were
detected among the kainate receptor genes, and thirteen of these occurred on
either on GRIK2 or GRIK3. GRIK3 exhibits signals of selection in modern
humans, dogs, cattle, sheep, and of introgression in yaks, while GRIK2 shows
signals of selection in dogs, rabbits, and ducks, and of introgression in yaks.

Metabotropic receptors are the other major subclass of glutamate receptor
genes that display consistently convergent signals among domesticated species
and modern humans, with members of Group II (GRM2 and GRM3 ) and, in
particular, Group III (GRM4, GRM6, GRM7, and GRM8 ) exhibiting signals
of selection across domesticate and human selective-sweep studies. Signals on
GRM8 have been detected in dogs, sheep, pigs, and humans, although the
human study did not have archaics as an outgroup [21].
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Figure 1: Signals of selection on glutamate receptor genes, plotted by gene group.
(a): Number of species for which signals of selection are detected on at least one gene.
(b): Number of species for which potential signals of convergent selection are detected
in at least two species per gene.
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Relative to Neanderthals and Denisovans, modern humans show signals of selec-
tion on GRM2 and GRM3 (this latter gene detected on the KhoeSan terminal
branch of our lineage). Together, GRM2 and GRM3 make up the Group II
metabotropic receptor gene subfamily.

Fifteen out of the sixteen instances where signals of selection, expression
changes, high-frequency missense changes, or introgression were detected on
metabotropic glutamate receptor genes, these occurred in Group II or Group
III subfamilies. The only exception to this pattern is the detection of a selective
sweep on GRM1 in the chicken. Group II and III metabotropic receptors share
structural and functional similarities, which differentiate them from Group I
receptors. Perhaps the most striking difference is that Group II and III receptors
primarily inhibit adenylyl-cyclase signaling, while Group I receptors potentiate
this signaling cascade [42]. We discuss the differences between metabotropic
receptor subfamilies further below.

In several of the studies cited in Table 2, signals of selection on gluta-
mate receptor genes have been suggested as potentially important for behavioral
changes during the domestication process [23, 27, 28, 29, 30, 36, 41]. However,
such suggestions form part of broader discussion on changes to genes related
to the central nervous system (CNS) under domestication, and no mechanistic
details are provided. Furthermore, discussion is usually limited to highlighting
the potential importance of glutamatergic-signaling changes in learning, mem-
ory, or excitatory transmission in a single domesticated species under study, and
tends to focus on cortical regions.

To our knowledge, no study to date has sought to explore the extent to
which glutamate receptor genes come under selection across a large number
of domestication studies. More significantly, We are unaware of any previous
study that has identified kainate and Group II and III metabotropic receptor
genes as the predominant targets of selective sweeps under domestication and
in recent human evolution. The consistency with which these receptor genes are
identified across domestication studies makes them prime candidates for being
involved in the emergence of tameness.

If an argument is to be made for the convergent involvement of kainate and
metabotropic glutamate receptor genes in domesticated tameness and human
prosociality, evidence should point to the shared participation of these recep-
tors in modulating the stress response across these species. Table 3 summarizes
evidence from human, model organism, and animal gene-behavior-correlation
studies that these kainate and metabotropic receptors are implicated in devel-
opmental, neuropsychiatric, stress, and mood disorders, as well as divergent
tame and agonistic phenotypes in non-human species. (Detailed discussion of
these studies can be found in Supplementary section S2.)
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GENE Associated Human phenotypes Tame and aggressive animal phenotypes
DD/ID ADHD ASD SCZ BPD OCD ANX MDD SR/Fear

GRIK2 * * * * * * * * * Retention of dog-like polymorphisms on GRIK2
in tame Czechoslovakian Wolf-Dog hybrid [43]

GRIK3 * * * * * * * Signals of selection on GRIK3 differentiating
cattle with agonistic and tame behaviors [44]

GRIK5 * * * *

GRM2 * * * * * * *

GRM3 * * * * * * * * Fixed missense mutation on GRM3 differentiating
aggressive from tame foxes [30]

GRM4 * * * * * * *

GRM7 * * * * * * * * Lower nucleotide variability on GRM7 in docile
Apennine Brown Bear [45]

GRM8 * * * * * * * Lower nucleotide variability on GRM8 in docile
Apennine Brown Bear [45]

Table 3: Human and Domesticated phenotypes associated with kainate and metabotropic receptor genes. Detailed discussion of these
associations, including references can be found in Supplementary section S2. DD/ID - Developmental Delay/Intellectual Disability,
ADHD - Attention Deficit Hyperactivity Disorder, ASD - Autism Spectrum Disorder, SCZ - Schizophrenia, BPD - Bipolar Dis-
order, OCD - Obsessive Compulsive Disorder, ANX - Anxiety Disorder, MDD - Major Depression, SR/Fear - Startle Response/Fear.

