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Abstract (140 words) 

When learning the value of actions in volatile environments, humans often make seemingly irra-

tional decisions which fail to maximize expected value. We reasoned that these ‘non-greedy’ deci-

sions, instead of reflecting information seeking during choice, may be caused by computational 

noise in the learning of action values. Here, using reinforcement learning (RL) models of behavior 

and multimodal neurophysiological data, we show that the majority of non-greedy decisions stems 

from this learning noise. The trial-to-trial variability of sequential learning steps and their impact on 

behavior could be predicted both by BOLD responses to obtained rewards in the dorsal anterior 

cingulate cortex (dACC) and by phasic pupillary dilation – suggestive of neuromodulatory fluctua-

tions driven by the locus coeruleus-norepinephrine (LC-NE) system. Together, these findings indi-

cate that most of behavioral variability, rather than reflecting human exploration, is due to the lim-

ited computational precision of reward-guided learning. 
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Introduction (701 words) 

In uncertain environments, decision-makers learn rewarding actions by trial-and-error to maximize 

their expected payoff (Fig. 1a). An important challenge is that reward contingencies typically 

change over time, and thus a less-rewarded action at a given point in time can become more re-

warding later (Fig. 1b). Versatile machine learning algorithms, known collectively as ‘reinforcement 

learning’ (RL), describe the changing values of possible actions and the policy used to choose 

among them1. One biologically plausible class of RL models updates the expected values associ-

ated with possible actions sequentially based on the ‘prediction error’ (PE) between obtained and 

expected reward – a learning scheme known as the Rescorla-Wagner rule2. At any given time 

point, the decision-maker chooses based on the difference in expected value between possible 

actions, by selecting the action associated with the largest expected reward. However, in volatile 

environments in which reward contingencies change rapidly over time, human decision-makers 

make a substantial number of seemingly irrational decisions which do not maximize the expected 

value predicted by reinforcement learning3,4. These decisions are often coined as ‘non-greedy’ in 

contrast to value-maximizing, ‘greedy’ decisions. 

A prominent hypothesis regarding the source of these non-greedy decisions is that they are 

the result of a compromise during choice between exploiting a currently well-valued action vs. ex-

ploring other, possibly better-valued actions – known as the ‘exploration-exploitation’ trade-off. In 

this view, information seeking motivates non-greedy decisions. Indeed, for a value-maximizing 

agent, lower-valued actions are selected less often and thus their expected values are more uncer-

tain than those of higher-valued actions. Non-greedy decisions in favor of recently unchosen ac-

tions thus effectively reduce uncertainty about their current value and increase long-term payoff4–7. 

Different regions of the human frontal cortex have been shown to activate during non-greedy deci-

sions in volatile environments, including the dorsal anterior cingulate cortex (dACC) and the fron-

topolar cortex (FPC)3,8. In agreement with an ‘information seeking’ account of non-greedy deci-

sions, these two regions have been linked with uncertainty monitoring. Specifically, dACC activity 

correlates with the volatility of reward contingencies and increases during uncertain decisions be- 
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Figure 1 (legend on next page) 

 
 

Experimental paradigm and noisy reinforcement learning model 
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Figure 1 (figure on previous page) 

 

 

Figure 1 – Experimental paradigm and noisy reinforcement learning model. (a) Trial structure in the 

restless, two-armed bandit task divided into short blocks of trials. On every trial, participants were asked to 

choose one of two reward sources depicted by colored shapes, and then observed its associated outcome 

(from 1 to 99 points, converted into real financial incentives at the end of the experiment). (b) Example of 

drifts in the magnitude of rewards that can be obtained from the two sources. Rewards were sampled from 

probability distributions whose means drifted independently across trials. Thick lines represent the drifting 

means of the two probability distributions, whereas thin lines correspond to reward samples drawn from the 

probability distributions that can be obtained if chosen on each trial. (c) Graphical representation of the noisy 

RL model used to fit human behavior in the task. The Rescorla-Wagner learning rule applied to update ac-

tion values is corrupted by additive random noise. The choice process is modeled using a stochastic ‘soft-

max’ action selection policy. Learning noise is assumed to be negligible in exact RL models. Inset: illustration 

of the fraction of non-greedy decisions predicted either by an exact RL model followed by a softmax action 

selection policy (top panel, area shaded in purple), or by a noisy RL model followed by a purely value-

maximizing action selection policy (bottom panel, area shaded in blue). Exact and noisy RL models are indis-

tinguishable based only on their predicted fraction of non-greedy decisions. (d) Predicted relationship be-

tween the fraction of non-greedy decisions and the mutual information of successive decisions for the exact 

(purple) and noisy (blue) RL models. For the same fraction of non-greedy decisions, a noisy RL model pre-

dicts larger behavioral correlations (mutual information) across successive decisions than an exact RL mod-

el. (e) Falsification of the exact RL model through model simulations. Simulated (bars) and observed (dot) 

fraction of non-greedy decisions (left panel) and mutual information of successive decisions (right panel). 

While the overall fraction of non-greedy decisions is well captured by both noisy and exact RL models, the 

observed mutual information is predicted more accurately by simulations of noisy RL than exact RL. Error 

bars correspond to s.e.m. 
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tween similarly-valued actions9–11, whereas FPC activity reflects the expected value of unchosen 

actions12–14. An important corollary of this view is that non-greedy decisions are driven solely by 

adaptive regulations of the choice process: both stochastic regulations, such as the use of a ‘soft’ 

value-maximizing policy, and deterministic regulations, including ‘information bonuses’ added to 

the value of unchosen actions7,15. By contrast, the reinforcement learning process which tracks 

action values over time is implicitly assumed to follow exactly the hypothesized Rescorla-Wagner 

learning rule after each obtained reward. 

However, it has recently been shown that the accuracy of human perceptual decisions based 

on multiple sensory cues is bounded not by variability in the choice process, but rather by ‘infer-

ence’ noise arising during evidence accumulation16,17. This computational noise is responsible for a 

dominant fraction of non-greedy decisions which do not follow the optimal Bayes rule of probabilis-

tic reasoning. An intriguing possibility is that the learning process at the heart of reward-guided 

decision-making might be subject to the same kind of computational noise – in this case, random 

variability in the update of action values (Fig. 1c). Critically, the existence of intrinsic noise in rein-

forcement learning would trigger non-greedy decisions due to random deviations between exact 

applications of the learning rule and its noisy realizations following each obtained reward. This 

noise-driven source of non-greedy decisions is not mutually exclusive with information seeking: 

non-greedy decisions can be driven simultaneously by learning noise and information seeking. In 

other words, in this view, an unknown fraction of non-greedy decisions results not from overt in-

formation seeking during choice, as assumed by existing theories and computational models, but 

from the limited precision of the underlying reinforcement learning process which is classically as-

sumed to be infinite. 

To determine whether, and to what extent, learning noise drives non-greedy decisions during 

reward-guided decision-making, we first derived a theoretical formulation of RL which allows for 

random noise in its core computations. In a series of behavioral and neuroimaging experiments, 

tested over a total of 90 human participants, we then quantified the fraction of non-greedy deci-

sions which could be attributed to learning noise, and identified its neurophysiological substrates 

using functional magnetic resonance imaging (fMRI) and pupillometric recordings. 
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Results 

Experimental protocol and computational model 

We designed a canonical restless, two-armed bandit game. Over three experiments, a total of 90 

human participants were asked to maximize their monetary payoff by sampling repeatedly from 

one among two reward sources depicted by colored shapes (see Methods). Experiments were 

divided into short blocks of trials, each involving a new pair of colored shapes. On each trial, partic-

ipants were asked to choose one of the two shapes, and then observed its associated outcome 

(Fig. 1a). The payoffs that could be obtained from either shape (from 1 to 99 points, converted into 

real financial incentives at the end of the experiment) were sampled from probability distributions 

whose means drifted independently across trials – thereby encouraging participants to track these 

mean values over the course of each block (Fig. 1b). 

 To characterize the origin of non-greedy decisions made in this task, we derived a RL model 

in which the Rescorla-Wagner rule applied to update action values Q! is corrupted by additive ran-

dom noise 𝜀! (Fig. 1c): 

Q! = Q!!! + 𝛼 𝑟!!! − Q!!! + 𝜀! 

where 𝛼 is the learning rate used to update action values based on the prediction error (PE) be-

tween obtained reward 𝑟!!! and expected reward Q!!! on the previous trial, and 𝜀! is drawn from a 

normal distribution with zero mean and standard deviation 𝜎! equal to a constant fraction 𝜁 of the 

magnitude of the PE: 

𝜎! = 𝜁 𝑟!!! − Q!!!  

This ‘multiplicative’ structure of the noise, which assumes larger deviations during larger updates 

of action values, follows the ubiquitous Weber’s law of intensity sensation prevalent in numerous 

perceptual domains (including vision, numerosity and time), and in the magnitude of associated 

neural responses18–20. 

 As in existing theories, we modeled the choice process using a stochastic ‘softmax’ action 

selection policy, controlled by an ‘inverse temperature’ 𝛽. Importantly, although learning noise and 
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choice stochasticity both generate non-greedy decisions as defined by exact (noise-free) RL (Fig. 

1c), the two sources of behavioral variability make different predictions regarding the temporal 

structure of decisions across successive trials. Indeed, learning noise corrupts the action values 

which are gradually updated across trials, and used to drive successive decisions. By contrast, 

choice stochasticity reads out action values without altering them and is independently distributed 

across trials. Therefore, for the same fraction of non-greedy decisions simulated either using learn-

ing noise or choice stochasticity, learning noise engenders larger behavioral correlations across 

successive decisions (Fig. 1d). 

Dominant contribution of learning noise to non-greedy decisions 

Looking at the first, neuroimaging experiment (experiment 1, N = 29), participants selected the 

shape associated with the largest mean payoff on a majority of trials (64.9 ± 0.9%, mean ± s.e.m., 

t-test against chance: t28 = 17.2, p < 0.001). As anticipated, participants also made a substantial 

fraction of non-greedy decisions – which do not maximize expected value with respect to an exact 

(noise-free) RL model (15.7 ± 0.7%). 

