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Abstract 

A pivotal question in modern neuroscience is which genes regulate brain circuits that underlie 

cognitive functions. However, the field is still in its infancy. Here we report an integrated 

investigation of the high-level language network (i.e., sentence processing network) in the 

human cerebral cortex, combining regional gene expression profiles, task fMRI, large-scale 

neuroimaging meta-analysis, and resting-state functional network approaches. We revealed 

reliable gene expression-functional network correlations using three different network 

definition strategies, and identified a consensus set of genes related to connectivity within the 

sentence-processing network. The genes involved showed enrichment for neural development 

and actin-related functions, as well as association signals with autism, which can involve 

disrupted language functioning. Our findings help elucidate the molecular basis of the brain’s 

infrastructure for language. The integrative approach described here will be useful to study 

other complex cognitive traits. 
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Introduction 

A pivotal question in modern neuroscience is which genes regulate brain circuits that 

underlie cognitive functions. In the past decade, imaging genetics has provided a powerful 

approach for exploring this question in humans, by combining neuroimaging data and genotype 

information from the same subjects and searching for associations between interindividual 

variability in neuroimaging phenotypes and genotypes within a sample. While numerous 

imaging genetics studies have now been published (Avinun, Nevo, Knodt, Elliott, & Hariri, 

2018; Bigos & Weinberger, 2010; Carter et al., 2017; Thompson et al., 2014), there remain key 

issues which affect the field, including sample size limitations, the need to correct for multiple 

comparisons, and the small effect sizes that are typical of associations with common gene 

variants. 

Recently, researchers have begun to probe the molecular genetic architecture of the human 

brain not only through genotypes and inter-individual variability, but also using regional gene 

expression mapping in post mortem brain tissues, in combination with neuroimaging data 

collected from living individuals (Bartres-Faz et al., 2019; Kong, Song, Zhen, & Liu, 2017; 

McColgan et al., 2018; Richiardi et al., 2015; Romero-Garcia, Warrier, Bullmore, Baron-Cohen, 

& Bethlehem, 2018; Romme, de Reus, Ophoff, Kahn, & van den Heuvel, 2017; Vertes et al., 

2016). This approach has brought important new advances: transcriptional profiles have been 

linked to neural architecture with respect to both functional connectivity measured during the 

resting state (also called intrinsic connectivity) (Richiardi et al., 2015; Vertes et al., 2016) and 

structural connectivity (Fulcher & Fornito, 2016; Richiardi et al., 2015), as well as to alterations 

of connectivity in brain disorders such as schizophrenia (Romme et al., 2017), autism spectrum 

disorder (ASD) (Romero-Garcia et al., 2018), and Huntington’s disease (McColgan et al., 2018). 

A necessary assumption is that the group-averaged gene expression map, within a given post 
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mortem dataset, is sufficiently representative to be matched with the group-averaged 

neuroimaging-derived map from a set of living subjects. 

The present study was inspired by a number of recent studies that probed connectivity data 

in relation to inter-regional gene expression similarity. Richiardi and colleagues (2015) used 

data from resting-state functional magnetic resonance imaging (rs-fMRI) to show that the 

network modularity structure, derived from functional connectivity patterns across the cortex, 

was correlated with inter-regional similarity of gene expression profiles. Specifically, regions 

within a module (i.e., regions with stronger functional connectivity) showed more similar gene 

expression profiles than across different modules. French & Pavlidis (2011) showed that 

average gene expression similarity is higher for regions with structural connections, compared 

to unconnected regions, in adult rodent brain (French & Pavlidis, 2011), while Goel et al. (2014) 

examined the association between gene expression similarity and pairwise structural 

connectivity in the human brain (Goel, Kuceyeski, LoCastro, & Raj, 2014). Seidlitz et al. (2018) 

showed a significant correlation between inter-regional gene co-expression and edge weights 

based on morphometric similarity, in the human brain (Seidlitz et al., 2018). In another study, 

Romme et al. (2016) investigated the transcriptional profiles of a set of genes known to contain 

inherited variants associated with schizophrenia, and found that they were significantly 

correlated with regional reductions in the strength of white matter connections in people with 

schizophrenia. Whitaker et al. (2016) investigated links between transcriptome data and 

adolescent cortical development, specifically cortical thickness shrinkage and intracortical 

myelination,  and implicated oligodendroglial genes in these processes, as well as a set of genes 

associated with risk for schizophrenia (Whitaker et al., 2016). More recently, gene expression 

in the human brain has also been linked to regional differences in cortical scaling (Reardon et 

al., 2018), and anatomical hierarchy (Burt et al., 2018), using similar spatial correlation 
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approaches. For a current review on linking neuroimaging and transcriptome, see (Fornito, 

Arnatkeviciute, & Fulcher, 2019).   

These previous studies combining gene expression and brain imaging data have provided 

strong evidence that patterns of gene expression co-vary with anatomical and functional 

organization of the human brain. However, the ultimate goal is to gain a rich and detailed picture 

of the genetic and molecular mechanisms that support each core cognitive ability. Here we will 

focus on the quintessential and human-unique capacity for language. Previous studies have 

suggested that language-related cognitive performance is highly heritable (e.g., (Dale et al., 

1998; Guen, Amalric, Pinel, Pallier, & Frouin, 2018; Newbury, Bishop, & Monaco, 2005)), and 

that brain activations associated with semantic comprehension tasks are also heritable (Guen et 

al., 2018). Moreover, genetic factors also play a substantial role in susceptibility to language-

related neurodevelopmental disorders such as childhood apraxia of speech (Eising et al., 2018), 

developmental language disorder (specific language impairment) and developmental dyslexia 

(Deriziotis & Fisher, 2017). Crucially, although a small number of genes – such as FOXP2 (e.g., 

(Fisher & Scharff, 2009; Lai, Fisher, Hurst, Vargha-Khadem, & Monaco, 2001)) – have now 

been unambiguously linked to language-related disorders, these genes cannot by themselves 

explain the large majority of heritable variation, nor can they conceivably create or maintain 

the necessary brain circuits underlying language without interacting with a large number of 

other genes (Graham & Fisher, 2015; Konopka & Roberts, 2016).  

In addition, linguistic deficits are often found with heritable, neurodevelopmental disorders 

for which impaired language function is not necessarily diagnostic, including intellectual 

disability, autism spectrum disorder (ASD), and schizophrenia (Bearden et al., 2000; 

Geschwind & Flint, 2015; Kaufman, Ayub, & Vincent, 2010; Kleinhans, Muller, Cohen, & 

Courchesne, 2008; Lombardo et al., 2015; Schizophrenia Working Group of the Psychiatric 

Genomics, 2014; Tager‐Flusberg, Paul, & Lord, 2005; Tomblin, 2011). Linguistic ability also 
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correlates with intelligence in the general population (Silva, Williams, & Mcgee, 1987). Thus, 

identifying genes and molecular mechanisms associated with language will not only i) yield a 

better understanding of the biological pathways that lead to the emergence of language phylo- 

and onto-genetically, but also ii) help identify susceptibility factors for language impairments 

in neuropsychiatric conditions, which could lead to improved diagnostic and treatment 

strategies.  