Note: Widespread use of non-selective Group II agonists that act on both GRM2 and GRM3 subunits in model organisms
makes it difficult to always separate subunit associations with disorders. Where a disorder has been associated with Group II
receptors, an asterisk is placed in the row for both GRM2 and GRM3.
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Schizophrenia is among the disorders most regularly associated with muta-
tions to the metabotropic and kainate receptor genes that we have reviewed here.
In humans, prenatal stress is a risk factor for the development of schizophrenia
in adult offspring [46, 47]. Pharmacological agonists of Group II metabotropic
receptors reduce schizophrenia-like phenotypes in adult offspring of prenatally
stressed mice [48]. Furthermore, high glucocorticoid inputs to the hippocampus
reduce the expression of kainate receptors, and schizophrenics have been found
express significantly reduced kainate receptors in this region [49, 50]. More
broadly, heightened stress experienced during pregnancy can lead to a “persis-
tently hyperactive” HPA axis in offspring, increasing children’s propensity to
develop Attention Deficit Hyperactivity Disorder (ADHD) and adult anxiety
and reactivity to stress, while in rats, prenatal stress decreases the propensity
to play in juvenile offspring and impairs sociality and extinction of conditioned
fear lasting into adulthood [51, 52, 53].

Prenatal stress can, then, contribute to the emergence of the same neurode-
velopmental, neuropsychiatric, stress, and mood disorders commonly associated
with altered expression of metabotropic and kainate receptor genes. We hy-
pothesize that selective sweeps on these genes are markers of convergent pos-
itive selection on an attenuated stress response in both archaic humans and
domesticated species. We propose that enhanced prenatal modulation by these
receptors of stress responses to human contact in (pre-)domesticated and archaic
human females provided an important first step in the emergence tameness and
prosociality. In section 3, we explore the neurobiological evidence for this pro-
posal, focusing on the roles of kainate and metabotropic glutamate receptors in
the stress-response cascade.

3 Discussion
Alterations to the HPA axis are considered to be essential for the emergence
of tameness in different (indeed competing) theories of domestication [16, 54].
Glutamatergic signaling acts as a prominent regulator of HPA activity and has
been identified among the top enriched pathways across studies of aggression [6,
55, 56, 57]. The association of kainate and Group II/III metabotropic receptor
genes with multiple stress disorders implicates them in altered HPA-axis activity.
Given the predominantly modulatory, as opposed to excitatory, functions of
both kainate and Group II and III metabotropic receptors [42, 58], we argue
that selective sweeps on their respective genes are markers of decreased HPA
reactivity in humans and (pre-)domesticated species.

Below, we propose a mechanism for how these receptor subfamilies modulate
glutamatergic signaling to alter developmental trajectories and, subsequently,
the HPA stress response in both humans and domesticated species. Our ar-
gument relies on three pieces of evidence: First, evidence that alterations to
the HPA axis are common across domesticated species versus their wild coun-
terparts, and in non-reactive versus reactively aggressive humans; second, ev-
idence that the genes highlighted here are extensively expressed in limbic and
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hypothalamic brain regions crucial for controlling the stress response; and third,
evidence that disturbance of this expression alters the stress response.

Alterations to the stress response in domesticated species
and modern humans
In response to stress, corticotrophin releasing hormone (CRH) is synthesized in
the paraventricular nucleus (PVN) of the hypothalamus. This induces adreno-
corticotrophin (ACTH) release from the anterior pituitary gland, which, in turn,
stimulates the release of glucocorticoids (GCs: primarily cortisol and corticos-
terone) from the adrenal gland [59]. GCs are “the principal end-products of
the HPA axis”, which help to maintain homeostatic balance in the organism
[60]. They also provide feedback directly to neurons in the PVN [13, 61], or via
other brain regions, particularly limbic structures, including the hippocampus,
thereby modulating CRH release and the HPA stress response [62, 60]. Thus,
GC measures can be an accurate indicator of stress-response in vertebrates, once
basal and stress-response measures can be differentiated [63].