 We next performed Bayesian Model Selection (BMS) to quantify the contributions of learning- 

and choice-driven sources of variability to non-greedy decisions (Fig. 2a). Using particle filtering 

procedures to obtain estimates of model evidence conditioned on human decisions (see Methods), 

we found that a RL model corrupted by learning noise explained human behavior significantly bet-

ter than an exact RL model (𝜁 fitted vs. 𝜁 = 0, fixed-effects: BF ≈ 1012.9, random-effects: exceed-

ance p = 0.941). This first finding indicates that the sequential updating of action values is subject 

to a significant amount of noise. A softmax action selection policy also outperformed a purely val-

ue-maximizing, ‘argmax’ policy (𝛽 fitted vs. 𝛽 → ∞, fixed-effects: BF ≈ 1044.5, random-effects: ex-

ceedance p > 0.999) – thereby indicating that non-greedy decisions are driven both by learning 

noise and choice stochasticity (Supplementary Fig. 1a). This behavioral pattern was fully replicated 

in the second experiment (experiment 2, N = 30): like participants tested in the first experiment, 

participants featured both learning noise (fixed-effects: BF ≈ 1037.3, random-effects: exceedance p 

> 0.999) and a softmax action selection policy (fixed-effects: BF ≈ 1037.9, random-effects: exceed- 
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Figure 2 (legend on next page) 

 
 
 
 
 
 

Contributions of learning noise and choice stochasticity to non-greedy decisions 
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Figure 2 – Contributions of learning noise and choice stochasticity to non-greedy decisions. (a) 

Bayesian model selection results in the partial outcome condition (left panel) and the complete outcome 

condition (right panel). Estimated model frequencies for exact RL (𝛽, left bar), noisy RL with a softmax action 

selection rule (𝛽 and 𝜁, middle bar) and noisy RL with an argmax action selection rule (𝜁, right bar). Noisy RL 

outperforms exact RL in both outcome conditions. Error bars correspond to s.d. of the estimated Dirichlet 

distribution. (b) Model recovery results in the partial outcome condition (left panel) and the complete out-

come condition (right panel). Confusion matrices displaying the estimated model frequencies of exact and 

noisy RL (columns) obtained for simulations of exact and noisy RL (rows). Bayesian model selection is able 

to recover accurately the simulated RL model in both outcome conditions. (c) Fraction of non-greedy deci-

sions explained by learning noise (blue area) and choice stochasticity (purple area) in the partial outcome 

condition (top panel) and the complete outcome condition (bottom panel). Learning noise alone explains 

more than half of non-greedy decisions in the partial outcome condition, and almost all of non-greedy deci-

sions in the complete outcome condition. (d) Amounts of behavioral variability (expressed as standard devia-

tion on the difference between action values predicted by the noisy RL model) due separately to learning 

noise (bottom panel) and choice stochasticity (top panel) in the partial and complete outcome conditions. 

Noise-driven variability is not different between the two outcome conditions, whereas choice-driven variability 

is strongly reduced in the complete outcome condition. Error bars correspond to s.e.m. Three stars corre-

spond to a significant difference at p < 0.001, n.s. to a non-significant difference. 
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ance p > 0.999; Supplementary Fig. 1b). To validate these findings, we implemented a ‘model re-

covery’ procedure, which confirmed that our BMS procedure was capable of correctly distinguish-

ing learning noise from choice stochasticity in our task (Fig. 2b). 

 Importantly, the exact RL model could be falsified by comparing the sequential dependency of 

its simulated decisions to the sequential dependency of human decisions (see Methods). While the 

overall fraction of non-greedy decisions was well captured by both noisy and exact RL models 

(human: 15.7 ± 0.7%; noisy RL: 15.0 ± 0.8%; exact RL: 16.0 ± 0.7%), the mutual information of 

successive human decisions was better predicted by simulations of noisy RL than exact RL (hu-

man: 0.126 ± 0.016 bit; noisy RL: 0.111 ± 0.011 bit; exact RL: 0.073 ± 0.008 bit; paired t-test, t28 = 

5.8, p < 0.001; Fig. 1e). This behavioral signature allows us to falsify choice stochasticity as the 

dominant source of non-greedy decisions in this canonical task21. 

 Given the presence of both sources of behavioral variability, we went further and quantified 

the respective contributions of learning noise and choice stochasticity to non-greedy decisions. For 

this purpose, we first estimated the trial-to-trial trajectories of latent action values corrupted by 

learning noise conditioned on observed human decisions in every block (see Methods). We then 

assessed the fraction of non-greedy decisions that could be uniquely attributed to learning noise – 

i.e., trials in which noisy realizations of the learning rule resulted in an opposite ranking of action 

values to exact applications of the same rule. This quantitative analysis revealed that learning 

noise alone explained as much as 60.6 ± 6.6% of non-greedy decisions (Fig. 2c). Again, we repli-

cated this pattern in the second experiment (65.6 ± 6.0%). In contrast to existing accounts, this 

pattern of findings indicates that behavioral variability is driven to a large part by random noise in 

the update of action values, rather than by stochasticity in the choice process. 

Dissociating learning noise from information seeking 

We then sought to dissociate the observed learning noise from information seeking. One obvious 

way consists in showing that the behavioral variability stemming from learning noise is not aimed 

explicitly at seeking information about recently unchosen actions – whose associated rewards 

have not been observed and are thus uncertain. To test this important prediction, we contrasted in 
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both experiments the classical ‘partial outcome’ condition in which participants observe only the 

reward yielded by the selected shape (Fig. 2c, top panel), with another ‘complete outcome’ condi-

tion in which participants additionally observe the foregone reward which would have been ob-

tained if the other, unchosen shape had been selected12,22 (Fig. 2c, bottom panel). In this additional 

condition, performed by the same participants, there is by definition no incentive to explore – i.e., 

to choose actions which do not maximize expected value – given that there is equal uncertainty 

about the values of chosen and unchosen actions. Therefore, the residual behavioral variability 

observed in the complete outcome condition, if any, should be entirely driven implicitly by learning 

noise and not explicitly by a softmax action selection policy. 

 Before testing this prediction, we first verified that participants used the information about 

foregone actions to select the shape associated with the largest mean payoff more often than in 

the partial outcome condition (experiment 1, partial: 64.9 ± 0.9%, complete: 70.3 ± 0.7%, paired t-

test, t28 = 4.9, p < 0.001; experiment 2, partial: 64.9 ± 0.8%, complete: 69.5 ± 1.1%, paired t-test, 

t29 = 3.5, p = 0.002). Model fitting confirmed that participants used the reward from the unchosen 

action to update its associated value (fixed-effects: BF ≈ 1011.7, random-effects: exceedance p > 

0.999). Interestingly, the learning rate 𝛼 associated with the unchosen action was not different from 

the one associated with the chosen action (chosen: 0.596 ± 0.043, unchosen: 0.621 ± 0.042, 

paired t-test, t28 = 1.5, p = 0.156, BFH0 = 2.0), consistent with the idea that participants learnt equal-

ly from obtained and foregone rewards22–24. 

 Interestingly, participants made a lower but still substantial amount of non-greedy decisions in 

the complete outcome condition (experiment 1, partial: 15.7 ± 0.7%, complete: 11.9 ± 0.7%, paired 

t-test, t28 = -4.2, p < 0.001; experiment 2, partial: 16.5 ± 1.0%, complete: 12.9 ± 0.9%, paired t-test, 

t29 = -3.1, p = 0.004) – consistent with the presence of learning noise in this condition. BMS con-

firmed this prediction by showing that a noisy RL model explained human behavior decisively bet-

ter than an exact RL model in the complete outcome condition (fixed-effects: BF ≈ 1040.2, random-

effects: exceedance p > 0.999). Furthermore, in contrast to what was observed in the partial out-

come condition, BMS indicated that a purely value-maximizing argmax action selection policy fitted 

the choice process decisively better than an exploratory softmax policy (fixed-effects: BF ≈ 1010.6, 
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random-effects: exceedance p > 0.999, Supplementary Fig. 2a). Consequently, the split of non-

greedy decisions in this condition showed that learning noise explained almost all of non-greedy 

decisions (86.1 ± 5.2%, complete vs. partial: paired t-test, t28 = 3.6, p = 0.001, Fig. 2c, bottom pan-

el), a pattern fully replicated in the second experiment (89.1 ± 3.9%, complete vs. partial: paired t-

test, t29 = 3.3, p = 0.003). 

 We further confirmed that this increased fraction of non-greedy decisions explained by learn-

ing noise was due to a change in action selection policy rather than an increased learning noise. 

Instead of computing the relative fraction of non-greedy decisions driven by learning noise, we 

estimated the raw amount of behavioral variability due separately to learning noise and to choice 

stochasticity (Fig. 2d, see Methods). This analysis confirmed both our predictions: choice-driven 

variability was reduced substantially in the complete outcome condition (partial: 0.078 ± 0.010, 

complete: 0.025 ± 0.007, paired t-test, t28 = -4.6, p < 0.001), whereas noise-driven variability was 

not different across the two conditions (partial: 0.110 ± 0.010, complete: 0.093 ± 0.007, paired t-

test, t28 = -1.2, p = 0.240, BFH0 = 2.6). Together, these findings indicate that learning noise does 

not aim explicitly at seeking information about recently unchosen actions, but rather reflects com-

putational constraints on the underlying learning process. 

Dissociating learning noise from model misspecification  

One important possible confound is that part of the observed learning noise would be caused not 

by random deviations around the hypothesized Rescorla-Wagner rule, but by systematic devia-

tions from this canonical learning rule – in other words, a misspecification of our learning model. In 

particular, different participants might be using different learning rules, which would then be cap-

tured as learning noise by our noisy RL model that assumes that the Rescorla-Wagner rule is be-

ing used. To decompose learning noise into systematic and random deviations from the Rescorla-

Wagner rule, we ran a third, behavioral experiment (experiment 3, N = 30) where we estimated the 

consistency of human decisions across repetitions of the same sequence of rewards. Unbe-

knownst to participants, we made each of them play the exact same blocks of trials twice in the 

complete outcome condition (Fig. 3a, see Methods). 
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Figure 3 (legend on next page)

Decomposition of learning noise into ultimately predictable and unpredictable terms 
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Figure 3 (figure on previous page)

Figure 3 – Decomposition of learning noise into ultimately predictable and unpredictable terms. (a) 

Trial structure in the experiment consisting of repeated blocks of the same sequence of rewards, tested only 

in the complete outcome condition. Unbeknownst to participants, each ‘seed’ block of trials (left panel) was 

replayed at another point in the experiment (right panel) using different colored shapes. Same conventions 

as in Fig. 1. (b) Learning rates associated with chosen and unchosen actions (dots ± error bars correspond 

to means ± s.d.). Learning rates did not differ between chosen and unchosen actions, indicating that action 

values at a given trial do not depend on choices made at earlier trials. (c) Decision consistency (y-axis) as a 

function of the scaling 𝜁 of learning noise with the magnitude of learning steps (x-axis) fitted by the noisy RL 

model to each participant. The blue line corresponds to the predicted relationship between the two quantities 

through simulations of the noisy RL model. Variability across tested participants (dots ± error bars corre-

spond to means ± s.d.) shows the negative correlation predicted by simulations of the noisy RL model. (d) 

Bias-variance decomposition of learning noise. Top panel: fraction of learning noise explained by predictable 

biases (gray area) and unpredictable variance (red area). More than two thirds of learning noise are not 

attributable to systematic deviations from the Rescorla-Wagner rule used in our noisy RL model. Bottom 

panel: relationship between the Weber scaling 𝜁 of learning noise (right) and the bias-variance decomposi-

tion of learning noise (left) across tested participants. Sorting participants by 𝜁 reveals a clear increase in the 

variance term with 𝜁, indicating that 𝜁 indexes random variability in learning rather than systematic deviations 

from the Rescorla-Wagner rule. Error bars correspond to s.e.m. (unless indicated otherwise). Three stars 

correspond to a significant difference at p < 0.001, n.s. to a non-significant difference. 
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We restricted this experiment to the complete outcome condition for two important reasons. 