To shed further light on the molecular architecture underpinning language circuits, here we 

synergistically combined task fMRI data, resting-state functional connectivity, and gene 

transcription profiles in the human brain. Specifically, we targeted sentence-level processing as 

an essential, high-level linguistic function, which has been linked to a network of regions 

particularly in the left temporal and frontal cortices (Dronkers, Wilkins, Van Valin, Redfern, & 

Jaeger, 2004; E. Fedorenko & Thompson-Schill, 2014; L. Labache et al., 2018; Price, 2012; 

Vigneau et al., 2006), as opposed to lower level language-related functions which can rely, for 

example, on primary auditory and motor areas. First, we defined the cortical regions for left 

hemispheric sentence processing based on task fMRI data, using three different sets of criteria 

and data to ensure robustness and generalizability across approaches. Then, we estimated the 

resting-state functional connectivity networks among these regions, using rs-fMRI data from 

two independent datasets. Previous studies have shown that functionally defined language-

responsive regions form an integrated system also in the resting state (Blank, Kanwisher, & 

Fedorenko, 2014; Cole, Bassett, Power, Braver, & Petersen, 2014; L. Labache et al., 2018). 

Next, we examined the correlations between these functional connectivity patterns and the 

corresponding inter-regional similarity patterns of gene expression, based on post mortem data. 

Similar pairwise connectivity/similarity correlation approaches have been applied in a number 

of previous studies aiming to probe connectivity data in relation to gene expression data (see 

above). We then assessed the contributions of each individual gene to the observed correlations, 
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and identified a consensus set of top genes (showing positive contribution scores) across all six 

analyses (i.e., three definition strategies for the sentence processing regions by two rs-fMRI 

datasets for estimating the functional connectivity). Finally, using several bioinformatics 

databases, we explored the biological roles and expression specificity of these genes, and tested 

whether they showed an enrichment for association signals with ASD, schizophrenia or 

intelligence, using genome-wide association study (GWAS) data. We also analyzed three other 

functional networks by way of comparison to these language-related networks, which were the 

spatial navigation network, fronto-parietal multiple demand network, and default mode network. 

Given left-hemisphere dominance of the language network and limited post mortem gene 

expression data for the right hemisphere (see below), we focused on the left hemisphere in the 

present study. 

 

Materials and Methods 

Fig. 1 shows a schematic of our approach for measuring the correlation between functional 

connectivity and gene expression profiles within a given network of brain regions. This analysis 

pipeline consisted of a) defining sets of cortical regions using task activation data (directly or 

via meta-analysis), b) estimating the resting-state functional connectivity and gene expression 

similarity among these regions, and c) assessing the correlation between the functional 

connectivity and gene expression networks, along with subsequently d) estimating each gene’s 

individual contribution using a ‘leave-one-out’ approach (see below). See below for details of 

each dataset and procedure.  
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Fig. 1. Schematic of the pipeline for computing the correlation between resting-state functional connectivity 

and  transcriptomic similarity, within a network of regions first defined according to task fMRI data. 

Regional time series from rs-fMRI were used to estimate functional connectivity between each pair of regions (in 

the upper matrix, red indicates stronger functional connectivity; blue indicates weaker functional connectivity). 

Regional gene expression profiles were applied to estimate inter-regional transcriptional similarity (in the lower 

matrix, red indicates higher similarity; yellow indicates lower similarity; lower panel). Resting-state functional 

connectivity patterns (orange axis in the right-hand panel) are correlated with patterns of transcriptional similarity 

(blue axis in the right-hand panel). Each gene’s contribution to this correlation is estimated by removing that gene 

at the step of gene expression network construction (red cross) and repeating the subsequent analysis.  

 

Datasets 

fMRI dataset acquisitions were approved by the Institutional Review Board of each site. 

Written informed consent was obtained when necessary from all participants (N = 244), 

before they took part.  

BIL&GIN. This dataset included 144 healthy right-handed adults (aged 27±6 years; 72 

females) drawn from the larger BIL&GIN database which is roughly balanced for handedness 

(Mazoyer et al., 2016). Each participant completed three slow-event fMRI runs (gradient echo 
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planar imaging, TR = 2.0 s, acquisition voxel size = 3.75 × 3.75 × 3.75 mm3; 3T Philips Intera 

Achieva scanner) in which they were asked to complete 3 different sentence tasks including 

covertly producing, listening to, or reading sentences and familiar word lists as reference. Of 

these participants, 137 also completed rs-fMRI scans using the same imaging sequence as that 

used for the tasks, which lasted 8 minutes (240 volumes). Immediately prior to rs-fMRI 

scanning, the participants were instructed to “keep their eyes closed, to relax, to refrain from 

moving, to stay awake and to let their thoughts come and go”. Note that the latter scanning 

session took place around 1 year before the task fMRI scans. For more details see further below, 

and (Loic Labache et al., 2018; L. Labache et al., 2018).   

NeuroSynth. Neurosynth (http://neurosynth.org) is a platform for large-scale synthesis of 

task fMRI data (Yarkoni, Poldrack, Nichols, Van Essen, & Wager, 2011). It uses text-mining 

techniques to detect frequently used terms as proxies for concepts of interest in the 

neuroimaging literature: terms that occur at a high frequency in a given study are associated 

with all activation coordinates in that publication, allowing for automated term-based meta-

analysis. Despite the automaticity and potentially high noise resulting from the large-scale 

meta-analysis, this approach has been shown to be robust and meaningful (e.g., Helfinstein et 

al., 2014; Kong, Song, et al., 2017; Kong, Wang, et al., 2017; Yarkoni et al., 2011), due to the 

high number of studies included. We used database version 0.6 (current as of July 2018) which 

included 413,429 activation peaks reported in 11,406 studies (see below for the search terms 

employed).  

EvLabN60. This dataset included statistical maps of the task fMRI contrast for passively 

reading sentences versus non-words from 60 participants (aged from 19 to 45; 41 females; all 

right-handed). This fMRI task (TR = 2.0 s, acquisition voxel size 2.1 × 2.1 × 4.0 mm3; 3 T 

Siemens Trio scanner) was designed to localize the sentence processing network (for details, 

see Fedorenko et al., 2010). The sentences > non-words contrast has been previously shown to 
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reliably activate language-sensitive regions and to be robust to the materials, task, and modality 

of presentation (E. Fedorenko, Behr, & Kanwisher, 2011; E. Fedorenko, Hsieh, Nieto-Castanon, 

Whitfield-Gabrieli, & Kanwisher, 2010; Mahowald & Fedorenko, 2016; Scott, Gallee, & 

Fedorenko, 2017). In addition, the EvLabN60 dataset was used to define two other networks 

used as comparisons to sentence processing networks (below). A spatial working memory task 

was designed to localize the fronto-parietal multiple demand system (i.e., contrast Hard versus 

Easy) (Blank et al., 2014; E. Fedorenko, Duncan, & Kanwisher, 2013) and the default mode 

network (i.e., contrast Easy versus Hard) (Leech, Kamourieh, Beckmann, & Sharp, 2011; 

McKiernan, Kaufman, Kucera-Thompson, & Binder, 2003; Park, Polk, Hebrank, & Jenkins, 

2010). Participants were instructed to keep track of four (Easy condition) or eight (Hard 

condition) sequentially presented locations in a 3×4 grid. In both conditions, participants 

performed a two-alternative forced-choice task at the end of each trial to indicate the set of 

locations they just saw. For more details, see Fedorenko et al., 2011.  