Domesticated foxes, sheep, bengalese finches, and ducks have lower basal
GC levels than their wild ancestors or other closely related wild comparators
[64, 65, 66, 67, 68, 69, 70]. In the duck and the fox, differences have been shown
to be particularly marked in prenatal and juvenile development, respectively [69,
70, 64]. Compared to their wild ancestors, Guinea pigs and chickens have a lower
spike in GCs in response to stress [71, 72]. Although there is no extant ancestral
comparator of neuroendocrine function in AMH, our species has considerably
lower basal plasma cortisol levels than chimpanzees and most other primates
[73].

Within the human population, variability in GC levels correlate with dif-
ferent individual stress responses, which mirrors findings in laboratory rats.
Acute GC increases accompany bouts of reactive aggression, while chronically
high basal levels have been found to correlate with increased anxiety and ma-
jor depression, and may be implicated in reduced aggressive tendencies [14].
Chronically low GC levels can correlate with antisocial personality disorder,
callous, unemotional tendencies, and externalizing behaviors in children, as well
as aggressive delinquency in adults. Proactively aggressive or non-aggressive
children tend to have a lower spike in GC levels in response to frustrating tasks
than reactively aggressive children [74]. Psychopathic adults (who often ex-
hibit pathological proactive aggression) tend to have no cortisol reactivity to
frustrating tasks [14].

The above studies suggest that, from early development into adulthood,
lower basal GC levels are shared by domesticates and modern humans relative to
closely related extant wild species. Moreover decreased GC spikes in response to
stress are common to domesticates and non-aggressive or proactively aggressive
modern humans versus reactively aggressive individuals. These findings are
consistent with the view that prosocial selective pressures have led to a reduction
in reactive over and above proactive aggression in recent human evolution [1]. It
could be considered that proactive aggressors within modern human populations
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exhibit a pathological version of the non-reactive phenotype that has been under
positive selection and is associated with HPA-axis hypofunction under stress.

Kainate and metabotropic receptor expression in brain re-
gions crucial for HPA regulation
The HPA axis is centrally regulated by the limbic system, primarily through
amygdalar processing of perceptual inputs, which are relayed via the bed nu-
cleus of the stria terminalis (BNST) to the paraventricular nucleus (PVN) in the
hypothalamus. The limbic system also mediates feedback mechanisms, whereby
glucocorticoids and mineralocorticoids act upon receptors in the hippocampus
and medial prefrontal cortex, which connect to the PVN via the BNST and
lateral septum. Feedback also occurs directly on cells in the PVN to modu-
late HPA reactivity. Feedforward mechanisms, further potentiating the stress
response, are relayed from the amygdala to the PVN via the BNST. [75, 62, 61].

Glutamatergic and GABAergic signaling are the central mediators of each
of these aspects of HPA (re)activity, and the kainate and metabotropic receptor
subfamilies discussed here play prominent roles in modulating release of both
neurotransmitters. These receptors are extensively expressed in limbic regions
crucial for modulating the stress response. Figure 2 highlights these expression
patterns. A detailed overview of what is known about kainate and Group II
and III metabotropic receptor expression in the developing and adult brain
can be found in Supplementary section S3. In the subsection that follows, we
propose a mechanism by which metabotropic and kainate receptors modulate
HPA activity.

Control of HPA function by kainate and metabotropic glu-
tamate receptors
The PVN is the crucial hypothalamic mediator of psychogenic stressors that
drive HPA activity. Glutamate acting directly on parvocellular neurons of the
PVN stimulates CRH release, whereas GABA inhibits this [6]. This means
that modulation of glutamatergic signaling by both kainate and metabotropic
glutamate receptors may serve to inhibit direct activation of the PVN.

GRIK2, GRIK3, and GRIK5 are all expressed in the PVN and surrounding
regions in adult rats, although GRIK1 is the most abundant kainate receptor in
the PVN proper [76]. GRIK5 is extensively expressed on parvocellular neurons
[77]. Presynaptic activation of GRIK1 subunits in the PVN has been shown
to modulate HPA activity by inhibiting CRH from parvocellular neurons [55].
Similarly, agonism of presynaptic kainate receptors in hypothalamic neurons
facilitates inhibitory GABAergic signaling [78].