First, we wanted behavioral variability to be driven solely by learning noise and not by a softmax 

action selection policy – a pattern that we replicated in this additional dataset (noisy vs. exact RL, 

fixed-effects: BF ≈ 10411.8, random-effects: exceedance p > 0.999; argmax vs. softmax policy, fixed-

effects: BF ≈ 106.3, random-effects: exceedance p = 0.997). Second, we wanted the action values 

predicted by an exact RL model to be identical across the two repetitions of the same block, irre-

spectively of the decisions made in the two repeated blocks. This was ensured by the observation 

that, as in previous experiments, participants learnt equally from obtained (chosen) and foregone 

(unchosen) rewards in this additional dataset (Fig. 3b; learning rate 𝛼, chosen: 0.571 ± 0.036, un-

chosen: 0.597 ± 0.038, paired t-test, t29 = 1.6, p = 0.123, BFH0 = 1.7). Beyond this absence of dif-

ference in mean learning rates, validated by BMS (fixed-effects: BF ≈ 1016.0, random-effects: ex-

ceedance p > 0.999), learning rates associated with chosen and unchosen actions were also 

highly correlated across participants (linear correlation, r squared = 0.821, d.f. = 28, p < 0.001). 

This pattern of findings indicates that the action values predicted by exact RL at a given trial do not 

depend on decisions made at earlier trials (which are likely to differ to some extent across the two 

repetitions of the same block). 

 We then applied a recently developed statistical approach17,21 (see Methods) to split the over-

all learning noise into a predictable ‘bias’ term – reflecting systematic deviations from the Rescorla-

Wagner rule, and an unpredictable ‘variance’ term – reflecting random deviations around this ca-

nonical rule. In practice, we used the consistency of decisions across repeated blocks – which 

ranged from 64.8% to 95.2% across participants (82.3 ± 1.5%, mean ± s.e.m.), to decompose 

learning noise into bias and variance terms. Indeed, systematic deviations tend to increase the 

consistency of decisions across repeated blocks, whereas random deviations tend to decrease the 

same metric. We first observed that participants with larger learning noise (i.e., a steeper scaling 𝜁 

of noise with prediction errors) showed lower decision consistency across repeated blocks (Fig. 3c, 

linear correlation, r squared = 0.829, d.f. = 28, p < 0.001). This provides direct support for our hy-

pothesis that most of the learning noise captured by the model is due to random variability rather 

than to systematic deviations from the learning rule assumed by the model. Importantly, variations 
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of learning rate across participants did not show any relationship with decision consistency (linear 

correlation, r squared = 0.008, d.f. = 28, p = 0.645). 

 We next fitted the noisy RL model to each participant, and then simulated versions of the 

model in which learning noise was split in two additive terms: a predictable bias term whose reali-

zations were duplicated in the two repetitions of each block, and an unpredictable variance term 

whose realizations were sampled independently across repeated blocks. We varied this bias-

variance trade-off from zero (fully predictable) to one (fully unpredictable) for the simulations of 

each participant, and found that the split that best accounted for the consistency of human deci-

sions across repeated blocks was of 31.8 ± 3.2% for the predictable term, and 68.2 ± 3.2% for the 

unpredictable term (Fig. 3d). This result indicates that more than two thirds of learning noise are 

not attributable to misspecifications of our learning model, and supports our hypothesis that learn-

ing noise primarily reflects the limited computational precision of reward-guided learning.  

Explaining decision effects as consequences of learning noise  

During sequential learning in volatile environments, humans exhibit non-greedy decisions toward 

recently unchosen actions, but also a tendency to repeat their previous decision over and above 

the value difference between possible actions. This decision effect has been described in compu-

tational terms by an additional bias in the choice process, often coined as ‘choice hysteresis’, 

which could have beneficial (stabilizing) properties for the decision-maker25–30. We realized that 

this effect falls naturally out of the statistical properties of learning noise, without further assump-

tions, when fitted using an exact (noise-free) RL model. This is due to the corruption of action val-

ues which propagates across update steps, thereby creating intrinsic temporal correlations in the 

noisy action values used by the decision-maker. Using an exact RL model to fit human decisions, 

we observed a positive choice hysteresis in both partial and complete outcome conditions (experi-

ment 1, t-test against zero, partial: t28 = 2.6, p = 0.013; complete: t28 = 5.0, p < 0.001). We then 

verified that, as predicted, simulations of the noisy RL model fitted using an exact RL model exhib-

ited an apparent choice hysteresis, in both conditions (t-test against zero, partial: t28 = 4.2, p < 

0.001; complete: t28 = 5.6, p < 0.001). Critically, the choice hysteresis measured in participants 
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correlated with the apparent choice hysteresis predicted by the noisy RL model (Fig. 4a, linear 

correlation, partial: r squared = 0.553, d.f. = 27, p < 0.001; complete: r squared = 0.425, d.f. = 27, 

p < 0.001). This finding, fully replicated in experiment 2, supports our hypothesis that choice hyste-

resis is not caused by an explicit bias in the choice process, but rather by learning noise which 

propagates through corrupted action values across successive decisions. 

If choice hysteresis truly arises from the propagation of learning noise through action values, 

then it should naturally correlate with the degree to which learning noise propagates from one trial 

to the next, and thus decrease with learning rate. In other words, participants who learn more slow-

ly should exhibit stronger choice hysteresis than participants who learn more rapidly. We tested 

this selective hypothesis in participants and obtained the predicted negative correlation between 

learning rate and choice hysteresis, in both conditions (Fig. 4a, linear correlation, partial: r squared 

= 0.691, d.f. = 27, p < 0.001; complete: r squared = 0.786, d.f. = 27, p < 0.001). Together, these 

findings indicate that the apparent choice hysteresis exhibited by participants can be parsimoni-

ously explained as the consequence of noise in the underlying learning process. 

A second effect documented in the literature consists in an adjustment of the softmax action 

selection policy to the surprise triggered by the preceding outcome – i.e., the magnitude of the 

prediction error in reinforcement learning31–33. Like choice hysteresis, this decision effect falls natu-

rally out of learning noise, more specifically through its scaling 𝜁 with the magnitude of the predic-

tion error. Using an exact RL model to fit human decisions, we observed a decrease of the softmax 

inverse temperature 𝛽 in trials following larger-than-average prediction errors, in both partial and 

complete outcome conditions (Fig. 4b, experiment 1, paired t-test, partial: t28 = -2.9, p = 0.007; 

complete: t28 = -3.7, p < 0.001). As for choice hysteresis, we then verified that simulations of the 

noisy RL model fitted using an exact RL model featured the same adaptation to surprise (paired t-

test, partial: t28 = -5.5, p = 0.001; complete: t28 = -8.9, p < 0.001). Importantly, the adaptation pre-

dicted by simulations of the noisy RL model matched not only the direction, but also the size of the 

adjustment observed in participants (paired t-test, partial: t28 = 0.2, p = 0.847, BFH0 = 5.0; com-

plete: t28 = 0.3, p = 0.778, BFH0 = 4.9). Furthermore, as predicted, participants with a steeper scal-

ing 𝜁 of learning noise with prediction errors showed a stronger adaptation to surprise (linear corre- 
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Figure 4 (legend on next page)

Characterization of decision effects predicted by learning noise 
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Figure 4 (figure on previous page)

Figure 4 – Characterization of decision effects predicted by learning noise. (a) Relationship between 

the choice hysteresis measured in tested participants (x-axis) and the choice hysteresis predicted by simula-

tions of the noisy RL model (y-axis) in the partial outcome condition (left panel) and the complete outcome 

condition (right panel). Dots ± error bars correspond to the mean ± s.d. of estimated posterior distributions 

for each tested participant. The blue shading of the dots indicates the learning rate associated with the cho-

sen action (more saturated for faster learning rates). The choice hysteresis measured in tested participants 

correlates with the apparent choice hysteresis predicted by simulations of the noisy RL model in both condi-

tions. Choice hysteresis also decreases with learning rate (shaded arrow). (b) Adaptation of choice stochas-

ticity to surprise in tested participants (dots) and simulations of the noisy RL model (bars) in the partial out-

come condition (left panel) and the complete outcome condition (right panel). The sensitivity of human 

choices fitted using an exact RL model (and measured through its best-fitting inverse temperature 𝛽) is sig-

nificantly lower in trials following larger-than-average prediction errors, in both partial and complete outcome 

conditions. Simulations of the noisy RL model exhibit the same adaptation of choice sensitivity to surprise. 

Error bars correspond to s.e.m. 
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lation, partial: r squared = 0.311, d.f. = 27, p = 0.002; complete: r squared = 0.313, d.f. = 27, p = 

0.002). These results suggest that the apparent adaptation of choice stochasticity to surprise is 

caused by the multiplicative structure of noise in the underlying learning process, rather than by 

overt information seeking following surprising outcomes. 

Neural correlates of learning noise in the frontal cortex 

Together, our quantitative dissection of non-greedy decisions points toward an important, yet pre-

viously unreported source of variability in reward-guided learning. To identify the neural mecha-

nisms underlying this undocumented learning noise, we analyzed BOLD fMRI data (experiment 1, 

N = 29) recorded while participants performed the task (see Methods). We first used a standard 

model-free contrast (switch from minus repeat the previous action) to identify a classical network of 

brain regions implicated in cognitive control (Fig. 5a and Supplementary Table 1), including the 

dorsal anterior cingulate cortex (dACC), the dorsolateral prefrontal cortex (dlPFC), the frontopolar 

cortex (FPC) and the posterior parietal cortex (PPC). We then applied model-based analyses 

guided by the predictions of our noisy RL model to identify brain regions whose activations reflect-

ed the magnitude of learning noise corrupting each update of action values. 