GEB. GEB (http://www.brainactivityatlas.org), which is an abbreviation for “Gene-

Environment-Brain-Behavior”, provided an independent rs-fMRI dataset for the present study. 

GEB is an on-going project that focuses on linking individual differences in human brain and 

behaviors, to environmental and genetic factors (Kong, Song, et al., 2017; Wang et al., 2016; 

Zhen et al., 2017; Zhen et al., 2015). Rs-fMRI data from forty college students (20 females; 

aged = 20.3 ± 0.91 years) were included in this study. The resting-state scan lasted 8 min and 

consisted of 240 contiguous echo-planar-imaging (EPI) volumes (TR = 2.0 s; acquisition voxel 

size = 3.125 × 3.125 × 3.6 mm3; 3 T Siemens Trio scanner). During the scan, participants were 

instructed to relax and remain still, with their eyes closed. The dataset has high quality in terms 

of minimal head motion and registration errors, and has been used in several previous studies 

(e.g., Kong, Wang, et al., 2017; Wang et al., 2016).  
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AHBA. AHBA (Allen Human Brain Atlas; http://www.brain-map.org) is a publicly 

available online resource for gene expression data. The atlas characterizes gene expression (i.e. 

messenger RNA quantification) in postmortem human brain based on genome-wide 

microarray-based measurement, for over 20,000 genes at ~500 sampling sites distributed over 

the whole brain. See (M. J. Hawrylycz et al., 2012) for more details about the data collection. 

Normalized expression data were used in the present study. To date (search conducted on Mar. 

30, 2017), six adult donors with no history of neuropsychiatric or neurological conditions were 

available in the database (age 24, 31, 34, 49, 55, and 57 years; 1 female). Left hemisphere 

cerebral cortical data are available for all six donors whereas right-hemisphere data are 

available for only two of them. Detailed information on donors and analysis methods is 

available at www.brain-map.org. Structural brain imaging data of each donor were used to align 

sampling sites into standard coordinate space. We also used gene expression data from the Allen 

Institute’s BrainSpan project (http://www.brainspan.org/), which includes human brain tissues 

from age 8 weeks post conception to 40 years, sampling an average 13 regions (range, 1-17) 

from one to three brains per time point, and measured using RNA-sequencing (Li et al., 2018). 

We used these latter data for examining the expression of specific genes of interest across 

human brain development. 

Genome-wide Association Scan results for ASD, Schizophrenia and intelligence. We 

downloaded GWAS summary statistics from the Psychiatric Genomics Consortium 

(http://www.med.unc.edu/pgc) for ASD with up to 7387 cases and 8567 controls (ASD GWAS 

2017) (Autism Spectrum Disorders Working Group of The Psychiatric Genomics, 2017), and 

schizophrenia with up to 36,989 cases and 113,075 controls (PGC-SCZ2) (Schizophrenia 

Working Group of the Psychiatric Genomics, 2014). We also downloaded GWAS association 

results for intelligence, based on 78,308 individuals from the UK Biobank, CHIC consortium, 

and five additional cohorts (https://ctg.cncr.nl/software/summary_statistics) (Sniekers et al., 
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2017). This kind of data comprises summary statistics from genetic association testing between 

each of millions of single nucleotide polymorphisms distributed over the genome, in relation to 

the trait or disorder of interest. 

 

Defining Cortical Regions for Sentence Processing 

We employed three strategies and data sources for defining the cortical sentence processing 

network. To refer to the regions defined under each of these three approaches, we will use the 

terms Supramodal Sentence Areas (SmSA), Synthesized Sentence Areas (SSA), and One-

contrast Sentence Areas (OcSA). Given left-hemisphere dominance of language network (see 

Introduction) and limited post mortem gene expression data for the right hemisphere (see 

above), we focused on the left hemisphere in the present study. Note that we made use of 

existing, previously published task-fMRI datasets for this study (see below), and do not repeat 

all of the method details here.  

SmSA. We applied the definition of left-hemispheric high-order and supramodal sentence 

areas provided by The SENSAAS atlas (L. Labache et al., 2018). This atlas of language 

integrative and supramodal areas, involving 142 healthy rigth-handers, is based on the 

conjunction of activation across sentence production, listening and reading, as contrasted with 

activation for lists of overlearned words (again presented as either production, listening or 

reading tasks) in the same participants. Then, a second criterion was applied whereby leftward 

activation asymmetry was required during the 3 sentence minus words contrasts. See Labache 

et al. (2018) for a full description of this definition approach. Task fMRI data were used from 

the BIL&GIN dataset (see above) for this purpose. In order to obtain accurate measures of 

functional asymmetry, this work is based on the use of the AICHA atlas, including left-right 

homotopic regions of interest based on resting-state functional connectivity data (Joliot et al., 
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2015). In the 179 left-right pairs of homotopic regions of the AICHA atlas, fMRI signal 

variation and asymmetry were calculated for each task contrast and each participant. Regions 

with both significant activation and leftward asymmetry across the three sentence-level versus 

word-list task contrasts were identified. A significance threshold of Bonferroni-corrected p < 

0.05 was applied. Thirty-two left-hemisphere regions were obtained, including 27 cortical and 

5 subcortical regions (L. Labache et al., 2018).   

SSA were defined based on a large-scale neuroimaging meta-analysis of fMRI studies using 

Neurosynth (see above). A combination of terms related to sentence processing were used, 

including “sentence comprehension”, “sentence”, and “sentences” (411 studies). The resulting 

meta-analysis map (i.e., the likelihood map that shows there would be activation in some 

specific brain regions given the presence of particular terms) was used in this study to cover 

regions that are relevant to the network of interest. To control the false positive rate in the 

statistical map, a false discovery rate (FDR) threshold was used of 0.01 on a whole brain basis. 

As for SmSA, the AICHA atlas was used to define the areas for functional network construction. 

Specifically, if a region from the AICHA atlas had more than half (50%) of its voxels showing 

significant specificity based on the thresholded mask from the meta-analysis (FDR-corrected p 

<0.01), we included that region as one of the SSA.  The rationale for using the AICHA atlas 

was twofold. First, the AICHA atlas was generated using rs-fMRI connectivity data, with each 

region showing homogeneity of functional temporal activity within itself. Second, we wanted 

to ensure that the results were directly comparable with the results using SmSA.  