In vitro antagonism of Group II metabotropic receptors in hypothalamic
slices has been shown to increase CRH signaling, whereas no other metabotropic
receptor agonists or antagonists had this effect. Mice administered with Group
II antagonists in vivo experienced an increase in corticosterone that mimicked
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Figure 2: Kainate and metabotropic receptor expression in brain regions crucial for HPA regulation. (Most detailed brain-expression data
come from rodent studies. Where available, we have used data from human fetal or postmortem studies. Broadly, there are cross-species
parallelisms in kainate and metabotropic expression. Similarities and differences are discussed in Supplementary section S3.)
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the response to the forced-swim (behavioral despair) test [79]. Given the pre-
dominant presynaptic and glial modulatory functions of Group II receptors, the
above evidence implicates Group II receptorsin the attenuation of central gluta-
matergic inputs to the hypothalamus (likely in the PVN), attenuating the HPA
stress response. Group III metabotropic receptors have also been implicated
in modulating excitatory inputs to the lateral hypothalamus [80], while Group
I metabotropic receptors stimulate both oxytocin and vasopressin release from
the SON [81].

Agonism of Group II metabotropic receptors disrupts the fear-potentiated
startle response in mice, suggesting that they regulate the learning of fearful
experiences [82]. Knockout of GRM2 has been shown to correlate with increased
stress in social interactions [83]. In macaques captured from the wild, six-week
chronic intravenous administration of a Group II agonist reduced basal cortisol
levels by as much as 50% compared to controls [84]. This same agonist has been
shown to act on GRM3 receptors in adrenal gland cells, leading to a reduction in
aldosterone and cortisol via inhibition of the adenylyl cyclase / cAMP signaling
pathway [85]. Yet another Group II agonist attenuates aggressive tendencies,
hyperactivity, and deficits in the inhibition of the startle response of mice reared
in isolation [86]

It has been proposed that Group II metabotropic receptors in the central
amygdala dampen the stress response by modulating the release of glutamate,
in turn leading to an increase in GABAergic signaling and overall dampen-
ing of excitatory inputs to the PVN. Agonism of these receptors also leads to
an increase in activity in the predominantly inhibitory BNST, and in the the
PVN in response to stress, suggesting modulation of the HPA by suppression
of excitatory signaling. At the same time, activation of Group II receptors is
downregulated in the hippocampus [87]. Excitatory feedback outputs from the
hippocampus likely act on inhibitory neurons of the BNST that, in turn, relay
to the hypothalamus [75]. Thus, decreased Group II modulation of these out-
puts in response to stress can have the effect of enabling increases of inhibitory
signals to dampen the HPA cascade. Within the BNST itself, activation Group
II and III receptors has been shown to suppress excitatory transmission [88].

Mice lacking the Group III receptor GRM8 display increased age- and sex-
dependent anxiety-like behaviors and startle response [89, 90]. However, in con-
trast to GRM2, knockout of GRM8 can enhance social interactions, suggesting
that this receptor has opposing effects depending on the nature of the stressor.
In another contrast with GRM2 and the Group II subfamily as a whole, ablation
of GRM7 can make mice less fearful and less aggressive [91, 92, 93] correlating
with a severe reduction in neuronal activity in the BNST. This suggests that
GRM7 serves to enhance overall excitability of BNST neurons projecting to
the PVN (and thus the stress response), perhaps through modulation of glu-
tamatergic release innervating GABA inhibitory interneurons [93]. Activation
of GRM4 reduces anxiety-like behaviors in mice, while knockout enhances fear-
conditioning responses and increases anxiety in adult but not juvenile mice [94].
Such anxiety-related effects are thought to be brought about by alterations to
amygdalar function, whereby either excitatory or inhibitory signaling is modu-
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lated by Group III receptors.
Although the above behavioral correlates of Group II and III receptor (ant-)

agonism and ablation are partially contrasting, they indicate that both sub-
families are important for modulating the stress response, including aggressive
reactivity. This tendency is clear in Group II metabotropic receptors, while the
actions of Group III receptors are more varied according to the specific subunits
and brain regions activated. Studies in rodents suggest that GRM8 and GRM7
have broadly opposite effects on anxiety levels, with GRM8 activation tending
to be closer to Group II metabotropic receptors in its anxiolytic effects, while
GRM7 seems to be more anxiety- (and aggression-) inducing [95]. This sug-
gests that the numerous signals of selection on GRM8 across domesticates and
similar signals on Group II receptors in humans may be markers of convergent
selection for a decreased stress response. This said, evidence also points more
clearly towards activation of Group II receptors in potentiating prosocial behav-
iors. Future investigation of differences in brain region expression of Group II
and III receptors in domesticated species may help to shed more light on their
contributions of each to the modulation of the stress response.