 For this purpose, we regressed canonical choice- and outcome-locked BOLD responses at 

each voxel against four trial-wise quantities derived from the noisy RL model fitted to each partici-

pant’s behavior: 1. the similarity between action values following each update step (choice ‘con-

flict’), 2. the difference between chosen and unchosen action values (choice ‘value’), 3. the predic-

tion error associated with the obtained reward, and 4. the magnitude of learning noise corrupting 

the associated update of action values. This final quantity, specific to our noisy RL model, was 

computed as the predicted deviation 𝜀!  of noisy action values following each update step from the 

exact application of the Rescorla-Wagner rule to the same update step: 

𝜀! = Q! − Q!!! + 𝛼 ∙ 𝑟!!! − Q!!!  

where Q! refers to noise-corrupted action values predicted by the noisy RL model conditioned on 

all observed rewards 𝑟!:! and all actions 𝑎!:! made by the participant. In practice, because sum-

mary statistics for Q! cannot be derived analytically, particle smoothing procedures were used to 
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draw samples from the posterior distributions of Q!, and 𝜀!  was averaged across drawn samples 

(see Methods). Importantly, the corresponding general linear model (GLM) was constructed using 

sequential orthogonalization to ensure that the noise regressor captured residual BOLD variance 

unaccounted for by the previous regressors also predicted by an exact RL model. 

 As documented in the literature, choice conflict was reflected positively in the dACC, whereas 

a broad network of brain regions correlated with choice value at a conservative statistical threshold 

(FWE-corrected p < 0.05) – with positive coefficients found in the ventromedial prefrontal cortex 

(vmPFC), and negative coefficients distributed across the dACC, the anterior insula, the dlPFC, the 

FPC and the PPC (Supplementary Table 2). The prediction error associated with the obtained re-

ward (i.e., the learning signal used by the Rescorla-Wagner rule) was reflected positively in the 

ventral striatum and negatively in the dACC during the outcome period when action values are 

updated (FWE-corrected p < 0.05; Supplementary Table 2). Locked to the same event, an over-

lapping brain network reflected positively the magnitude of learning noise (i.e., trial-to-trial devia-

tions from exact applications of the Rescorla-Wagner rule), including the dACC, the right dlPFC 

and the PPC (cluster-corrected p < 0.05; Fig. 5a). Importantly, a conjunction analysis revealed that 

among these three brain regions, only the dACC reflected simultaneously the prediction error and 

the magnitude of the associated learning noise during the outcome period when action values are 

updated (cluster-corrected p < 0.05; Fig. 5b). 

 To characterize more precisely the temporal dynamics of learning noise in dACC activity, we 

constructed a finite impulse response (FIR) model aligned either to the presentation of each out-

come, or to the presentation of the following choice (see Methods). The positive correlation of 

dACC activity with the magnitude of learning noise peaked around the same time as the negative 

correlation with the prediction error following outcome presentation (Fig. 5c; learning noise: +6.1 s, 

prediction error: +7.7 s, jackknifed t28 = -1.7, p = 0.108). When aligned to the presentation of the 

following choice, the FIR model revealed that the correlation of dACC activity with learning noise 

emerged significantly before choice onset (Fig. 5b; jackknifed t28 = -2.7, p = 0.012). Together, the-

se results indicate that dACC responses to obtained rewards reflect simultaneously the mean and 

variability of RL steps predicted by the Rescorla-Wagner rule. 
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Figure 5 (legend on next page)

Neural correlates of learning noise in the human brain 
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Figure 5 (figure on previous page)

Figure 5 – Neural correlates of learning noise in the human brain. (a) Upper panel: regions-of-interest 

(yellow) obtained for the switch minus repeat contrast corrected at a whole-brain family-wise error rate 

(FWE) of 0.05. Regions shaded in blue indicate the clusters that correlate significantly with learning noise at 

a cluster-wise corrected p-value of 0.05. Neural correlates of learning noise overlap broadly with neural cor-

relates of the switch minus repeat contrast. Lower panel: group-level parameter estimates for the learning 

noise regressor in each of the ROIs defined by the switch minus repeat contrast locked to the onset of the 

outcome period of trial 𝑡-1 (left bar) and the choice period of trial 𝑡. Error bars correspond to s.e.m. Two stars 

correspond to a significant difference at p < 0.01, three stars at p < 0.001, n.s. to a non-significant difference. 

(b) Left panel: results of the whole-brain conjunction analysis of prediction error and learning noise at a clus-

ter-wise corrected p-value of 0.05. Only the dACC reflects simultaneously the learning signal (i.e., the predic-

tion error associated with the chosen action) and its trial-to-trial learning noise. Right panel: results of the 

finite impulse response (FIR) analysis showing the temporal dynamics of prediction error and learning noise 

in dACC activity, locked to outcome presentation (left) and to the onset of the following choice period (right). 

The correlations between dACC activity and prediction error (green) and learning noise (blue) peak at ap-

proximately the same time following outcome presentation (dots ± error bars correspond to jackknifed means 

and s.e.m. for correlation peaks estimated separately for the two regressors). Thick horizontal lines indicate 

time windows where parameter estimates diverge significantly from zero at a temporal cluster-wise corrected 

p-value of 0.01. The correlation between dACC and learning noise emerges significantly before the onset of

the following choice period. Brain coordinates are expressed in the Montreal Neurological Institute (MNI) 

coordinate space. 
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During the following choice period when learning noise translates into behavioral variability, 

the magnitude of learning noise was reflected again positively in the dACC and the right dlPFC, but 

also in the FPC and negatively in the vmPFC (FWE-corrected p < 0.05; Fig. 5a). Importantly, the 

dACC reflected learning noise equally strongly in the outcome and following choice periods (dACC: 

t28 = 0.8, p = 0.390, BFH0 = 3.6). By contrast, the right dlPFC, the FPC and the vmPFC reflected 

learning noise significantly more strongly in the choice period (dlPFC t28 = 2.9, p = 0.008; FPC: t28 

= 3.1, p = 0.005; vmPFC: t28 = -3.3, p = 0.003). Together, this pattern of findings assigns a unique 

position to the dACC among the neural correlates of learning noise: in addition to its correlation 

with the mean and variability of RL steps during outcome processing, dACC activity also reflects 

learning noise with the same intensity during the following choice period when learning noise trig-

gers behavioral variability.  

Dissociating neural correlates of learning noise from surprise 

Our noisy RL model hypothesizes that learning noise scales with the magnitude of the prediction 

error – i.e., the surprise associated with each outcome. And while dACC activity reflects the magni-

tude of learning noise in the outcome period, it has also been reported to monitor surprise in the 

same time period34,35. An important question is thus whether dACC activity reflects learning noise 

over and beyond its intrinsic correlation with surprise. Interestingly, the two quantities predicted by 

our noisy RL model shared only a third of variance with each other (linear correlation, r squared = 

0.373 ± 0.086, mean ± s.e.m., ranging from 0.223 to 0.512 across participants). 

To address this question, we first constructed two additional GLMs with sequential orthogo-

nalization where we included surprise (i.e., the magnitude of the prediction error associated with 

each learning step) as an additional parametric regressor either before or after the learning noise 

regressor. Importantly, dACC activity was found to reflect learning noise over and beyond its intrin-

sic correlation with surprise (noise as last regressor, surprise: t28 = 3.6, p = 0.001; noise: t28 = 2.5, 

p = 0.019), whereas the converse was not true (surprise as last regressor, noise: t28 = 4.1, p < 

0.001; surprise: t28 = -1.3, p = 0.195, BFH0 = 2.3). We then compared using neural BMS22 two addi-

tional GLMs where dACC activity was regressed against either the variability of learning steps 

(model 1) or the magnitude of prediction errors (model 2). Neural BMS revealed that model 1 pro-
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vided a significantly better account of dACC activity than model 2 (exceedance p > 0.999). These 

findings indicate that, beyond their intrinsic correlation, dACC activity reflects learning noise rather 

than surprise: larger dACC responses to obtained rewards are associated with more variable, ra-

ther than larger, updates of action values. Note that a last GLM including both learning noise and 

surprise (model 3) provided a better fit than the two previous models (exceedance p > 0.999), sug-

gesting that dACC activity reflects simultaneously learning noise and surprise. 

Dissociating neural correlates of learning noise from choice 

We observed that learning noise is reflected in BOLD responses to obtained rewards when action 

values are updated, but also during the following choice period when learning noise triggers be-

havioral variability. This observation suggests that learning noise reflects not only neural variability 

in the update of action values, but also in the maintenance of chosen and unchosen action values 

until the next choice. However, this pattern may alternatively indicate that part of what is captured 

as learning noise by our noisy RL model truly arises from a non-modeled property of the choice 

process. 

 To address this important possible confound, experiment 1 included not only ‘choice’ trials 

where subjects could select the option they wanted to sample, but also ‘cued’ trials (Fig. 6a, 25% 

of all trials) where subjects were required to select one of the two shapes (pre-selected randomly 

by the computer, see Methods). In these cued trials, there is by definition no choice to be made, 

and indeed participants selected invariably the cued shape, in both partial and complete outcome 

conditions (Fig. 6b; partial: 98.3 ± 0.3%, complete: 96.6 ± 0.5%). We first verified that participants 

learnt equally from obtained rewards in choice and cued trials (learning rate 𝛼, choice: 0.603 ± 

0.043, cued: 0.592 ± 0.039, t28 = 0.6, p = 0.581, BFH0 = 4.4). We then applied BMS to test whether 

learning in cued trials is corrupted by the same noise as in choice trials. As predicted by the noisy 

RL model, cued trials triggered significant learning noise (𝜁cued = 𝜁choice vs. 𝜁cued = 0, partial: BF ≈ 

108.3, exceedance p > 0.999; complete: BF ≈ 1010.5, exceedance p > 0.999). 

 We could then make use of cued trials to test whether the neural correlates of learning noise 

found during the choice period were present even in cued trials. For this purpose, we constructed 
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Figure 6 (legend on next page) 

 
 

Neural correlates of learning noise in choice-free, cued trials 
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Figure 6 (figure on previous page) 

 

 

 

Figure 6 – Neural correlates of learning noise in choice-free, cued trials. (a) Trial structure in ‘cued’ 

trials (1/4 of all trials). On cued trials, participants were required to select the highlighted action that was 

randomly pre-selected, and then observed its associated outcome (and the foregone outcome in the com-

plete outcome condition) as in standard, ‘free’ trials. (b) Human behavior and learning in cued trials. Left 

panel: fraction of greedy (value-maximizing) actions in cued trials. As instructed, participants did not choose 

the highest-valued action in cued trials (dots indicate the fraction of greedy actions found in free trials as 

reference) both in the partial outcome condition (left bar) and the complete outcome condition (right bar). 