OcSA were defined based on the probabilistic activation map of a single fMRI contrast from 

the EvLabN60 dataset (see above). The passively reading task has been previously shown to 

reliably activate language-sensitive regions and to be robust to the materials, task, and modality 

of presentation (E. Fedorenko et al., 2011; E. Fedorenko et al., 2010; Mahowald & Fedorenko, 

2016; Scott et al., 2017). The map was created by overlapping the statistical maps from all 
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participants for the contrast of sentences versus non-words (t >2.3) onto the MNI152 template, 

and then dividing by the total number of participants (e.g., (Zhen et al., 2017)). The value for 

each voxel in the obtained map indicated the probability of the voxel showing a significant 

contrast activation across the population. A probability threshold of 50% was applied to identify 

voxels showing consistent activation (t > 2.3) across subjects, and regions from the AICHA 

atlas with more than half of the voxels activated were included, as for SSA.  

Exclusion of regions: We excluded one region which was relatively small (less than 150 

voxels; i.e., G_Cingulum_Post-3) and had limited gene expression data in the AHBA (fewer 

than 2 sampling sites; see below), as well as subcortical areas which are known to have very 

different gene expression profiles to cerebral cortex and would swamp the analysis (e.g., 

Hippocampus), a region that had resting-state data missing in the GEB dataset (i.e., 

G_Paracentral_Lobule-4), and two deep regions where the gene expression data was found to 

diverge substantially from most cerebral cortical regions (i.e., G_ParaHippocampal-1 and 

G_Insula-anterior-1) (Fig. S1). This resulted in 21 SmSA, 22 SSA, and 12 OcSA. The same 

criteria were also applied for defining the comparison systems below (Table S1).  

Comparison networks. The NeuroSynth term ‘navigation’ was used to localize cortical 

regions involved in spatial navigation (64 studies; search conducted on Nov. 3, 2016). A FDR 

threshold of 0.01 was used to control the false positive rate. Moreover, the default mode 

network and the fronto-parietal multiple demand networks were defined using the EvLabN60 

dataset (see above), with the probabilistic activation maps of fMRI contrast Easy versus Hard, 

and Hard versus Easy, respectively, based on the spatial working memory task. Again, a 

probability threshold of 50% was applied to identify voxels showing consistent activation (t > 

2.3) across subjects. Next, the AICHA atlas was used to identify regions for each functional 

network. Our purpose was to define a similar number of top regions for each comparison 

network, to support similarly-powered analyses of all networks in the downstream analyses. In 
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order to obtain comparable numbers of top regions for each network, different thresholds of 

overlap were applied for each network. Specifically, we found that a threshold of 1/4 defined 

19 top regions of the spatial navigation network (SNN) (see below), a threshold of 1/2 defined 

17 top regions of the multiple demand network (MDN), and a threshold of 3/4 defined 12 top 

regions of the default mode network (DMN).  

 

Construction of the Functional Connectivity Networks  

Two independent rs-fMRI datasets, i.e. BIL&GIN and GEB (above), were used for 

functional connectivity network construction among the sets of regions defined based on task 

fMRI activation.  

Functional connectivity in the BIL&GIN dataset. The preprocessing of the BIL&GIN 

dataset was done by the Bordeaux group (MJ). Preprocessing procedures included head motion 

correction, registration onto the anatomical T1 image, the latter being stereotaxic registered on 

the MNI152 standard space. Additionally, time series for white matter and cerebrospinal fluid, 

the six head motion parameters, and the temporal linear trend were removed from the 

stereotaxic normalized rs-fMRI data using regression analysis and time series data were 

temporally filtered using a least squares linear-phase finite impulse response (FIR) filter design 

bandpass (0.01-0.1 Hz). For each participant and each region, a time series was then calculated 

by averaging the rs-fMRI time series of all voxels located within that region. For each individual, 

we computed the Pearson’s correlation coefficient between the time series of each pair of 

cortical regions from a given task-defined set of regions. Correlation coefficients were 

transformed to Gaussian-distributed z scores via Fisher’s transformation. For each of the 6 

networks (3 sentence processing and 3 other functional networks), the functional connectivity 
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matrix was computed by averaging data from each individual. Negative edges were set to zero 

before follow-up analysis. For a full description of the processing see (Doucet et al., 2011).  

Functional connectivity in the GEB dataset. The preprocessing of the GEB dataset was 

done by the Beijing group (JL). Preprocessing procedures included head motion correction, 

spatial smoothing, intensity normalization, and removal of linear trend, using the FEAT 

preprocessing workflow implemented with Nipype (Gorgolewski et al., 2011). A temporal 

band-pass filter (0.01-0.1 Hz) was applied to reduce low frequency drifts and high-frequency 

noise. To eliminate physiological noise, such as fluctuations caused by motion or cardiac and 

respiratory cycles, nuisance signals were regressed out. Nuisance regressors were averaged 

cerebrospinal fluid signal, averaged white matter signal, global signal averaged across the 

whole brain, six head realignment parameters obtained by rigid-body head motion correction, 

and the derivatives of each of these signals. The 4-D residual time series obtained after 

removing the nuisance covariates were registered to MNI152 standard space. After 

preprocessing, a continuous time course for each region of a given task-based functional 

network was extracted by averaging the time courses of all voxels within that region. Temporal 

correlation coefficients between the extracted time course from a given regions and those from 

other regions were calculated to determine the strength of the connections between each pair of 

regions of a given functional network at rest. Correlation coefficients were transformed to 

Gaussian-distributed z scores via Fisher’s transformation to improve normality, resulting in a 

symmetric Z value matrix (i.e., functional connectivity) for each task-defined system of each 

participant. Due to the ambiguous biological explanation of negative correlations (Schwarz & 

McGonigle, 2011), we restricted our analyses to positive edges and set negative edges to 0. We 

have applied the same processing procedure in several previous studies (e.g., Kong, Wang, et 

al., 2017; Wang et al., 2016). After resting-state functional connectivity networks were obtained 

corresponding to each task-defined set of regions, a mean functional connectivity network for 
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each set of regions was calculated by averaging across participants, which was then used for 

subsequent analyses.  

 

Construction of the Gene Expression Networks  

Transcriptomic networks were constructed based on gene expression profiles in the human 

brain from the AHBA (above). Specifically, we first extracted the normalized expression score 

for each gene, from each sampling site and each donor. For genes for which the expression had 

been measured using multiple microarray probes in the AHBA data, average values were 

calculated per gene at each sampling site and in each donor. Given that AICHA atlas regions 

are defined in the standard MNI space, the location of each sampling site was then translated 

into the standard space using the alleninfo (https://github.com/chrisfilo/alleninf). Gene 

expression data from within a given region were then averaged per gene and across donors, to 

obtain a single expression measure of each gene per region. We restricted our analyses to 

cerebral cortical regions with at least two sampling sites summed across all donors, and data 

quality was then assured by only including genes showing relatively high inter-individual 

consistency of expression levels , i.e. we restricted our analyses to the top 5% of all genes based 

on differential stability across donors as assessed over the entire cerebral cortex (Fig. S2). This 

was a set of 867 genes that had differential stability greater than 0.357, as previously calculated 

(M. Hawrylycz et al., 2015). The concept of differential stability was quantified as the averaged 

Pearson correlation between pairs of brains over a set of cerebral cortical regions (M. 