The kainate receptors we have examined here are abundantly expressed in
limbic regions that modulate HPA-axis function via glucocorticoid (GC) feed-
back (in particular the hippocampus and medial prefrontal cortex, but also more
moderately in the amygdala [see Figure 2]). GCs promote glutamate release in
these feedback regions, and the different affinities of mineralocorticoid recep-
tors (MRs; bound by GCs at low concentrations) and glucocorticoid receptors
(GRs; bound at higher concentrations) enable the modulation of stress feedback
signaling from basal or moderate to acute levels [60, 61].

Glucocorticoids differentially modulate the expression of kainate receptor
mRNA in the hippocampus depending on whether MRs or GRs are bound [96,
49]. Adrenalectomy (lowering corticosteroid levels) leads to increased expression
of GRIK2 in DG and CA3, and of GRIK3 in DG [49] (although no change has
also been reported for GRIK2 in CA3 [96]). Single dose treatment with low
levels of corticosterone following adrenalectomy — thought to bind MRs —
increases GRIK3 and high affinity subunit (GRIK4 and GRIK5 ) mRNA in
DG, as well as GRIK5 across the hippocampus [96]. MR binding has been
reported both to lower and raise GRIK2 levels in the hippocampus [96, 49].

Acute corticosterone treatment in rats lowers kainate receptor mRNA ex-
pression to levels of untreated controls [96]. Similarly, chronic treatment leads
to lower expression of GRIK3 and GRIK4 in hippocampal structures, although
no changes were noted for GRIK2 or GRIK5 [49]. These divergent MR/GR-
mediated patterns of expression can help to elucidate the mechanism by which
the genes under selection in the domesticates and humans are expressed in a
manner that can modulate the stress-induced feedback response.

Kainate receptor activation at CA3-CA1 synapses serves to inhibit gluta-
mate transmission via Gi/o signaling, especially when synapses are immature.
At mossy fiber synapses connecting DG and CA3 (areas of high kainate recep-
tor expression throughout life), kainate receptors inhibit glutamatergic signaling
when glutamate is released at high levels, while facilitating release at lower lev-
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els, again via a Gi/o-coupled mechanism [97]. Similar biphasic modulation has
been detected in the neocortex and amygdalae of rodents. Thus, when GCs are
circulating at low levels, during basal or low stress, MR binding should lead
to higher kainate receptor expression and facilitation of glutamatergic signal-
ing in feedback regions. At higher GC levels (as when under acute stress) GR
binding will tend to reduce kainate receptor expression, thus diminishing these
receptors’ potency in modulating glutamate release. In contrast, postsynaptic
expression of AMPA and NMDA is enhanced under acute stress and corticos-
terone treatment [98].

Because there are no direct hippocampal, prefrontal, or amygdalar connec-
tions to the PVN, feedback from these regions are instead relayed via the BNST,
lateral septum, and ventromedial hypothalamus (VMH), which are all predom-
inantly GABAergic [99, 6]. For the amygdala, which emits primarily inhibitory
outputs to intermediary regions, this results in “GABA-GABA disinhibitory”
downstream signals, increasing excitatory inputs to the PVN [62]. In the case of
kainate receptor expression, which is predominant in the hippocampus and me-
dial prefrontal cortex, increased facilitation of glutamate release during basal or
low-level stress is likely to primarily innervate GABAergic neurons along path-
ways relaying to the PVN. Similarly, downregulation of kainate receptor expres-
sion by GR binding during acute stress serves to diminish the alternate modu-
latory effect of kainate receptors during intense glutamatergic release. This, in
turn, should allow for NMDA and AMPA receptor signaling to be potentiated,
leading to a dampening of the HPA stress response, again via the innervation
of inhibitory neurons of the BNST, septum and VMH, which relay to the PVN.

In contrast to prefrontal and hippocampal feedback regions, the effect of
glucocorticoids on parvocellular and magnocellular neurons of the hypothalamus
is to downregulate glutamatergic signaling via the release of endocannabinoids,
in turn promoting the release of GABA [100]. Kainate receptors have been
implicated in the mobilization of endocannabinoid signaling in distinct brain
regions, as well as in the promotion of GABAergic signaling in the PVN [55,
101, 102].

Figure 3 presents a schema of the modulatory actions of metabotropic and
kainate receptors in the stress-response cascade.