Middle panel: fraction of actions matching the pre-selected shape in cued trials. As instructed, participants 

almost invariably selected the highlighted action both in the partial outcome condition (left bar) and the com-

plete outcome condition (right bar). Right panel: learning rates associated with the selected action estimated 

in free trials (left bar) and cued trials (right bar). Learning rates did not differ between free and cued trials, 

indicating that participants learnt equally from the two types of trials. (c) Upper panel: in contrast to Fig. 5, 

regions shaded in blue indicate the clusters that correlate significantly with learning noise in cued trials at a 

cluster-wise corrected p-value of 0.05. Neural correlates of learning noise remain significant in cued trials in 

all ROIs except the vmPFC. Lower panel: group-level parameter estimates for the learning noise regressor 

(above) and the decision value regressor (below) in each of the ROIs defined by the switch minus repeat in 

free trials (left bar) and cued trials (right bar). The decision value regressor is defined as the value difference 

between selected and unselected actions. The correlation of BOLD activity with decision value is significantly 

reduced in cued trials in all ROIs, whereas the correlation with learning noise is unchanged in all ROIs ex-

cept the vmPFC. Error bars correspond to s.e.m. One star corresponds to a significant difference at p < 0.05, 

two stars at p < 0.01, three stars at p < 0.001, n.s. to a non-significant difference. 
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an additional GLM where choice and cued trials were modeled as separate events and modulated 

parametrically with: 1. the difference between selected and unselected action values, and 2. the 

magnitude of learning noise corrupting the preceding update of action values (see Supplementary 

Methods). The correlation of BOLD activity with the difference between selected and unselected 

action values in the dACC, the right dlPFC, the FPC and the vmPFC observed in choice trials was 

significantly reduced in cued trials where participants were required to select the cued shape (Fig. 

6c; dACC: t28 = 5.2, p < 0.001; right dlPFC: t28 = 4.0, p < 0.001; FPC: t28 = 3.4, p = 0.002; vmPFC: 

t28 = 5.1, p < 0.001). No region remained significant at the whole-brain level in cued trials. These 

observations confirm that participants effectively did not choose the selected shape based on its 

action value in cued trials. 

Nevertheless, and in agreement with our hypothesis, the positive correlation between BOLD 

activity and learning noise remained highly significant and unchanged in cued trials in the dACC 

(cued: t28 = 3.6, p = 0.001; cued vs. choice: t28 = -0.3, p = 0.760, BFH0 = 4.8), the right dlPFC (cued 

t28 = 6.0, p < 0.001; cued vs. choice t28 = 0.8, p = 0.404, BFH0 = 3.7) and the FPC (cued: t28 = 4.0, 

p < 0.001; cued vs. choice: t28 = -0.4, p = 0.677, BFH0 = 4.7). This finding further strengthens our 

hypothesis that the learning noise fitted by our noisy RL model reflects variability in the update of 

action values, rather than an unknown property of the choice process3,7. By contrast, the negative 

correlation between vmPFC activity and learning noise observed in choice trials was reduced in 

cued trials (cued: t28 = -1.6, p = 0.118, BFH0 = 1.6; cued vs. choice t28 = 2.8, p = 0.010), suggesting 

that its relationship with learning noise depends on the active selection of an action based on its 

expected value – the key task feature that is absent from cued trials. 

Relating neural correlates of learning noise to behavioral variability 

Neuroimaging results so far indicate that BOLD activity in several brain regions (the dACC, the 

right dlPFC, the PPC, the FPC and the vmPFC) reflects learning noise corrupting each learning 

step. An important question arises here as to whether these different brain regions differ in their 

relationship with the resulting behavioral variability. To address this important question, we formu-

lated a ‘brain-behavior’ analysis to predict behavioral variability based on trial-to-trial BOLD fluctua-
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tions in these five ROIs. In practice, we used a logistic regression model to predict each partici-

pant’s decisions to select either action as a function of the difference between action values, and 

single-trial deconvolved BOLD responses in the five ROIs (see Methods). The use of such ‘for-

ward’ model of behavior, where BOLD responses in the different ROIs can be included simultane-

ously, affords to account for their shared variance. We reasoned that a neural signal reflecting 

learning noise should: 1. decrease participants’ sensitivity to the difference between action values 

(Fig. 7a), and 2. influence participants’ decisions also in the complete outcome condition where the 

choice process is best described by a purely value-maximizing action selection policy. 

 We entered single-trial BOLD responses 𝑥! in the model as modulators of participants’ sensi-

tivity to the difference between action values in the form of an interaction term 𝑥! ∗ Q!,A − Q!,B . 

Importantly, Q!,A and Q!,B correspond to action values predicted by exact (noise-free) applications 

of the Rescorla-Wagner rule on the last update step, such that fluctuations in BOLD responses 

could be used to predict the behavioral effect of learning noise on the last update step. We fol-

lowed a fully factorial scheme by constructing and estimating the posterior probabilities associated 

with all possible combinations of ROIs (32 = 25, see Methods). We could then estimate the ‘family-

wise’ probability of each ROI to modulate sensitivity independently of the involvement of other 

ROIs. Note that, in contrast to posterior probabilities, these family-wise probabilities do not sum to 

one: they would be all equal to zero if no ROI modulates sensitivity, and all equal to one if all ROIs 

modulate sensitivity. This factorial analysis highlighted two ROIs with family-wise probabilities ex-

ceeding 1% (Fig. 7a,b): the dACC (family-wise p > 0.999) and the vmPFC (family-wise p = 0.630). 

Only two models (out of the 32 possible combinations) had posterior probabilities exceeding 1%: 

the winning model (posterior p = 0.629) including the dACC and the vmPFC, and the second-best 

model (posterior p = 0.370) including only the dACC. 

 Computing participant-level parameter estimates for the winning model (including the dACC 

and the vmPFC) in the partial outcome condition revealed a significantly negative effect of dACC 

responses on sensitivity (Fig. 7c; 𝛽 = -0.185 ± 0.026, t28 = -7.2, p < 0.001), and a positive effect of 

vmPFC fluctuations on the same metric (Fig. 7c; 𝛽 = 0.062 ± 0.026, t28 = 2.4, p = 0.023). The effect 

of dACC responses was substantially larger in absolute magnitude than that of vmPFC responses 
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Figure 7 (legend on next page) 

Brain-behavior and pupillometric analyses 
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Figure 7 (figure on previous page) 

Figure 7 – Brain-behavior and pupillometric analyses. (a) Left panel: schematic illustration of the brain-

behavior relationship predicted by a neural correlate of learning noise. Trial-to-trial variability in the amplitude 

of BOLD responses (shaded in blue) should correlate negatively with trial-to-trial variability in the sensitivity 

to action values predicted by exact application of the Rescorla-Wagner rule on the previous trial. Right panel: 

results of the full factorial brain-behavior analysis including the five ROIs identified in Fig. 5. Family-wise 

probability is defined as the probability that each ROI modulates sensitivity independently of the involvement 

of other ROIs. Only the dACC and the vmPFC have family-wise probabilities exceeding 1%. (b) Model re-

covery results for the full factorial brain-behavior analysis. Confusion matrix displaying the estimated family-

wise probabilities (columns) obtained for simulations of selective (single ROI) sensitivity modulations (rows). 

The full factorial brain-behavior analysis is able to recover accurately the source of simulated sensitivity 

modulations. (c) Participant-level parameter estimates for the winning model including the dACC (left panel) 

and the vmPFC (right panel) in the partial outcome condition (left bars) and the complete outcome condition 

(right bars). Sensitivity to action values correlates negatively with dACC activity and positively with vmPFC 

activity in both outcome conditions. (d) Psychometric brain-behavior predictions for the dACC ROI. Predicted 

(lines) and human (dots) psychometric curves for small (1st tercile) and large (3rd tercile) dACC responses. 

Both predicted and human curves show a decreased sensitivity to action values for larger dACC responses. 

Inset: sensitivity estimates for small (left bar) and large (right bar) dACC responses. Bars ± error bars corre-

spond to jackknifed means and s.e.m. (e) Top panel: results of the switch minus repeat contrast for pupillary 

dilation. Pupillary dilation increases significantly before switches. Bottom panel: results of the finite impulse 

response (FIR) analysis showing the temporal dynamics of learning noise (blue) and decision value (purple) 

in pupillary dilation, locked to the onset of the choice period. The correlation between pupillary dilation and 

learning noise emerges significantly before the onset of the choice period. Thick horizontal lines indicate time 

windows where parameter estimates diverge significantly from zero at a temporal cluster-wise corrected p-

value of 0.01. (f) Participant-level parameter estimates for pupil-linked modulations of sensitivity (left panel) 

and switching value/criterion (right panel) in the partial outcome condition (left bars) and the complete out-

come condition (right bars). Pupillary dilation correlates negatively with sensitivity and positively with switch-

ing value. Error bars correspond to s.e.m. One star corresponds to a significant difference at p < 0.05, two 

stars at p < 0.01, three stars at p < 0.001, n.s. to a non-significant difference. 
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(+200.0%, t28 = 4.2, p < 0.001). In quantitative terms, these parameter values mean that sensitivity 

decreases by as much as 37% around its average value (standardized to one for each participant) 

when dACC responses increase by 2 standard deviations – hence conforming to the first signature 

of a neural signal reflecting learning noise (Fig. 7d). Furthermore, the estimated modulation of sen-

sitivity by dACC responses was also significantly negative in the complete outcome condition (Fig. 

7c; 𝛽 = -0.170 ± 0.023, t28 = -7.4, p < 0.001). Importantly, the effects observed in the two conditions 

were similar (t28 = 0.5, p = 0.635, BFH0 = 4.6) – in line with the second signature of a neural signal 

reflecting learning noise. Together, these results support our hypothesis that dACC fluctuations 

reflect learning noise (which is present in both conditions) rather than choice stochasticity (which is 

absent in the complete outcome condition). 