Hawrylycz et al., 2015). The percentage threshold applied (5%) seems to be strict, but the 

expression consistency of most genes is relatively low in cortical regions in the Allen data (M. 

Hawrylycz et al., 2015), so that a 5% threshold still includes genes with stability across donors 

of less than 0.4 (Fig. S2). Excluding genes with very low inter-individual consistency was 

necessary for the purpose of linking average gene expression data from the Allen brain dataset 
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to functional connectivity in other datasets. We also repeated our analysis using a lower stability 

threshold (i.e., top 10%, stability larger than 0.25; N = 1735 genes), in order to assess the 

robustness of our findings with respect to this threshold. As a negative control, we additionally 

repeated the analyses using the lowest 5% and lowest 10% of genes as regards differential 

stability across donors, with which we would expect null results. We also repeated the analyses 

based on random sampling (repeated 1000 times) of genes from the whole distribution of 

stability scores. 

Our processing of the genetic data produced a vector of gene expression values across 

regions. Transcriptional similarity between pairs of regions was then estimated by Pearson 

correlation, as a measure of ‘transcriptomic connectivity’.  

 

Correlation between the Functional Networks and Gene Expression Networks 

Network similarity analysis. We examined the correlations between functional 

connectivity networks and gene expression networks. The essential concept is that pairs of 

regions of a functionally specific network that have relatively higher similarity of their gene 

expression profiles could also show higher functional connectivity (see Introduction). 

Specifically, a vector was extracted from the upper triangle of the connectivity matrix of each 

network, and Spearman correlation was then calculated between the vectors of the functional 

connectivity networks and their corresponding gene expression networks. Unlike previous 

studies focusing on general organization of the human brain, e.g., modularity (Richiardi et al., 

2015) and hubs (Vertes et al., 2016), the present approach tested direct correlation between 

functional connectivity and gene expression similarity within the functional networks of interest. 

We also calculated the partial correlations after controlling for the spatial distance between 
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centers of regions (i.e., the Euclidean distance of MNI coordinates) within the AICHA atlas 

(Joliot et al., 2015).  

Gene contribution index (GCI). In addition to the overall correlations between functional 

connectivity and corresponding gene expression networks, we formulated a novel index, the 

gene contribution index (GCI), for estimating the contribution of each individual gene to an 

observed overall correlation. GCI was defined as the difference in the overall correlation before 

and after removing that gene at the step of gene expression network construction, i.e. based on 

a ‘leave-one-out’ approach. Note that this ‘leave-one-out’ procedure was applied at the step of 

gene expression network construction, rather than when performing correlation analysis 

between two matrices (Fig. 1). A similar approach has been applied in a recent study for the 

same purpose (i.e., estimation each gene’s contribution to the overall correlation) (Seidlitz et 

al., 2018).  

Identification of ‘consensus genes’ correlated with the sentence processing network. 

We identified a set of ‘consensus genes’ (N = 41), i.e. those which had positive CGI scores in 

all six analyses of the sentence processing network, i.e. the three definition strategies SmSA, 

SSA, and OcSA, by the two independent rs-fMRI datasets BIL&GIN and GEB. These were 

therefore the genes which made the most consistent individual contributions to the significant 

overall correlations between expression similarity and functional connectivity, regardless of the 

definition of sentence network regions. For each of the three comparison networks (spatial 

navigation, fronto-parietal multiple demand, and default mode networks) we also identified the 

same number of genes (i.e., 41) showing the highest GCIs, based on the averaged score of each 

gene in the two analyses relevant to each of those networks, i.e., with the two rs-fMRI datasets. 

 

Follow-up Analyses of the Consensus Genes  
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We further investigated the consensus genes correlated with the sentence processing 

network by use of literature searches and bioinformatics tools: 

Gene ontology. The gene ontology provides a classification scheme for genes based on 

what is known with respect to their molecular functions, the biological processes that they are 

involved in, or cellular components that they encode (http://www.geneontology.org/). Gene 

ontology analyses were performed with the Bioconductor package gProfileR 

(https://biit.cs.ut.ee/gprofiler/), using ontologies from Ensembl release 91. Gene sets containing 

between 25-1000 genes were included. All known genes were used for determining the 

statistical domain size in the analysis. The default g:SCS method in the tool was used for 

multiple testing correction (corrected p < 0.05).  

Gene expression across brain development. We queried the Allen Institute’s BrainSpan 

project data (see Datasets above) for the consensus genes, in relation to their developmental 

changes in expression from embryo to adult. 

Gene expression specificity. For the 41 consensus genes correlated with connectivity in 

the sentence processing network, we contrasted their expression levels between those cortical 

regions that were assigned to the sentence processing network under any definition (i.e. all 

SmSA, SSA and OcSA) (N = 31), versus all regions outside the system that were included 

among the SNN, MDN or DMN (N = 34). More information about the lists of regions can be 

found in Table S1. The independent samples t-test (equal variances not assumed) was used to 

contrast expression levels. Since multiple comparisons were performed across 41 genes, a 

significance threshold of FDR-corrected p value of 0.05 was applied (Benjamini-Hochberg 

FDR).  

In terms of cell-type specificity, the expression levels of each of the 41 consensus genes, 

that were correlated with connectivity within the sentence processing network, were queried in 
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a published dataset based on mouse cortical data (as indexed as sequence reads per kilobase of 

exon per million reads mapped (FPKM) (Zhang et al., 2014). We also queried another single-

cell gene expression database (Zeisel et al., 2015) to investigate the cell-type specificity of 

genes. Several recently published single-cell, or single-nucleus, gene expression datasets from 

human neocortex also became available while this study was in progress (Fan et al., 2018; Lake 

et al., 2018; Li et al., 2018; Zhong et al., 2018). We also queried these datasets.  

 

Enrichment Analysis using GWAS Summary Statistics for ASD, Schizophrenia and 

Intelligence  

We tested the hypothesis that the consensus set of sentence processing network genes was 

enriched for genetic association signals with ASD, schizophrenia or intelligence, in the publicly 

available results from very large-scale genome-wide association studies, based on case-control 

or general population cohorts. (There were no large-scale GWAS results yet available for 

reading/language measures in the general population, or disorders such as dyslexia or language 

impairment which involve linguistic deficits.) Specifically, we ran gene set analyses using the 

MAGMA software (Version 1.06; http://ctg.cncr.nl/software/magma). MAGMA was run with 

default settings. As each gene contains multiple individual polymorphisms within it, gene-based 

association scores were derived using the SNP-wise mean model, which considers the sum of -

log(p-values) as derived from GWAS analysis, for single nucleotide polymorphisms (SNPs) 

located within the transcribed region of a given gene (using NCBI 37.3 gene locations). 