Increased metabotropic and kainate-mediated attenuation of central and
feedback stress responses may plausibly have conferred selective advantages in
human evolution, not only via the reduction of stress and enabling of prosocial
cooperation, but also by enabling subsequent increases in GRIK2, GRIK3, and
GRIK5 expression: Firstly, Group II and III metabotropic glutamate receptor
modulation of amygdalar fear processing in response to stressors, in combina-
tion with kainate and Group II metabotropic receptor inhibition of CRH release
in the PVN can lead to a signaling cascade that results in lower glucocorticoid
feedback in limbic structures. This, in turn may lead to increased expression
of kainate receptors in the hippocampus, prefrontal cortex, and elsewhere, per-
haps enabling subsequent selection on improvements in plasticity and learning,
as well as further resources for limbic modulation of the stress response.
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Figure 3: Modulatory Actions of Metabotropic and Kainate Receptors

4 Conclusion
We have argued here that, on balance, selective pressures have led to a modu-
lation of glutamatergic signaling in order to attenuate the HPA stress response,
and that this has had the corollary effect of increasing synaptic plasticity in
limbic feedback regions that play a crucial role in memory and learning. We
have not dealt in detail with G-protein signaling cascades activated by kainate,
Group II, and Group III receptors. A more in-depth view of convergence may
be gained by exploring the extent to which the same signaling cascades (in par-
ticular Gi/o signaling) are activated in homologous brain regions across species
regardless of the receptor subtype initially bound.

Given the important roles that serotonin and oxytocin play in promoting
social and empathetic behaviors across different species, it has been proposed
that convergent tameness in domesticates and prosociality in modern humans
is driven by alterations to these systems [2]. The present analysis of modern
human-archaic and domesticate-wild differences in glutamatergic receptor genes
suggests that any such modifications (particularly to oxytocinergic signaling) are
more likely to be dependent on upstream changes to glutamatergic signaling.
Glutamate mediates the release of oxytocin and vasopressin from the SON and
PVN [103].

Serotonin modulates glutamatergic activity in the brain, often inhibiting ex-
citatory potentials and stimulating GABAergic inhibitory signaling [104]. This
regulation from outside the glutamatergic system could potentially produce
comparable modulation of the stress-response to the regulation from within
that we propose for metabotropic and kainate receptors. In studies of genetic
differences between tame and aggressive foxes, changes to serotonergic signaling
accompany those of the glutamatergic system, with genetic changes often po-
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tentially relevant to both synapses [30, 31]. Similarly, domestication of the pig
appears to have involved important changes across both systems [36]. Signals
of selection associated with serotonergic signaling have also been identified in a
tame strain of rat and the domesticated goat [105, 106].

One may reasonably ask whether Group II and III metabotropic and kainate
receptors share functional or structural qualities that have made them more
likely to come under selection than NMDA, AMPA, or Group I metabotropic
receptor (sub)families in domesticate species and modern humans. These recep-
tors, particularly NMDA, have been implicated in many disorders and pheno-
types reviewed here for metabotropic and kainate receptors [107, 108, 109, 110,
111, 112, 113, 56]. Even within receptor families, specific subunits (and combi-
nations of them) or splice variants can have diametrically opposing functional
properties from others that are nominally similar [114, 115].

The similar modulatory properties, overlapping expression patterns, and
shared phenotypical associations of those genes that most consistently detected
appear across domestication and modern human studies has led us to hypothe-
size an overarching role for kainate and Group II and III metabotropic receptors
in the modulation of the stress response. However, there is no reason, in prin-
ciple, why other glutamate receptor families could not have contributed to the
emergence of tame behaviors. In fact, signals of selection on NMDA receptors
are detected for two domesticate species on each of GRIN2B (fox and yak)
and GRIN3A (yak and duck, see Table 2). Both of these genes’ respective re-
ceptors are associated with the maintenance of immature dendritic spines and
impeding long-term potentiation (LTP) during development: GRIN2B subunits
are highest expressed during embryonic development and are gradually replaced
at the synapse by GRIN2A as spines mature [108]. Similarly, when GRIN3A
is genetically deleted, the maturation of spines is sped up, and GRIN2A and
GRIA1 subunits — typically enriched at adult synapses — are recruited to the
membrane earlier [116]. If similar patterns of selection should be detected on
NMDA receptors across other domesticates, a case could be feasibly be made
for their contributing to the juvenile cognitive phenotype typically retained by
domesticate species into adulthood. On the other hand, the only case of poten-
tially convergent selection on an AMPA receptor gene occurs on GRIA2 (cat
and pig), which is a crucial AMPA subunit at mature synapses [117].

