
 

Figure 2.  A) The color-based reversal task described in Oemisch et al. (2018).  Subjects are shown a fixation point 

and two neutral stimuli. Then the stimuli switched to oppostie colors and began to move within their apertures in 

opposite, upward or downward directions of motion.  Following a brief interval, a ‘Go’ (dimming) signal is 

presented, following which the subject is required to indicate the direction of the grid for the currently relevant 

color. The dimming signals occurred at unpredictable moments in time either in both stimuli simultaneously or in 

sequence to control covert attention (not shown). B) The rewarded, relevant color reversed uncued after ≥30 trials, 

and subjects had to adjust their behavior to indicate the movement direction associated with the newly relevant 

color.  C) The HER model is able to learn the Oemisch et al. reversal task easily.  During an initial period lasting 

from 1-10 reversal epochs, the model learns to preferentially gate in task features to hierarchical levels.  Following 

reversals, the model rapidly learns the new task contingencies while preserving the hierarchical order of information.  

D) The concrete decision variable in the reversal task is the apparent direction of motion associated with the 

currently relevant color.  The HER model learns to represent this variable at the lowest hierarchical level (Level 1), 

consistent with its direct relevance to generating behavioral responses. 

 

Simulated task 

The HER model was developed to account for behavior and brain function in tasks requiring the selection 

and application of rules that govern how to respond to a concrete stimulus (e.g., an arrow cueing response 

identity).  We therefore selected a recent, rule-based task(Oemisch et al., 2018) in which, on each trial, 

monkeys were presented two stimuli, one on each side of the screen (Fig. 2A).  Stimuli had two 

behaviorally-relevant features that varied independently from each other, namely color (red/green), and 

the motion direction of a visual pattern (up/down).  The task requires that the monkey learn which of the 

two colors is currently relevant, and to respond with a saccade in the up- or downward motion direction of 

the stimulus with the currently relevant color.  Once the relevant color has been learned, successful 

performance of the task requires that, on each trial, the monkey first identifies the location (side of the 

screen) of the appropriately-colored stimulus, after which the identity of the response (up/down) 

corresponding to the direction of the pattern movement is determined. The task described in Oemisch et 

al. additionally incorporates periodic reversals when the relevant color changes and the monkey must 

adapt their responses to the new task contingencies; while the HER model is able to learn such reversals 
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(cf. Fig. 2C), this aspect of the task is not further considered here as it does not bear directly on the 

within-trial temporal dynamics of PFC interactions. 

Model Simulations 

To simulate real-time dynamics in the HER model, we adopt the approach taken by previous studies of 

network models of cognitive control  (e.g., (Yeung, Botvinick, & Cohen, 2004))  in which the process 

used to establish weights suitable for performing a task is carried out independently of simulations of 

temporal dynamics.  In order to establish model weights suitable for performing the Oemisch et al. 

reversal task, a previously-described version of the (event-level) HER model (Alexander & Brown, 2015) 

using the same parameters was trained on 20,000 trials of the reversal task, divided into 50 blocks of 400 

trials each.  On each trial during learning, 3 events were modeled: the onset of task stimuli, the occurrence 

of a response and feedback, and a neutral cue indicating the start of the intertrial interval (ITI).  Stimuli 

were modeled as a binary vector, with elements corresponding to color and movement direction (four 

total elements per stimulus), and independent stimulus vectors were used to model each side of the 

simulated display, for a total of 8 task stimulus elements.  A 9th element was used to indicate the ITI.  The 

model was permitted 3 responses, two corresponding to movement direction (up/down), and one neutral 

response indicating acknowledgement of ITI onset.  Each response could be associated with two 

outcomes (correct/incorrect), for a total of 6 response-outcome predictions.  Responses were generated by 

subtracting, for each response, the prediction of incorrect feedback from the prediction of correct 

feedback, and passing the values through a softmax function, as described in the methods section. 