Finally, we tested whether the negative modulation of sensitivity by dACC responses could be 

caused not by random fluctuations of action values (as predicted by learning noise), but rather by 

directed fluctuations in the value of switching away from the previous action (as predicted by ad-

justments of the exploration-exploitation trade-off). To test this alternative brain-behavior relation-

ship, we modified the logistic regression model to predict participants’ decisions to switch away 

from their previous action (i.e., 𝑎! ≠ 𝑎!!!) as a function of the difference between the value of 

switching Q!,switch = Q!(𝑎! ≠ 𝑎!!!) and the value of repeating the previous action Q!,repeat = Q!(𝑎! =

𝑎!!!). This time, we entered single-trial dACC responses 𝑥! in the model not only as a modulator 

of participants’ sensitivity to the value difference between switching and repeating in the form of an 

interaction term 𝑥! ∗ Q!,switch − Q!,repeat , but also as a modulator of the value of switching in the 

form of an additive term 𝑥!. We followed a fully factorial scheme by constructing and estimating the 

model evidence associated with the 4 = 22 combinations of the two possible modulations. This 

factorial analysis revealed a selective effect of dACC responses on sensitivity (family-wise p > 

0.999), without any measurable effect on the value of switching (family-wise p < 0.001). In both 

partial and complete outcome conditions, the winning model included a selective effect of dACC 

responses on sensitivity (partial: posterior p = 0.963; complete: posterior p = 0.972). This selective 

brain-behavior relationship indicates that trial-to-trial fluctuations of dACC activity reflect learning 

noise rather than adjustments of the exploration-exploitation trade-off. 
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Pupil-linked neuromodulatory correlates of learning noise 

Beside frontal cortical contributions to non-greedy decisions, past research has identified the locus 

coeruleus-norepinephrine (LC-NE) system as a reliable neurophysiological correlate of behavioral 

variability36–39. Large phasic responses of LC neurons are associated with task disengagement and 

non-greedy decisions in particular38,40. While existing theories describe these effects as adjust-

ments of the exploration-exploitation trade-off33,37, we hypothesized that trial-to-trial fluctuations of 

the computational precision of update steps, reflected in dACC activity, could be mediated by neu-

romodulatory fluctuations driven by the LC-NE system. Because LC activity is notoriously difficult 

to measure in fMRI, we took advantage of the strong, known correlation between LC activity and 

phasic pupil dilation41–43. We thus analyzed pupillary responses which were recorded in experi-

ment 2 (N = 24 participants with clean data), by performing similar analyses to the ones conducted 

on BOLD signals in experiment 1 (see Methods). 

 As expected from the existing literature, we observed that a switch away from the previous 

action was associated with larger pupillary dilation in the preceding choice period and before (Fig. 

7e; from -2.0 to 2.9 s following choice presentation, cluster-corrected p < 0.001). Pupillary dilation 

in the same time window correlated positively with the magnitude of learning noise 𝜀!  corrupting 

the preceding update step (Fig. 7e; from -2.0 to 2.2 s following choice presentation, cluster-

corrected p < 0.001), and negatively with the value difference between chosen and unchosen ac-

tions (from 1.3 to 3.3 s following choice presentation, cluster-corrected p < 0.001). Interestingly, 

pupillary dilation started correlating with learning noise well before choice onset (t-test against ze-

ro, jackknifed t23 = -11.1, p < 0.001). This suggests that, like BOLD responses in the dACC, pupil-

lary dilation reflects the variability of update steps during the learning of action values. 

 To confirm this hypothesis, we tested the relationship between trial-to-trial pupillary fluctua-

tions and behavioral variability using the same brain-behavior analysis previously applied to BOLD 

responses in experiment 1. As for BOLD responses, we entered single-trial pupillary dilation in a 

logistic regression model of participants’ decisions as a modulator of their sensitivity to the differ-

ence between action values. The comparison between the ‘active’ model (where pupillary dilation 

predicts participants’ sensitivity) and the ‘null’ model (where pupillary dilation is not entered in the 
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regression) indicated that pupillary dilation predicts participants’ sensitivity (posterior p > 0.999). 

Computing participant-level parameter estimates for this effect revealed a significantly negative 

effect of pupillary dilation on sensitivity (β = -0.198 ± 0.031, t23 = -6.3, p < 0.001). Like dACC re-

sponses, the estimated modulation of sensitivity by pupillary dilation was also significantly negative 

in the complete outcome condition (complete: 𝛽 = -0.166 ± 0.036, t28 = -4.7, p < 0.001; complete 

vs. partial: t28 = 0.7, p = 0.520, BFH0 = 3.8). 

 As for BOLD responses, we then assessed how much this pupil-mediated reduction in sensi-

tivity is caused by directed fluctuations in the value of switching rather than by random fluctuations 

in sensitivity (Fig. 7f). In the partial outcome condition, a factorial analysis indicated that pupillary 

dilation predicts both types of effects (random: family-wise p > 0.999; directed: family-wise p = 

0.995). Computing participant-level parameter estimates for the two effects showed that increased 

pupillary dilation predicts simultaneously a lower sensitivity (Fig. 7f; β = -0.132 ± 0.035, t23 = -3.8, 

p = 0.001) and an increased value of switching (β = 0.130 ± 0.038, t23 = 3.4, p = 0.002). By con-

trast, in the complete outcome condition, increased pupillary dilation predicts random fluctuations 

in sensitivity (family-wise p > 0.999), but no directed fluctuations in the value of switching (family-

wise p = 0.095). Parameter estimation for each participant confirmed that increased pupillary dila-

tion predicts a lower sensitivity (Fig. 7f; β = -0.146 ± 0.043, t23 = -3.4, p = 0.002), but no effect on 

the value of switching (β = 0.067 ± 0.042, t23 = 1.6, p = 0.129). Together, these results indicate that 

trial-to-trial fluctuations in pupillary dilation reflect learning noise over and above adjustments of the 

exploration-exploitation trade-off44,45.  
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Discussion (1,619 words) 

Maximizing rewards in volatile environments requires an agent to trade the exploitation of currently 

best valued actions against the exploration of recently unchosen, and thus more uncertain ones. 

Dominant theories describe seemingly irrational, non-greedy decisions in terms of this exploration-

exploitation trade-off, more specifically in terms of a drive to seek information about uncertain ac-

tions during choice5,7,15,31,46,47. Here we sought to contrast these information-seeking accounts with 

another possible source of behavioral variability: the limited computational precision of the learning 

process, which updates the expected values of possible actions following each reward. By decom-

posing behavioral variability into these two components using our noisy RL model, we show that 

more than half of non-greedy decisions are triggered by random noise in the learning process, 

rather than by an overt drive to seek information during choice. 

 This finding requires reconsidering the very nature of non-greedy decisions in volatile envi-

ronments. Indeed, these decisions have classically been regarded as exploratory and information-

seeking, and they should thus happen only (significantly more, at least) when there is uncertainty 

regarding the current value of recently unchosen actions. In accordance with this view, we found 

that the fraction of non-greedy decisions labeled as choice-driven by our noisy RL model depends 

critically on the absence of knowledge about the outcome of the foregone action on each trial. Our 

participants chose almost invariably the currently best-valued action when the outcome of the fore-

gone action was observed or could be easily inferred from the outcome of the chosen action. By 

contrast, noise-driven variability in action values did not depend on knowledge about the foregone 

action, suggesting that its reflects a core characteristic of human learning rather than a feature that 

can be suppressed when the resulting behavioral variability is not useful16. In this sense, learning 

noise resembles the internal corruptive noise found in canonical decision-theoretic models, ranging 

from signal detection theory to sampling-based theories of inference48–50. Importantly, the predic-

tions of our noisy model, cast in terms of reinforcement learning, are very similar to a noisy instan-

tiation of ‘Kalman filtering’ (KF), which also provides an accurate description of human behavior in 

volatile environments3,51. Noise would be added in the KF model by assuming that the predictive 
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means of action values are represented not by their full probability distributions, but a limited num-

ber of samples from these distributions. The moderate consistency of human decisions across 

identical blocks excluded the possibility that learning noise is due to a misspecification of our mod-

el – i.e., systematic deviations from the canonical Rescorla-Wagner rule used in our noisy RL 

model to update action values following each reward17,52. 

 The analysis of BOLD signals provided further information about the neural mechanisms un-

derlying the observed learning noise. BOLD activity in a well-documented cognitive control network 

including the dACC and the FPC correlates positively with trial-to-trial deviations from the exact 

application of the canonical Rescorla-Wagner rule, even when participants were cued to select a 

randomly determined action – and thus did not have to make a choice. These neural correlates of 

learning noise are fundamentally different from neural correlates of computational quantities asso-

ciated with reinforcement learning (e.g., prediction errors, expected values), in the sense that 

learning noise is neither computed explicitly by our noisy RL model nor hypothesized to be repre-

sented in any brain region. Our noisy RL model updates action values with a limited precision, and 

thus trial-to-trial deviations of each update step from the average reflect the effective variance (in-

verse precision) of the learning rule. This means notably that ‘functional’ accounts of surprise 

monitoring in the dACC might stem from the structure of learning noise41,53–58. In other words, 

dACC activity may correlate only indirectly with surprise through the multiplicative scaling of learn-

ing noise with the size of update steps – following the ubiquitous Weber’s law of intensity sensation 

found in numerous perceptual domains. 

 Several previous studies have tied both the dACC and the FPC to exploration and foraging 

across species3,12,14,22,59–66, but the specific contributions of these two regions have remained un-

clear. While both regions showed larger responses during switches, our brain-behavior analysis 

revealed that only dACC fluctuations exhibit the psychometric signatures of learning noise: a nega-

tive effect on participants’ sensitivity to action values, and a significant effect also in the complete 

outcome condition where there was no incentive to seek information about recently unchosen ac-

tions. By contrast, FPC fluctuations had no measurable effect on behavior in either condition. This 

relationship between dACC activity and learning noise has not been considered by previous stud-
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ies and thus deserves further consideration. The dACC has been assigned a causal role in learn-

ing based notably on lesion studies in non-human primates disrupting reinforcement learning67, 

and on inactivation studies in rodents leading to purely random behavior divorced from learning68. 

The learning noise correlating positively with dACC activity is consistent with an active role of this 

frontal region in learning since the variability in question scales with the size of each learning step. 

Besides, several recent findings support the idea of learning-specific variability triggered by the 

dACC69. At the theoretical level, the ‘metaplastic’ synapses hypothesized in the dACC to account 

for adaptive learning in volatile environments go through stochastic transitions between states of 

faster and slower learning70. Neural circuits endowed with such synaptic properties would produce 

behavioral variability with the same statistical signatures as our learning noise. In the scanner, 

dACC activity has recently been shown to reflect prediction errors based on multiple, graded learn-

ing rates69. Neural variability in the pooling of such graded prediction errors (of which sampling 

would be an extreme case) would also produce behavioral variability of the same nature. Our find-

ings reveal that the learning noise resulting from these accounts is responsible for a large fraction 

of non-greedy decisions. 

An intriguing possibility is that learning noise may confer beneficial properties to the resulting 

behavior in volatile environments16. In particular, although the behavioral variability driven by learn-

ing noise does not have any active role in solving the exploration-exploitation trade-off, it provides 

a computationally inexpensive source of exploration by decreasing the precision of update steps71. 

Furthermore, as we have shown, the structure of learning noise has choice-stabilizing properties 

and produces an adjustment of exploration to surprise without requiring its explicit monitoring. Be-

yond these intrinsic benefits, computational noise in reinforcement learning may also optimize a 

second trade-off between the marginal payoff of a computation and the cost associated with per-

forming the computation at a certain precision. The dACC has precisely been proposed to reflect a 

similar trade-off, by monitoring an ‘expected value of control’ (EVC) – defined as the difference 

between expected payoff and associated cost (cognitive conflict, in particular)72. Instead of assum-

ing that the cost is represented explicitly in patterns of dACC activity, we propose that the cost 

associated with a computation may be reflected implicitly by its precision (Fig. 8a). This hypothesis 
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Figure 8 (legend on next page) 
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Figure 8 – Hypothesized payoff-cost trade-off on learning precision. (a) Illustration of the hypothesized 

payoff-cost trade-off. Top panel: schematic illustration of the dependencies between learning precision 1 𝜁 

(x-axis) and the marginal payoff of learning (gray curve) and the computational cost of learning (red curve). 