The diversity of roles played by kainate receptors in the CNS, including
extensive excitatory, inhibitory, ionotropic, metabotropic, and modulatory ac-
tivities [58], provides a wide range of possible functions upon which natural
selection can act. Selective pressures seem to have honed varied specializations
for kainate receptors in different brain regions. Group II and III metabotropic
receptor subunits can have opposing actions within a single brain region, and
to stressful stimuli being processed. This suggests that these subunits often
have complementary modulatory functions within their subfamilies. Nonethe-
less, there are considerable overlaps of function, and these subunits primarily
inhibit adenylyl-cyclase signaling. Each receptor subfamily acts, broadly, to
dampen stress responses. These overlaps in function undoubtedly contribute to
numerous signals of selection being spread across different metabotropic recep-
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tor genes in distinct species.
In the future, it may be worthwhile examining the extent to which the glu-

tamatergic changes discussed here could have impacted the vocal abilities of the
relevant species, including ours. Although the extent of archaic humans’ vocal-
learning abilities is not known, this capacity is highly striatum-dependent, as
can be seen in the neurology of Tourette’s syndrome. Glutamatergic signaling
alterations in the striatum have been implicated in Tourette’s syndrome, includ-
ing genes with AMH-specific changes. Vocal learning deficits in humans who
carry a mutation on the FOXP2 gene are thought to arise, in part, from abnor-
malities in the striatum [118]. Knock-in experiments of the humanized FOXP2
allele in mice have shown the principal structural changes to take place in the
striatum, where MSN dendrites are longer and respond to stimulation with in-
creased long term depression [119]. FOXP2 is also expressed in glutamatergic
projection neurons of the motor cortex and is highly expressed during the de-
velopment of corticostriatal and olivocerebellar circuits, important for motor
control [119, 120]. Several glutamate receptor genes discussed above, such as
GRIK2 and GRM8, have been identified as a transcriptional target of FOXP2 in
the developing human brain [121]. Significant changes to glutamatergic expres-
sion have also been found in the vocal nuclei of vocal-learning birds, and in the
domesticated bengalese finch compared to its its wild ancestor the white-rumped
munia [8, 122, 123]. These changes are thought to play a role in the more com-
plex singing capabilities of the bengalese finch. Glutamate receptor genes form
part of the most highly co-expressed module in the periaqueductal gray of bats,
a mammalian species that displays strong evidence of vocal-learning capabilities
[124].

Finally, an important question arising from the evidence presented above is
how glutamatergic involvement in the modulation of the stress response relates
to the hypofunction of the neural crest, proposed to account for the suite of phe-
notypic changes that make up the domestication syndrome [16]. At this point,
the evidence from selective sweep studies points more unequivocally to the in-
volvement of glutamatergic signaling in domestication than to hypofunction of
the neural crest, in line with other arguments against the universality of the
effects predicted by the neural crest hypothesis [125]. We argue that changes to
glutamatergic signaling are central to the unifying domesticated trait of tame-
ness and that changes to NCC proliferation are subsequent to this. There are
various possible explanations for how glutamatergic signaling may interact with,
or even bypass, the neural crest to bring about the broader phenotypical fea-
tures of the domestication syndrome. We present two alternatives here that
future work could put to the test.

One possibility is that modulation of glutamatergic signaling attenuates
HPA-axis signaling, and ultimately glucocorticoid output, from the adrenal cor-
tex in (pre)domesticated females during pregnancy. Modified hormonal con-
centrations would then affect embryonic development, altering neural crest cell
inputs to different tissues prenatally. In cell cultures, glucocorticoids are es-
sential for NCC survival and differentiation [126]. An increase in corticosteroid
concentrations has been shown to increase NCC numbers and alter cell fates,
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for example converting small intensely fluorescent cells, which are normally
dopaminergic, into epinephrine-synthesizing cells. Removal of corticosteroids
and replacement with nerve growth factor converts small intensely fluorescent
cells and chromaffin cells into sympathetic neurons [127, 126]. Mice embryos
lacking the glucocorticoid receptor cannot survive outside the womb due to
widespread defects, including severe reductions in chromaffin cells from early
development. Those cells remaining lose their ability to synthesize epinephrine
[128]. The above studies suggest that lowered stress hormone levels in the womb,
resulting from HPA hypofunction in the mother can have the knock-on effect
of bringing about neural crest hypofunction and cell-differentiation changes in
embryonic development. Under our hypothesis, mild reductions in NCC inputs
are driven by increased glutamatergic modulation of the stress response during
pregnancy resulting from selection for tameness.