Temporal Dynamics 

The network weights recovered from the training procedure were fixed during the real-time simulations as 

described above.  In order to simulate real-time dynamics in the network, changes in unit activity on each 

cycle were modeled by a non-linear “shunting” equation (Grossberg, 1988): 

∆𝐸𝑖 = 𝑒𝑥𝑐𝑖(𝜃 − 𝐸𝑖) − (𝐸𝑖 + 𝜆) + 𝑁(0, 𝜎)     (10) 

where θ is the upper asymptotic activity a unit could achieve (set to a value of 10), λ is the lower 

boundary toward which unit activity decays passively (-0.05), and N is gaussian noise applied to the 

signal change with mean 0 and variance σ = 0.01.  Ei is the current activity of unit i, and exci is the current 

net excitatory input to the unit, computed as in equations 1,3 & 6.  Specifically, exci is equal to v in eq. 1, 

governing the dynamics of WM update and maintenance.  For computing model predictions at all 

hierarchical levels, exci is equal to p in eq. 3.  Finally, for computing error (eq. 6), exci is set to e, the 

difference between predictions p and observed outcomes o. 

Each simulated trial lasted up to 700 cycles, and on each cycle the processing steps outlined in eqs. (1-9) 

were followed and unit activity updated according to eq. 10.  During the first 100 cycles of the trial, no 

input was presented to the network.  On cycle 101, a stimulus vector representing the color and movement 

direction of the left and right stimuli was presented to the network, after which the network was able to 

register a response.  Following a response, the stimulus vector was set to 0 and the network was provided 

feedback for 50 cycles.  Following the offset of feedback, the network was run for an additional 250 

cycles prior to the beginning of the next trial.  Network activity was not re-initialized after each trial.  As 

described in previous work(Alexander & Brown, 2011, 2014, 2015, 2018), eqs. 1-9 specify two primary 

signal types, namely prediction (eqs. 1 & 3) and error (eq. 6).  In the simulations reported here, both types 

of signals are subject to the temporal dynamics embodied in eq. 10.  

Results 
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The HER model was able to learn and perform the reversal task relatively easily.  During an initial “burn-

in” period (Fig. 2C), the model primarily learned to hierarchically segregate relevant feature dimensions 

(Fig. 2D): the WM gating mechanism (eqs 1&2) learned to store the “concrete” movement direction at the 

lowest hierarchical level while color information was stored in the superior hierarchical level.  This 

pattern accords with intuitions regarding how individuals might solve the task (Oemisch et al., 2018): 

color acts as a ‘rule’ that indicates which concrete stimulus (movement direction) should govern the 

ultimate response.  After this initial learning period, the model is able to perform reversals within a short 

period of time.  Because the model has learned stable WM mappings, learning to respond to the opposite 

color entails relatively rapid changes in top-down modulation of concrete responses, i.e., rather than 

relearning the task from the ground up.  These findings suggest one manner in which hierarchical 

representation of information might support rapid and flexible reconfiguration of responses in the face of 

changing task contingencies. 

Response Preparation 

Introducing real-time dynamics allows us to investigate the evolution of predictive activity in the model 

during a trial, the influence of previous trial effects, and derive measures of reaction time from model 

activity (Fig. 3).  During preparatory periods following the onset of a task stimulus the activity of 

predictive units in both mPFC (Fig. 3A) and lPFC (Fig. 3B) begins to ramp up.  Normalized predictive 

activity over the first 200 cycles of a trial (Fig 3C) suggests a causal relationship of lPFC to mPFC: 

activity in lPFC increases more quickly early in the trial, particularly when the target response direction 

changes.  The development of activity depending on previous trials additionally influences the speed at 

which a response is generated (Fig. 3D) due to lingering model activity related to features from the 

previous trial.  When both the position of the relevant stimulus and the cued response remain the same, 

model reaction times are most rapid; activity in both lPFC and mPFC starts above a resting baseline, 

making it easier for response signals to exceed a threshold (eq. 10).  In the model lPFC, this starting point 

is primarily sensitive to changes in the location of the relevant stimulus; when the location changes, lPFC 

activity representing the prior location must first be suppressed prior to the representation of the new 

location becoming active and able to modulate mPFC activity.  In contrast, mPFC activity is sensitive to 

changes both in the location of the target stimulus, as well as changes in the cued direction; both factors 

influence the development of mPFC activity, but here changes in the cued response tend to have a greater 

influence – as noted above, the cued response direction is a concrete decision variable that directly drives 

model actions, while identifying the location of the relevant color stimulus acts as a rule that modulates 

ongoing response activity.  Artificially lesioning lPFC (Fig. 3E) prevents this modulation, after which the 

development of mPFC activity is only influenced by differences in the cued response direction.  RTs 

derived from the model (Fig. 3D) replicate standard trial sequence effects wherein feature repetition 

facilitates responding, while feature switches interfere with responses(Fecteau & Munoz, 2003).  The 

HER model further suggests why some feature switches may produce greater interference effects than 

others – specifically, switches of the feature that most directly drives response results in a greater RT 

difference than changes in the more abstract feature dimension. 
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Figure 3.  A) MPFC activity in model simulations is influenced by switches or repetitions of feature dimensions.  