The marginal payoff of learning saturates at high precisions, whereas its computational cost grows exponen-

tially. Bottom panel: payoff minus cost trade-off showing an optimal learning precision which maximizes the 

difference between payoff and cost. (b) Illustration of the effect of volatility on the hypothesized payoff-cost 

trade-off. Top panel: increasing volatility decreases the marginal payoff of learning (from lighter to darker 

gray curves). Bottom panel: increasing volatility decreases the optimal learning precision which maximizes 

the difference between payoff and cost (from lighter to darker blue curves). 
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provides a natural explanation as to why learning is subject to a limited computational precision, 

but also makes important testable predictions. In particular, increasing the level of volatility (i.e., 

the rate of change in the average values of actions) reduces the marginal payoff of learning (which 

in the limit case tends toward zero), and thus decreases the precision which optimizes the underly-

ing payoff-cost trade-off (Fig. 8b). We thus predict that participants should feature not only larger 

learning rates9,73, but also more learning noise, in more volatile environments. Under our hypothe-

sis, the larger dACC activity observed at higher levels of volatility9 would be a signature of the in-

creased learning noise predicted in such conditions. 

 Based on previous findings, we reasoned that the observed learning noise, reflected in dACC 

responses, may be linked to the ongoing state of the locus coeruleus-norepinephrine (LC-NE) sys-

tem – which has been previously involved in both the regulation of the neural gain of cognitive op-

erations and the adjustment of the exploration-exploitation trade-off32,33,36–38,40. Indeed, LC neurons 

receive strong projections from the dACC, which in turn produce gain control in several frontal re-

gions implicated in reward-guided learning74–76. Pupil-linked fluctuations of the LC-NE state are 

associated with both task disengagement and non-greedy decisions39,77,78. Existing theories have 

interpreted these findings as evidence in favor of the implication of the LC-NE system in controlling 

the exploration-exploitation trade-off, something for which there is only partially conclusive evi-

dence to date37,39,77. We hypothesized that the LC-NE system may instead mediate the relationship 

between dACC activity and learning noise. In line with this hypothesis, we observed that pupillary 

dilation predicts not only directed fluctuations in the value of switching away from the previous ac-

tion, but also random fluctuations in participants’ sensitivity to action values. This was the case 

even when participants observed the outcome of the foregone action on every trial, just like dACC 

fluctuations. This relationship between pupillary dilation and sensitivity supports the idea that the 

LC-NE system controls the proposed payoff-cost trade-off by adjusting the computational precision 

of learning. The recent observation that pupillary dilation increases at high levels of volatility73 (i.e., 

when the optimal learning precision decreases) provides preliminary evidence for this hypothesis, 

which should be tested formally in future work. 
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 Together, our findings emphasize a large, yet previously neglected source of random variabil-

ity in reward-guided decision-making, driven by computational noise in the underlying learning 

process. This noise-driven source of non-greedy decisions, likely occurring unbeknownst to the 

decision-maker, is independent of the overt arbitration between the exploitation of currently best-

valued actions against the exploration of more uncertain ones – a trade-off previously considered 

as the sole source of behavioral variability. As we have shown, the decomposition of non-greedy 

decisions into noise- and choice-driven components bears important consequences for under-

standing both the mechanisms underlying reward-guided behavior and its neurophysiological sub-

strates. Exact models of learning should be revised to allow for noise in their core computations, 

and include an explicit cost-benefit trade-off regulating their precision. 
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Methods

Participants : fMRI experiment 1: 30 subjects (16F, mean age 26.0 +− 5.5, all right handed). One

subject was excluded from the analysis because he failed to understand the task instructions and

performed at a chance level. Subjects were screened for the absence of any history of neurological

and psychiatric disease or any current psychiatric medication and had normal or corrected to normal

vision.

Behavioral experiment 2: 30 subjects (17F, 23.6 +− 4.6) took part in the experiment and all the data

were included in the analysis. Additionally to the behavioral data, we also recorded the pupillary re-

sponses in this study. However, N = 6 subjects were excluded from pupillatory analyses because of

bad quality pupil data.

Behavioral experiment 3 (with the repeated blocks): 30 subjects (19F, mean age 24.2 +− 3.7) took

part in the experiment and all the data were included in the analysis.

All participants in all three experiments gave a written informed consent and the local Ethical Com-

mittee approved the study. All subjects received a fixed payment and were additionally remunerated

based on their performance in the task between 5 and 10 euros.

Experimental task : In the three experiments, we asked subjects to play a two-armed bandit task

where the reward magnitudes of the two bandits followed a random walk process (fig. 1a). The re-

wards observed by the subjects (between 1 and 99 points) were sampled from Gaussian distributions

with mean predicted by the random walks (fig. 1b). In experiment 1 (fMRI study) and 2, in half of

the experimental blocks (4 out of 8), the reward obtained on each trial from the chosen lever was

presented simultaneously with the ‘counterfactual’ feedback that could have been obtained from the

unchosen lever - referred to as the complete setting [10], while, in the other half, only the chosen

outcome was shown - referred to as the partial setting. In experiment 3, subjects were always pre-

sented with the full information about both obtained and forgone outcomes but in half of the blocks

unbeknownst to the participants the reward sequences were repeated (fig. 3a).
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Analytical Model : The full analytical model of behavior is:

Qk
t+1|Qt, Irt, at, α, ζ ∼ N

((
1− α1[at=k]

)
Qk

t + α1[at=k] · rkt , ζ ·
∥∥∥Qk

t − rkt

∥∥∥) , ∀ k ∈ [0, 1]

with, Qt =
{
Q0

t , Q
1
t

}
, and Irt =

{
r0t , r

1
t

}

With Qt the Q-values at time t, α the learning rate, ζ the learning noise scaling and Irt the observed

or fictive rewards at time t. For the complete setting, Irt are the two observed rewards. For the partial

setting, the regression to the mean models set one of these rewards to their empirical mean - 50.

The dynamics of the actions are :

at+1|Qt+1, β, at ∼ Ber (η (Qt+1, β, at))

with, η (Qt+1, β, at) = 1/
(
1 + exp

[
−β

(
Q1

t+1 −Q0
t+1

)
− sign (at − .5) · ξ

])

With β the softmax coefficient and ξ the repetition bias. Let us add a parameter c indicating whether

the two options have a shared (c=1) or different (c=0) learning rate. Working in a Bayesian framework,

we ascribe a prior distribution to each parameter:

p (α0, α1) = 1[0,1]2 (α0, α1) · 1[c = 0] + 1[0,1](α
0) · 1[α0 = α1] · 1[c = 1]

1

β
∼ U ([0, 1])

ξ ∼ N (0, 1)

All the models can be derived from these equations by setting parameters to 0. For instance ζ and ξ

to 0 leads to the standard reinforcement learning model.

The standard deviation of the learning noise is proportional to the prediction error
∥∥Qk

t − rkt
∥∥ which

implies it scales positively with the quantity of update
∥∥∥Qk

t − Q̂k
t+1

∥∥∥, with Q̂k
t+1 obtained by applying
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the exact reinforcement learning update to Qk
t .

∥∥∥Qk
t − Q̂k

t+1

∥∥∥ =
∥∥∥Qk

t −
(
1− α1[at=k]

)
Qk

t − α1[at=k] · rkt
∥∥∥ = α1[at=k] ·

∥∥∥Qk
t − rkt

∥∥∥

Fitting procedure : Fits in all models are based on Monte Carlo methods [11]. More precisely,

for the standard reinforcement learning models without learning noise, we used an iterated batch

importance sampler (IBIS) [1]. IBIS is a sequential Monte Carlo (SMC) algorithm for exploring a se-

quence of parameter posterior distributions when the likelihoods p(at|a1:(t−1), r1:(t−1), β, α
0, α1, ξ) are

tractable. This algorithm could not be used for the models with learning noise as these likelihoods

are, in this latter case, intractable. Thus, we used the SMC2 algorithm [2] to perform inference in the

models with learning noise. These fitting procedures can be found in more extensive details in the

Supplementary Information.

Obtaining the smoothing distributions : Two studies involving the learning noise model required

the smoothing distributions p
(
Q1:T |a1:T , r1:T , θMAP

)
, with θMAP the maximum a posteriori. The first

was when we investigated whether a labeled ‘non-greedy’ trial effectively stemmed from the softmax

contribution or whether it was a greedy choice that originated from learning noise. The second study

involving the smoothing distributions is the model-based fMRI study : we correlated the BOLD signal

with the most likely deviations predicted by the learning noise model. To obtain samples approxi-

mately distributed under the smoothing distributions, we used the Forward Filter/Backward Simulator

(FFBSi) [5] [7] to obtain N samples
{
Q̃1:T,i

}
i∈[1,N ]

from p
(
Q1:T |a1:T , r1:T , θMAP

)
with T the total num-

ber of trials.

Distinguishing softmax stochasticity from learning noise: In the main experiment and its purely

behavioral extension, we reported the proportion of labeled ‘non-greedy’ trials which originated from

learning noise. To label a trial as ‘non-greedy’, we applied the standard exact reinforcement learning

algorithm and labeled as ‘non-greedy’ every trial which was not predicted by this exact model [3].