MAGMA accounts for gene-size, number of SNPs in a gene, and linkage disequilibrium (LD) 

between SNPs when estimating gene-based association scores. LD between SNPs was based 

on the 1000Genomes phase 3 European ancestry samples. In this analysis, the score for a given 

gene therefore indicates how strongly genetic variation within, or in linkage disequilibrium with, 

that gene is associated with the trait of interest (i.e., ASD, schizophrenia, or intelligence). These 
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GWAS-based gene scores were subsequently used to compute gene set enrichment within the 

41 consensus genes associated with the sentence processing network. The enrichment analysis 

tests whether the genes in a given set have, on average, higher GWAS-based gene scores than 

the other genes in the genome. No cutoff was made on the GWAS-based gene scores, so that 

for all genes the degree of association with the trait of interest was taken into account. A 

significance threshold of FDR-corrected p value of 0.05 was applied to correct for multiple 

comparisons (i.e., ASD, schizophrenia, or intelligence). Similarly, we conducted exploratory 

gene set analyses with top genes for the other comparison functional networks, to compare with 

results for the sentence processing network.  

 

Results 

Functional Networks 

Given the absence of a universally agreed upon protocol for localizing brain regions that 

support high-level language processing (E. Fedorenko & Thompson-Schill, 2014), we used 

three different definition strategies: i) Supramodal Sentence Areas (SmSA) based on the 

concordance of activation across three language fMRI tasks and leftward lateralization 

completed by 144 healthy right-handers (L. Labache et al., 2018), ii) Synthesized Sentence 

Areas (SSA) based on large-scale neuroimaging meta-analysis of fMRI studies (Yarkoni et al., 

2011), and iii) One-contrast Sentence Areas (OcSA) based on the probabilistic activation map 

of a single language-task fMRI contrast (E. Fedorenko et al., 2010) (see Methods). Regions 

were defined according to the AICHA brain atlas, which is derived from rs-fMRI connectivity 

data, with each region showing homogeneity of functional temporal activity within itself (Joliot 

et al., 2015). The three resulting maps of the sentence processing network included 21, 22, and 

12 regions respectively, which showed considerable overlap, and were consistent with previous 
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studies, especially as regards core language regions such as the temporal and frontal regions 

(Fig. 2; Table S1) (E. Fedorenko & Thompson-Schill, 2014).  

 

Fig. 2. Functional and transcriptomic networks of the present study. First (left-side) column: the sets of 

cortical regions defined based on task fMRI data: top three (SmSA, SSA, and OcSA) correspond to the three 

different ways of defining the network for sentence processing, and bottom three correspond to the three other 

comparison networks. Second and fourth columns: the functional connectivity networks based on rs-fMRI from 

the BIL&GIN dataset and GEB dataset respectively. Third column: the transcriptomic networks based on the 
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AHBA database. Within each matrix, the colors indicate the strength of pairwise inter-regional correlations or 

transcriptomic inter-regional similarity. Correlation values among the right three columns are the Spearman 

correlations (rho) of each pair of matrices for a given network, based on the upper triangle part of each matrix. All 

correlations were significant (p <0.01). SmSA, Supramodal Sentence Areas; SSA, Synthesized Sentence Areas; 

OcSA, One-contrast Sentence Areas; SNN, Spatial Navigation Network; MDN, Multiple Demands Network; 

DMN, Default Mode Network. 

 

To compare to language-related networks, we also analyzed three other functional cortical 

networks: the spatial navigation network (SNN), fronto-parietal multiple demand network 

(MDN, similar to the dorsal attention network (Yeo et al., 2011)), and default mode network 

(DMN). The sets of cortical regions defined for these networks (see Methods) appeared 

consistent with previous literature (Buckner, Andrews-Hanna, & Schacter, 2008; Crittenden, 

Mitchell, & Duncan, 2016; Kong, Wang, et al., 2017) and showed little overlap with the 

sentence processing networks defined above (Fig. 2). We obtained 19, 17, and 12 areas for the 

SNN, MDN, and DMN respectively. More information about the spatial distribution of each 

definition and their overlaps can be seen in Table S1. 

Connectivity within a given functionally-defined set of regions was estimated based on 

inter-regional synchronization of rs-fMRI time courses. The connectivity patterns based on two 

independent rs-fMRI datasets (BIL&GIN and GEB; see Methods) were highly correlated for 

all functional networks (rho > 0.80; Fig. 2), indicating high reproducibility of the group-level 

functional connectivity pattern with respect to AICHA atlas regions. Corresponding gene 

expression networks for each functionally defined set of regions were calculated based on post-

mortem cortical gene expression data, and using pairwise similarities of regional gene 

expression profiles (Methods). To create a reliable average brain map of cortical gene 

expression, the analyses were restricted to 5% of all genes (i.e., 867 genes) which showed the 

highest differential stability of expression levels across individual donors, in cerebral cortical 
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data from the Allen Brain Atlas (M. Hawrylycz et al., 2015). This approach meant that we 

focused only on genes which have consistent expression with respect to the average 

organization of the cerebral cortex. Within a given network, different pairs of regions varied in 

how similar they were in gene expression, although all regional pairwise correlations were high 

(greater than 0.9) (Fig. 2). 

Similarity between Functional Networks and Gene Expression Networks 

We used correlation analysis to test whether regions with more similar gene transcription 

profiles show stronger resting-state functional connectivity, within each specific functional 

network. As expected, based on data from the BIL&GIN dataset, we found significant 

correlations between functional connectivity and the corresponding transcriptomic similarity 

patterns for each sentence processing network definition (Fig. 2; SmSA: rho = 0.19, p = 0.0048; 

SSA: rho = 0.26, p < 0.0001; OcSA: rho = 0.42, p = 0.00045). In addition, we obtained similar 

results for each of the comparison networks (Fig. 2; SNN: rho = 0.24, p = 0.0020; MDN: rho = 

0.39, p < 0.0001; and DMN: rho = 0.40, p = 0.00081). Using connectivity data from the 

independent rs-fMRI dataset GEB, highly similar results were found (Fig. 2; SmSA: rho = 0.19, 

p = 0.0054; SSA: rho = 0.24, p = 0.00018; OcSA: rho = 0.35, p = 0.0042; SNN: rho = 0.33, p 

< 0.0001; MDN: rho = 0.50, p < 0.0001; and DMN: rho = 0.60, p < 0.0001). All gene-brain 

correlations survived correction for multiple testing (FDR corrected p < 0.01).  We found 

similar correlations when applying a more inclusive threshold for gene expression differential 

stability across donors (stability > 0.25, i.e. the top 10% genes in stability), and as a negative 

control, we also tested the bottom genes in differential stability across donors (i.e., bottom 5% 

or 10% of genes), but saw little evidence of significant gene-brain correlation (Table S2), as 

expected. We also repeated the gene-brain correlation analyses based on random sampling 

(repeated 1000 times) of genes from the whole distribution of stability scores, and found that 
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the correlations based on the top genes were greater than the correlations of random gene sets 

of equal size (Fig. S3), which further supported the observed gene-brain associations.  