When both feature dimensions (location & direction) repeat, as well as repetitions of the target direction, mPFC 

activity reaches asymptote quickly after stimulus onset, while changes in the target response produce delays in the 

evolution of mPFC activity.  B) Activity in LPFC likewise shows intertrial effects; however, in this case, delay in 

the development of LPFC activity is due principally to shifts in the location of the target stimulus, while changes in 

the more concrete target direction variable have relatively little influence on LPFC activity.  C) LPFC activity 

develops more quickly than mPFC activity during early trial stages, and continues to increase after mPFC activity 

asymptotes, consistent with a role for lPFC in modulating mPFC responses.  D)  The delay in model activity 

following feature switches contributes to changes in model reaction times: reaction times are most rapid on trials in 

which both feature dimensions repeat, while switches in either or both features result in longer reaction times.  E)  

Artificially lesioning the simulated LPFC component of the model further delays the development of mPFC activity 

in the model, demonstrating a causal influence of LPFC on mPFC function in the HER model. 

Feedback Processing 

Following a response, the model receives feedback indicating whether the selected response was correct 

or incorrect.  While equations used to compute errors in the model, like those used to calculate prediction 

unit activity, apply at every moment in the simulations, error-related activity is most prominent following 

feedback delivery, during which ongoing predictive activity is compared to an experienced outcome.  

During learning in the event-level model, comparison of feedback and concrete outcomes occurs only at 

the lowest hierarchical level; at superior hierarchical levels, “outcomes” are derived from WM 

representations at the inferior level combined with the results of the feedback comparison process (i.e., 

the error signal).  These “proxy” outcomes constitute a higher-order training signal that is composited 

from lower-level WM representations and error signals; the composition of the higher-order training 

signal is carried out by lPFC in the HER model, while the comparison of outcomes and predictions is 

undertaken by mPFC. 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 10, 2018. ; https://doi.org/10.1101/439927doi: bioRxiv preprint 

https://doi.org/10.1101/439927
http://creativecommons.org/licenses/by/4.0/


Naturally, since the proxy outcome depends on the lower-level error signal, the evolution of error units in 

mPFC in our simulations precedes the development of activity in lPFC training units (Fig 4A, top frame): 

the error signal ramps up rapidly at the onset of feedback, and decays quickly following feedback offset.  

In contrast, the lPFC training signal lags the mPFC error signal, and its activity is temporally blurred.  

Although the relative onset of the error and training signals is prefigured by the architecture of the HER 

model, the relative distribution (Fig. 4A, bottom panel) of the signals emerges only due to the temporal 

dynamics introduced in these simulations.  This emergent pattern matches data recorded from monkey 

dACC and lPFC during performance of the reversal task (Fig 4B; Oemisch et al., 2018), and adds to the 

already considerable array of effects the HER model has been applied to (Alexander & Brown, 2015, 

2018). 

Information Flow 

While our previous results are suggestive of how mPFC and lPFC might interact during preparatory and 

feedback periods of a trial, a key strength of introducing real-time dynamics in the HER framework lies in 

the capacity to probe how mPFC/lPFC interactions develop continuously over the course of a trial.  To do 

so, we turn to Granger causality(Luo et al., 2013) as a measure of how well one variable can be predicted 

by lagged values of another variable – here, the variables are the unit activity in mPFC and lPFC and 