Assuming there are a total of T trials and among these T trials, n were labeled as ‘non-greedy’.
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Let us write {t1, ..., tn} the indexes of these n trials. For each ti, given the smoothing average

Q̃ti =
(∑N

k=1 Q̃ti,k

)
/N , the ‘non-greedy’ trial ti can actually be greedy for the learning noise model

if it is well predicted by the sign of
(
Q̃1

ti − Q̃0
ti

)
. We conclude the proportion of ‘non-greedy’ trials to

be greedy for the learning noise model to be:

N (greedy trials| t1, ..., tn, noisy)
N (non-greedy trials| exact)

=
1

n

n∑
i=1

1
{
1
[
Q̃1

ti > Q̃0
ti

]
== ati

}

Obtaining the learning noise and softmax variabilities: For the computation of the learning noise

variability, please refer to the paragraph ’Obtaining the noise regressors for model-based fMRI’ : for

each subject, we obtained the learning noise variability by calculating the variance over the devia-

tions δ1:T . As for the computation of the softmax variability, we used the approximation of the logistic

distribution as the cumulative distribution function of a Gaussian distribution (see Supplementary

Information). From this approximation, we obtained the stochasticity added by the logistic distribu-

tion with softmax parameter β was well-approximated by a Gaussian noise with standard deviation

π/(β ·
√
3)

Obtaining the bias/variance tradeoff: The last experiment (exp.3) composed of repeated blocks

was used to obtain a bias/variance tradeoff describing to which extent the learning noise can be ex-

plained by deterministic deviations from the learning rule. This experiment led to a consistency ratio

of 82% indicating that, on 82% of the trials, the subjects were consistent in their choices within re-

peated blocks. For each set of fitted parameters (one per subject with N=30 subjects), we simulated

the model with learning noise and no softmax stochasticity a 100 times. This led to 30× 100 agents

playing the task. Furthermore, in these simulations, we assumed a shared contribution throughout

the repeated blocks and a unique contribution to each of them. The shared contribution represented

the deterministic deviation to the learning rule, the ”bias”, whereas the unique contributions repre-

sented unpredictable deviations, the ”variance”. We modulated the bias/variance contributions so as

to match the consistency ratio of the subjects and obtained contributions of 68% of variance and 32%
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of bias. This means the learning noise obtained is only explained up to one third by deterministic

biases (fig 3d).

Obtaining the noise regressors formodel-based fMRI : For the model-based fMRI, we investigated

the fMRI BOLD activity correlates with regressors issued from the model with learning noise. With T

the total number of samples and N the number of particle, let Q̃t∈[1,T ],i∈[1,N ] be the smoothing samples

of the learning noise model and Q̂t∈[1,T ],i∈[1,N ] the Q-values obtained when applying the exact update

rule to Q̃t−1,i (see paragraph ’Obtaining the smoothing distributions’). The fMRI regressors include the

prediction error of the chosen option PE =
(
rchosent−1 − Q̃chosen

t−1

)
, with Q̃chosen

t−1 = (1/N)
∑

i Q̃
chosen
t−1,i , the

difficulty
∣∣∣Q̂chosen

t − Q̂unchosen
t

∣∣∣, with Q̂chosen
t = (1/N)

∑
i Q̂

chosen
t,i and Q̂unchosen

t = (1/N)
∑

i Q̂
unchosen
t,i ,

and the deviations from the exact Rescorla-Wagner learning rule at every time step. This last ‘learning

noise’ regressor is obtained by computing the deviation for each sampled trajectory, δt,i =
∥∥∥Q̃t,i − Q̂t,i

∥∥∥
1

and averaging over these trajectories δt = (1/N)
∑

i δt,i (main text equation 3).

Computing the Bayes factor of the null hypothesis : When standard t-tests were considered

non-significant, we performed an additional Bayesian test to obtain the Bayes factor quantifying the

evidence in favor of the null hypothesis. This additional test was computed using the ’BayesFactor’

library under R implementing the test described in Rouder JN. and colleagues, 2009 [12].

Imaging data acquisitions and preprocessing : A Siemens Prisma fit 3T scanner (CENIR, ICM,

Paris, France) and an 64-channel head coil were used to acquire both high resolution T1-weighted

anatomical MRI using a 3D MPRAGE with a resolution of 1mm3 voxel and T2∗-weighted multiband-

echo planar imaging (mb-EPI) with multiband factor of 3 and acceleration factor of 2 (GRAPPA). The

parameters of the fMRI time series acquisition were the following: 54 slices acquired in ascending

order, the voxel size was 2.5mm isometric (in each direction), the repetition time of 1.1s, and the echo

time of 25 ms. A tilted plane acquisition sequence was used to optimize sensitivity to BOLD signal in

the orbitofrontal cortex [4], [13]. Preprocessing included co-registration of the anatomical T1 images

with the mean EPI, segmentation and normalization to a standard T1 template, and average across

all subjects to allow group-level anatomical localisation.
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Preprocessing of the mb-EPI consisted of spatial realignment, movement correction, reconstruction

and distortion correction, and normalization using the same transformation as applied for the struc-

tural images. Normalized images were spatially smoothed using a Gaussian kernel with a full width

at a half-maximum of 8mm. All the preprocessing except for the distortion correction was done using

the SPM12 (Wellcome Trust Center for NeuroImaging, London, UK; www.fil.ion.ucl.ac.uk). Distortion

correction consisted of image unwarping and reconstruction done using FSL software [6].

FIR time courses analysis: To reconstruct the time courses of BOLD signal showed in fig. 5b,

we created two GLMs. For the first GLM, the time epoch started at 2 seconds before up to 12 sec-

onds after the onset of outcome and then applied a GLM to each timepoint separately. The GLM1

included the following parametric modulators: reward prediction error for the chosen option and the

learning noise regressor, sequentially orthogonalized as in the other GLMs. For the GLM 2 we chose

a time epoch starting at 3 seconds before up to 10 seconds after the onset of choice. The GLM

2 included the following parametric modulators: the reward prediction error for the chosen option

from the previous trial and the learning noise regressor for the current trial. Obtained time courses

for parametric modulators in both GLMs were first smoothed using Savitzky-Golay filtering (order 2,

length 7 timepoints) and then averaged across subjects. For GLM 1, we next computed the time to

peak for each parametric modulator using leave-one-out procedure and then averaged the estimates

across subjects. Individual time-to-peak estimates were brought to a paired two-tailed t-test with the

p-value adjusted for the resampling (Jacknife resampling method, [9]). For both GLMs, we deter-

mined the time window where parametric modulators for learning noise, prediction error and relative

choice value were significantly different from zero. We used non-parametric cluster correction (p <

0.01) using permutation method (N = 10.000) on the obtained regression coefficients [8].

Predicting the behavioral variability using the fMRI time-series data : We ran logistic regres-

sion analysis to determine the role of each of the five ROIs (dACC, dlPFC, PPC, FPC and vmPFC)

which were shown to reflect the learning noise in the modulation of decision sensitivity (fig. 7a).

First, we estimated the individual sensitivity to the relative value difference for each subject. To do

this, we ran a simple logistic regression model: P (choose A) = probit(β0 + β1 · (QA − QB)) to com-
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pute the adjusted value difference, ∆Qadj = β0 + β1 · (QA −QB), and then used this adjusted value

difference as a predictor in the main logistic regression analyses. This adjustment allowed us to

account for individual differences in decision sensitivity and to quantify the contribution of ROIs in

terms of effect size to the behavioral variability. We next predicted the trial-by-trial decision to choose

option A as a function of the adjusted difference between two options values ∆Qadj and z-scored

trial-by-trial deconvolved BOLD signal as a modulator of participant’s sensitivity to the relative op-

tion value (e.g, for the dACC, ∆Qadj · dACC). For 5 ROIs we constructed 25 regression models to

estimate the model evidence associated with all possible combinations of ROIs. Each model was

fitted across all subjects simultaneously (fixed-effect analysis). For each region independently we

summed up model evidence for all models that included this region to compute the ’family-wise’

probability (fig. 7a). The winning model based on the family-wise analysis included the following

terms: P (choose A) = probit(β1 ·∆Qadj+β2 ·dACC ·∆Qadj+β3 ·vmPFC ·∆Qadj). We next fitted this

model separately for each subject in the partial and complete feedback conditions and next extracted

the regression estimates for the two ROI modulatory effects to perform two-tailed paired t-tests (see

Results).

Predicting decisions using the trial-to-trial pupil dilation: Pupil data were acquired in a separate

dataset (experiment 2, N = 30 with pupil data successfully recorded for 24 subjects) who performed

the same task outside the scanner. The diameter of the dominant eye was recorded at 500 Hz us-

ing an EyeLink-1000 System (EYELINK II CL v4.594). Subjects performed the experiment in a dark

sound-proof room with their head positioned on a chin rest positioned at approximately 50 cm from

the computer screen.

Data were first corrected for the eye-blinked artifacts using manufacturer default algorithm. The pre-

processing was then performed using custom-based MatLab functions: data were smoothed using

the moving average of of 100 ms; blink periods were linearly interpolated (from -100 ms before until

500 ms after the blink). Trials where blinking or fixation errors occurred within the analysis window

(from -1000 ms till 5000 ms after the stimulus onset) were removed. Data were next subsampled at

50 Hz and low-pass filtered at 4Hz (third order Butterworth filter) and then z-scored per session.

We next analyzed these time series using FIR approach. First, we check that pupillary response
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increases after the switch vs. repeat decisions: the FIR model across both partial and complete

feedback conditions included stick function put at every time point within interval 1000 ms before

and 5000 ms after the stimuli onset and then parametrically modulated with the switch (1) vs. repeat

(-1) regressor. We next constructed another FIR model within the same time window where each

stick function was parametrically modulated with the two computational variables: the relative value

(Qchosen - Qunchosen) at the time of choice t obtained by applying the exact update to the noisy

Q-value and the learning noise. Recalling the notations of the ‘obtaining the noise regressors for

model-based fMRI’ paragraph, these two regressors correspond to Q̂chosen
t − Q̂unchosen

t and δt. All

behavioral variables were sequentially orthogonalized as for the fMRI analysis, z-scored per ses-

sion; additional session regressors were added to the model. The model was next inverted using

the Ridge regression. For both FIR models, we performed nonparametric cluster correction on the

obtained regression coefficients as described in Maris and Oostenveld [8]. Clusters were first defined

for 8 minimum contiguous time points where the beta estimates were different from 0 at p < 0.01 for

two-tailed paired t-test and the summed t-statistic was computed for each cluster. Next permutation

analysis was run (N = 10.000) where each time half of the subjects betas were flipped in sign and the

sum of the t-statistic values was recomputed. Significant cluster was defined at p < 0.01 (1% chance

that the shuffled t-value exceeded the true summed t-value for a given cluster).

We defined a significant time interval where the pupil dilation negatively correlated with the relative

value in the partial and complete feedback conditions (fig. 7e). We next averaged trial-by-trial pupil

response within this time interval and used these averaged response in the logistic regression model

to predict subjects’ with decision to choose option A on each trial. The logistic regression was similar

to the one used to investigate the effect of BOLD fluctuations with the frontal regions on subjects’

behavior and consisted of the following regressors: subject-by-subject adjusted relative option value

∆Qadj (see previous paragraph) at the time of choice t without the added noise on this trial from the

noisy computational model and the trial-by-trial interaction between the z-scored pupil fluctuations

and the adjusted relative option value, P (choose A) = probit(β1 ·∆Qadj + β2 · pupil ·∆Qadj). Individ-

ual regressor estimates were next brought to a second-level between-subject analysis using paired

t-tests.
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Code availability : Python and C++ code for the fitted exact and noisy RL models are available at

https://github.com/csmfindling/learning_variability and the principal algorithms can be found in the 

Supplementary Information.

Data availability : The data that support these findings are available from authors upon request.
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