For the top 5% of genes by inter-donor stability, we also calculated the partial correlations 

between transcriptomic and functional connectivity matrices after correcting for the spatial 

proximity of regions (see Methods). These partial correlations were weaker than those without 

the correction for spatial proximity, and mostly non-significant (Table S3), suggesting that it is 

mostly local regional similarities that drive the overall transcriptomic-connectivity correlations 

within the functional networks defined in this study. 

Gene Contribution Index (GCI) 

With a ‘leave-one-out’ procedure, we obtained ‘gene contribution index’ (GCI) scores for 

all individual genes, and for each functional network definition, which indicated the extent to 

which each gene affected the overall connectivity-transcriptome correlation for a given network 

(see Methods). To investigate the similarity of gene contribution patterns across different 

networks, we calculated the correlation between the GCI scores of each pair of networks. As 

expected, for the three different definitions of the sentence processing network, which involved 

largely overlapping sets of cortical regions, the GCI scores showed substantial correlations, 

which were also reproducible across the two independent rs-fMRI datasets (Fig. 3A; BIL&GIN: 

Mean r = 0.40, from 0.22 to 0.50, N = 3; GEB: Mean CGI r = 0.50, from 0.32 to 0.61, N = 3). 

Regarding the comparison networks, although some limited regional overlap existed between 

the networks of different functions, e.g., SNN and MDN shared 6 regions (Table S1) the GCI 

scores showed very low correlations (<0.1) across the different functional networks (i.e., 

between each of the comparison networks with one another, and with any definition of the 

sentence processing network), which was again consistent across the two independent rs-fMRI 

datasets for measuring functional connectivity (Fig. 3A; BIL&GIN: Mean r = 0.058±0.047, N 

= 12; GEB: Mean r = 0.017±0.12, N = 12).  
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Fig. 3. Contributions of individual genes to overall gene-brain  network correlations. (A) Correlations 

between GCI scores derived for each functional network, based on the two independent datasets BIL&GIN (left) 

and GEB (right). The three definitions of the sentence processing network showed relatively high correlations of 

their GCI scores, while different functional networks showed low correlations of their GCI scores. (B) The 

consensus set of genes (N = 41) for the six analyses of the sentence processing network (i.e., three functional 

definition strategies by two rs-fMRI datasets). Red color indicates genes that have been linked to language-related 

phenotypes in previous studies (e.g., reading deficits, intellectual disability, and autism), and genes in bold indicate 

significant differential expression within the sentence processing network regions compared to other cortical 

regions (FDR corrected p < 0.05). SmSA, Multimodal Sentence Areas; SSA, Synthesized Sentence Areas; OcSA, 

One-contrast Sentence Areas; SNN, Spatial Navigation Network; MDN, Multiple Demand Network; DMN, 

Default Mode network.  

 

In order to derive a set of genes related to the sentence processing network with the highest 

consistency, we identified the 41 “consensus genes” which had positive CGI scores in all six 

analyses of this network, i.e. the three definition strategies (SmSA, SSA, and OcSA), by the 

two independent rs-fMRI datasets (BIL&GIN and GEB) (Fig. 3B). As expected, these 41 genes 

showed significantly greater CGI scores when compared to all other genes, within each of the 

six analyses (t values > 4.16, ps <0.0002; equal variances not assumed). In addition, we re-

calculated transcriptomic similarity matrices based on only these 41 consensus genes, and found 
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these matrices to be significantly correlated with the corresponding functional connectivity 

matrices (r = 0.30-0.55, ps < 0.0001) (Fig. S4; also the correlations based on the 41 genes were 

greater than the correlations based on 1000 random gene sets of equal size). These correlations 

were also largely unaffected after controlling for inter-regional spatial distance between centers 

of regions (all ps < 0.05) (Table S4). Several of the 41 consensus genes, including ROBO1, 

MET, PRRX1, CNTN6, and CTXN3, have been reported to affect language- or reading-related 

phenotypes such as dyslexia, and/or disorders that are often accompanied by linguistic 

impairments, i.e. intellectual disability, ASD, and schizophrenia (see Discussion). Further 

information on the consensus gene set is provided in Table S5. 

Biological Roles of Consensus Genes Associated with the Sentence Processing Network 

Gene ontology analysis of the consensus set of 41 genes associated with the sentence processing 

network identified significant enrichment for terms mostly related to the actin cytoskeleton (ps 

< 0.05), all driven by the same set of 5 genes,  MET, ZYX, ARHGAP25, VILL, and IGSF22 

(Table 1). Another significant enrichment was for the set ‘neuron projection development’ (p = 

0.012), and there were 6 genes that drove the enrichment results, which were SERPINF1, 

PRRX1, ROBO1, TRPC6, SPON2, and GPRIN1 (Table 1). None of these gene sets was 

significant when analyzing the 41 top genes for each of the comparison networks (p > 0.05) 

(Table S6).  

To examine expression across human brain development of these set of genes associated 

with sentence processing network connectivity, we used data from the Allen Institute’s 

BrainSpan project, which includes human brain tissues from embryonic stages to adulthood, 

measured using RNA-sequencing (Li et al., 2018). Each of these genes has detectable 

expression in the frontal and temporal regions during fetal development and in early childhood 

(Fig. 4). Some of the genes increase in expression through development all the way to adulthood, 
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such as MET, SERPINF1 and PRRX1. Others decrease such as ROBO1, GPRIN1 and TRPC6, 

while still remaining expressed through to adulthood. 

Table 1. Gene ontology terms for which the consensus set associated with the sentence processing network 

shows enrichment. BP, biological process.  

 

 

Fig. 4. Gene expression in human frontal and temporal cortices, from embryo (8 week post conception) to 

adulthood (40 years), from the BrainSpan atlas. Genes are listed in the legend in order of their averaged 

expression across all samples. The y axis uses a log10 scale to visualize change over time for each gene. The 

samples were dissected according to the BrainSpan Technical White Paper (http://www.brainspan.org/).   

 

We found that 14 genes of the 41 consensus gene set showed differential expression when 

contrasting regions defined as belonging to the sentence processing network against those in 

the comparison networks  (see Methods; uncorrected p < 0.05), among which 6 genes survived 

correction for multiple comparisons (FDR corrected p < 0.05): C12orf23, FAM65B, LY6H, 

MGP, SERPINF1, and SPON2, all with higher expression in the regions assigned to the 

sentence processing network. Notably, three genes related to “neural projection development” 

Term names Corrected p # of term genes Overlap Intersecting genes 

BP: neuron projection 

development 

0.0118 902 6 SERPINF1, PRRX1, ROBO1, 

TRPC6, SPON2, GPRIN1 

BP: actin filament-

based process 

0.0455 705 5 MET, ZYX, ARHGAP25, VILL, 

IGSF22 

BP: actin cytoskeleton 

organization 

0.0228 609 5 MET, ZYX, ARHGAP25, VILL, 

IGSF22 

BP: supramolecular 

fiber organization 

0.0196 590 5 MET, ZYX, ARHGAP25, VILL, 

IGSF22 

BP: actin filament 

organization 

0.00183 360 5 MET, ZYX, ARHGAP25, VILL, 

IGSF22 
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in gene ontology analysis showed significantly higher expression within the sentence-

processing regions, which were SERPINF1, SPON2, and GPRIN1 (ps < 0.05; e.g. SERPINF1: 

t(46) = 3.85, p = 0.00036; 95% confidence interval of the difference: 0.24 to 0.76), while none 

showed lower expression in the sentence processing regions (ps >0.05). More information can 

be found in Table S7.  