Granger causality indexes whether unit activity in one area is better predicted by the preceding unit 

activity from the other area than by its own past.  Granger causality was computed for a time lag of 1 

model cycle for both error-related and predictive units in the model, and trial timing was standardized – 

even if a response was indicated prior, the model was simulated for 300 cycles following the onset of a 

stimulus.  Consistent with our discussion above, causally significant error signals were observed primarily 

following performance-related feedback (Fig 4B).  Immediately following the onset of feedback, Granger 

causality for the influence of mPFC on lPFC was significant at a level of p<0.05, and remained so until 

feedback-related activity naturally decayed.  LPFC also causally influenced mPFC at a significance level 

of p<0.05, but only after an extended delay following feedback. 
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Figure 4.  Temporal dynamics of error and prediction. A) Performance-related error signals in the model mPFC at 

the lowest hierarchical level evolve rapidly following the onset of feedback.  Proxy outcomes used to train superior 

hierarchical levels are a composite of error signals calculated by inferior levels and the contents of WM, with a 

consequent lag in the temporal profile and lingering activity.  B) The relative temporal profiles of error and 

composite training signals matches those observed in monkey mPFC and LPFC, respectively, performing the 

reversal task.  C) Analysis of causality in the model shows a transient causal relationship of mPFC to lPFC 

following behaviorally salient events such as feedback (top frame) or stimulus onset (bottom frame).  This causal 

relationship is reversed during trial periods involving the preparation and execution of response (bottom frame).  

The dynamic shift in causal direction over the course of a trial matches similar patterns observed in monkey mPFC 

and lPFC during feedback processing and cued performance (right frames, Stoll et al., 2016). 

Also consistent with mPFC’s role in immediate processing of salient stimuli, prediction signals in the 

model immediately following stimulus onset Granger-cause activity in lPFC (p<0.05).  While the HER 

model contains no mechanism by which predictions in mPFC influence processing activity in lPFC, 

Granger causality only indicates whether one signal can be predicted by previous values of another signal.  

In this case, predictive signals in mPFC and lPFC are correlated, but mPFC signals develop more rapidly 

than lPFC signals, producing a significant Granger causality effect.  Following this transient effect, 

Granger causality for the influence of lPFC on mPFC becomes significant during the delay period prior to 

the generation of a response, consistent with the role of lPFC in maintaining information and 

implementing control demands. 

Discussion 

In this manuscript, we have described additional simulations of the HER model in which real-time 

temporal dynamics were introduced to the model.  The results of these simulations provide additional 

perspective on how the activity of mPFC and lPFC, as components of a hierarchical predictive coding 
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framework (Alexander & Brown, 2018), might develop and interact following salient task events, and 

how the relative direction of this interaction evolves over the course of a trial.  Beyond simply exploring 

the dynamics of model activity, our simulations demonstrate how the HER model can further account for 

additional single-unit (Oemisch et al., 2018), behavioral (Wylie & Allport, 2000), and network effects 

(Stoll, Fontanier, & Procyk, 2016) previously reported in the literature. 

At the level of neurons, the activity of single units in the HER model corresponding both to lPFC and 

mPFC, is observed to ramp-up following the onset of a task-relevant stimulus.  Previous real-time models 

of mPFC (Alexander & Brown, 2011, 2014) have likewise shown units with ramping activity profiles, 

similar to those of reward- and error-predicting neurons in monkey mPFC (Amador, Schlag-Rey, & 

Schlag, 2000; Amiez, Joseph, & Procyk, 2006).  The HER model, conceived as a temporally-coarse 

hierarchical extension to the PRO model (Alexander & Brown, 2015), was unable to replicate this pattern; 

by re-introducing real-time dynamics, and consequently recovering effects from the PRO model that 

depended on temporal processes, our simulations underscore that the principal role and computational 

mechanisms attributed to mPFC by the PRO model remain intact in the HER model.  Furthermore, the 

simulations in this manuscript extend real-time processing to the registration of feedback and the 

development of error signals.  The original PRO model (Alexander & Brown, 2011) was developed using 

temporal difference (TD) learning formulations(Sutton, 1988) in which the temporal profile of feedback 

signals (and subsequent error signals) was specified by the modeler (either as a punctate event or a box 

car profile).  Here, the duration and magnitude of feedback signals is still modeler-defined, but the 

development of activity registering these signals is described by the same timing equations used to model 

all other unit activity in the model.  By extending temporal dynamics to feedback, the simulations here are 

able to capture the temporal profile of error-signaling units recorded from monkey mPFC and lPFC, as 

well as the relative onset and decay of these signals (Fig 4).  