As mentioned above, corticosterone treatment during embryonic develop-
ment of domesticated ducks can bring about mallard-like behaviors in neonates
[69, 70]. Glucocorticoid levels are lower during gestation in both tame rats and
foxes compared with aggressive strains [129]. Suppression of glucocorticoid lev-
els in pregnant aggressive females between days 12 and 14 of gestation leads
to a concomitant reduction in embryonic glucocorticoids by day 20. This, in
turn, leads to significant increases in depigmentation in neonate rats [129]. In
both the rat and the duck studies, the effects of glucocorticoids on embryonic
development take place long after neurulation and migration of neural crest cells
away from the neural tube. This suggests that at least some of the most impor-
tant phenotypical features of domestication need not depend on genetic changes
to NCC development or migration, but, rather, on postmigratory regulation of
expression at different tissue sites by glucocorticoids.

An alternative possibility is that alterations to glutamate receptor signaling
can directly account for both behavioral and physical changes in domestication.
Some evidence for this derives from the fact that glutamate receptor, trans-
porter, and other signaling genes identified in different domestication studies are
expressed in melanocytes, osteoblasts, osteoclasts, chondrocytes, and other tis-
sues beyond the CNS [130, 131, 132, 133, 134]. Thus, traits such as floppy ears,
shortened snouts, or depigmentation could feasibly result from alterations to
glutamatergic receptor expression in these tissues. Bone is innervated by gluta-
matergic fibers and glutamate receptors are thought to play a role in osteoblastic
differentiation and proliferation [135, 136]. GRIK5, GRM4, and GRM8 along
with NMDA and AMPA receptor genes are expressed in vitro in developing rat
calvarial osteoblasts [137, 138]. Group II and III metabotropic receptors have
been shown to prevent mineralization of chondrocytes, implicating them in car-
tilage development [130, 134]. NMDA receptors have been implicated in the
maturation and differentiation of chondrocytes [139]. Glutamate receptor genes
(among them GRIK3 ) are expressed on melanocytes, and inhibition of AMPA-
mediated excitatory transmission has been found to decrease the expression of
MITF (melanogenesis associated transcription factor) [131].

On considering these two alternative accounts of glutamatergic signaling in
the emergence of the domestication syndrome (NCC-interacting versus NCC-

18

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 11, 2018. ; https://doi.org/10.1101/439869doi: bioRxiv preprint 

https://doi.org/10.1101/439869
http://creativecommons.org/licenses/by-nc-nd/4.0/


independent), we prefer to be cautious about attributing too many functional
consequences to the signals of selection highlighted here. We consider that a
mild neurocristopathy will almost certainly explain some physical trait changes
in domesticate species, and that this may serve to entrench earlier selection
for tameness via reduced inputs to stress-hormone cells in the adrenal glands.
However, we predict that these reductions will most often result from upstream
regulatory changes by glutamatergic signaling affecting stress responses. In
some species, changes to glutamatergic signaling may also have acted to directly
alter the development of physical traits, independently of genetic or epigenetic
alterations to the neural crest, driven by domestication.

5 Materials and Methods
Based on our previous work on overlapping signals of selection on glutamatergic-
signaling genes in domesticates [3], we extended our comparative analysis across
a broad range of domesticated species. In order to delimit the comparison to
a clearly-defined gene set within the glutamatergic system, we selected the 26
glutamate receptor genes as our cross-species comparator (Table 1).

For cross-species comparison, we included all domesticated species for which
whole-genome sequences were available. Given the absence of such data for
the domesticated camel, we excluded this species from our comparison. In
species for which no studies of selective sweeps were available, we included
studies of decreased heterozygosity differentiating tame and aggressive strains
(fox) and/or studies detailing brain-expression differences between tame and
wild or aggressive lineages (guinea pig, fox, and rat). We also included a study of
introgressed genes from cattle to yaks, which identified genes likely to have been
subject to positive selection. Finally, we included for comparison high-frequency
(near-fixed) changes differentiating modern from archaic humans. (Table 2.)

We extracted all instances of selective sweeps, introgression, brain-expression
differences, and high-frequency changes on glutamate receptor genes from the
domestication and modern-human studies listed in Table 2. We compiled these
genes for comparison according to the receptor (sub)families of which they are
members.

In order to determine potentially shared functions of kainate and metabotropic
receptor genes showing the strongest signals of convergence across humans and
domesticates, we investigated associations with phenotypes relevant to tame-
ness and prosociality by doing an exhaustive literature search (Pubmed). These
included associations with the startle response and neurodevelopmental, neu-
ropsychiatric, stress, and mood disorders, summarized in Table 3.

Finally, we carried out a meta-analysis (summarized in Figure 2, details
in Supplementary Material) to determine the brain expression of kainate and
Group II and III metabotropic receptor genes.
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