Specifically, simulated error-related signals in mPFC are observed to peak and decay more rapidly than 

signals observed in lPFC, consistent with recent reports (Oemisch et al., 2018; Shen et al., 2015).  The 

HER model explains this through the role of mPFC in training error representations in lPFC: error signals 

generated directly by feedback in the model are combined with active representations of task-stimuli to 

derive higher-order outcome and error signals, represented in lPFC.  As the development of these higher-

order signals is mechanically subsequent to direct error signals (Fig 1), the dynamics specified in eq. 10 

dictate a later peak and lingering activity.  Furthermore, the “proxy” outcome signals derived in lPFC are 

required for subsequent higher-order error calculations, suggested by the HER model to be carried out in 

hierarchically-superior regions of mPFC (Fig 4), and these error signals are subject to additional lag as 

lower-order error and training signal computations that support their calculation develop.  The HER 

model thus provides a mechanistic explanation for the relative time course of error signals in caudal-

rostral regions of mPFC (Polli et al., 2005).  

Although computation of error and prediction-related signals is ongoing throughout our simulations, 

causality analysis over the entire course of a trial reveals that the net direction of information flow 

depends both on the type of information (prediction or error) computed, as well as the period within a 

trial.  Following salient task events, such as stimulus onset or delivery of feedback, information in the 

model flows primarily from mPFC to lPFC, while during periods in which a salient event is expected but 

has yet to occur, information flows principally from lPFC to mPFC.  This pattern maps well both to 

functional roles attributed to these regions, as well as the observed time course of interactions. 

Functionally, mPFC has long been associated with processing novel or behaviorally-relevant events, 

especially the occurrence of errors (Gehring et al., 1990) or otherwise surprising (Ide, Shenoy, Yu, & Li, 

2013; Jessup, Busemeyer, & Brown, 2010) stimuli, while lPFC is implicated in slower processes 
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involving information maintenance (Sawaguchi & Goldman-Rakic, 1991), representing task structure 

(Badre & D’Esposito, 2007), or implementing control in preparation for upcoming demands (Botvinick et 

al., 2001). This temporal dissociation, implied in the architecture of the HER model (Alexander & Brown, 

2015) is made explicit in this manuscript, and the relative timing and flow of information in the model is 

consistent with human and monkey studies of PFC (Oemisch et al., 2018; Shen et al., 2015; Stoll et al., 

2016; Taren, Venkatraman, & Huettel, 2011). 

Finally, by introducing temporal dynamics, we were able to use the HER model to replicate sequential 

trial effects that are a staple of the cognitive control literature (Fecteau & Munoz, 2003; Wylie & Allport, 

2000).  Unsurprisingly, reaction times for the model are the most rapid for trials in which all features of 

the chosen stimulus are identical, and slowest for trials in which all features have changed relative to the 

previous trial.  Of interest, however, are trials in which only one relevant feature (out of two in the current 

study) changes.  In these cases, the identity of the changing stimulus can have differential effects on 

reaction time.  The HER model solves structured tasks by decomposing stimulus dimensions 

hierarchically (Alexander & Brown, 2015):  dimensions that are “concrete”, i.e., those that most directly 

inform the eventual response, are preferentially encoded at the lowest hierarchical level, while more 

abstract features are encoded at superior hierarchical levels.  The simulations reported here suggest that 

changes in the concrete decision variable (in this case, the direction of the target response) may have a 

more profound influence on reaction time than changes in the more abstract variable.  Recent work 

(Vassena, Deraeve, & Alexander, submitted) has begun to explore how interfering with the structure of a 

task through manipulations of presentation order might influence decision making and performance.  The 

results of the present study suggest a complementary approach in which the differences in performance 

elicited through feature changes might be used to infer the representation of task structure. 

In summary, the simulations of the extended HER model reported in this manuscript demonstrate that 

including temporal dynamics endows the model with additional explanatory power, and provides the 

basis for additional work investigating the function and interaction of regions within PFC, as well as how 

they contribute to behavior.  More generally, the HER model, as an instance of predictive coding, 

suggests how additional regions in PFC may be organized(Alexander, Vassena, Deraeve, & Langford, 

2017); specifically, the HER model is primarily concerned with how information is integrated in order to 

generate responses, but may have little to say about how information is acquired to begin with.  It is 

possible that additional regions implicated in cognitive control may be integrated with the HER 

framework to describe information is actively selected and interpreted to assist in adaptive behavior. 
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