Of the 41 consensus genes associated with the sentence processing network, data on 33 were 

available from a single-cell RNA-sequencing study of adult mouse cerebral cortex (Zhang et 

al., 2014). Among these 33 genes, a majority (i.e., 25) showed expression in one cell type that 

was at least 1.5 times higher than all other cell types, although not predominantly in neurons 

versus other cell types (Table S8). For example, MET and CTXN3 showed 3.57- and 1.53-fold 

expression in neurons compared to the maximum expression in other cell types, respectively. 

Data on seven of the 41 genes were available in another single-cell gene expression database 

(Zeisel et al., 2015), and two of these showed enrichment in interneurons: ANK1 and SHD. 

Among the six genes driving the gene ontology enrichment results related to neural projection 

development, four showed their highest expressions in neurons, which were ROBO1, TRPC6, 

SPON2, and GPRIN1. In addition, among the five genes driving the gene ontology enrichment 

related to the actin cytoskeleton, data for three were available: MET showed highest expression 

in neurons, and ARHGAP25 and ZYX in microglia. We also queried several recently available 

single-cell or single-nucleus gene expression datasets on the human neocortex (Fan et al., 2018; 

Lake et al., 2018; Li et al., 2018; Zhong et al., 2018). Data on 22 of the 41 genes were available 

in one or more of these datasets. Among these 22 genes, eight were suggested to be specific to 

neuronal cell types: ANK1, ROBO1, COX7A1, LAIR2, LY6H, GLCCI1, CBLN2, and PGM2L1 

(Table S9). Five of these neuronal genes were markers of excitatory neurons: ROBO1, LAIR2, 

GLCCI1, CBLN2, and PGM2L1.  

Association with ASD, schizophrenia and intelligence 

We were interested to test whether genes involved in the cortical language network also 

contain polymorphisms in the population which affect human cognitive or behavioural variation, 

or susceptibility to neuropsychiatric disorders. This analysis requires genome-wide association 

scan (GWAS) results from large-scale studies, which are currently lacking for reading/language 

measures in the general population, and for disorders such as dyslexia or language impairment 

which involve language-related deficits. We analyzed ASD and schizophrenia, as these 

disorders can involve linguistic deficits, as well as intelligence in the general population, which 

correlates with linguistic abilities (see Introduction). Using GWAS summary statistics for ASD 
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based on up to 7387 cases and 8567 controls (Autism Spectrum Disorders Working Group of 

The Psychiatric Genomics, 2017), we found that the 41 consensus genes associated with the 

sentence processing network were significantly enriched for single nucleotide polymorphisms 

(SNPs) showing association with ASD (beta = 0.32, p = 0.0080, FDR corrected). No such signal 

in relation to ASD was seen for the top genes (N = 41) with highest CGI scores for each of the 

comparison networks (SNN: p = 0.45; MDN: p = 0.65; DMN: p = 0.074). In addition, no 

significant enrichment was found for any functional network in relation to schizophrenia 

(GWAS based on up to 36,989 cases and 113,075 controls; Schizophrenia Working Group of 

the Psychiatric Genomics, 2014) (ps >0.50). For intelligence (GWAS based on 78,308 

individuals; (Sniekers et al., 2017)), there was a significant enrichment for the top genes 

associated with the MDN (beta = 0.30, p = 0.035), with no other enrichment found (ps >0.30).  

 

Discussion 

In this study, we combined gene transcription profiles in the human brain with task and 

resting-state fMRI data, and investigated the gene expression correlates of the high-level 

linguistic network. Specifically, with six analyses based on complementary strategies and 

independent datasets, we revealed a significant correlation between the pattern of functional 

connectivity within the sentence processing network and the corresponding pattern of inter-

regional gene expression similarity. To our knowledge, this is the first evidence for a link 

between gene transcription profiles and language networks. 

While some previous studies have suggested that transcription profiles are linked to patterns 

of structural and functional connectivity across the brain (see Introduction), this relationship 

could be driven by broad differences in gene expression between sensory and higher-order 

association cortices. Here, we focus on one core human cognitive ability – language – and 

examine a fine-grained pattern of brain-gene relationships within the network that supports 

sentence processing. Across three definitions of sentence processing regions, and using two 

independent resting-state fMRI datasets, we established and characterized a relationship with 

gene expression: pairs of language-sensitive brain regions that show synchronization during 

rest also show more similar profiles of gene expression. We then identified a consensus set of 

genes most consistently driving the correlation between transcriptomic similarity and functional 

connectivity within the sentence processing network, and thereby gained new insights into the 

molecular bases of the language-ready brain. 
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The underlying basis of positive correlations between transcriptome similarity and 

functional connectivity is unknown. One possibility is that functionally linked cortical regions 

are more likely to share specific aspects of neuronal physiology and developmental trajectory, 

which support their temporally synchronized activity. When we adjusted for the spatial 

proximity of regions, the correlations based on 867 genes that comprise the top 5% for 

differential stability across donors became mostly non-significant, which suggests that these 

correlations largely reflected local similarities of nearby regions. However, the correlations 

based on the 41 consensus genes linked to the sentence processing network were not diminished 

by adjusting for spatial proximity, which indicates that these genes are involved in longer-

distance inter-regional relationships within this network. 

The consensus set of 41 genes was enriched for functions relating to the actin cytoskeleton, 

driven by the genes MET, ZYX, ARHGAP25, VILL, and IGSF22. Mutations in actin 

cytosleleton-related genes have been tentatively linked to rightward hemispheric language 

dominance, a rearrangement of language in the brain which occurs in roughly 1% of the 

population (Carrion-Castillo et al., 2019). The actin cytoskeleton plays many roles in neurons, 

including in regulating the extension and direction of axon growth (Coles & Bradke, 2015), and 

the remodeling and maintenance of neuronal architecture throughout the neuron lifetime 

(Gordon-Weeks & Fournier, 2014). The consensus genes associated with language-related 

networks were also enriched for roles in neuron projection development. Each of the six genes 

driving this enrichment, i.e. SERPINF1, PRRX1, ROBO1, TRPC6, SPON2, and GPRIN1, has 

detectable expression in frontal and temporal regions during fetal development and early 

childhood, and might play especially important roles during language network development. 

The fact that these genes, known for their neurodevelopmental roles, are expressed in adult 

cerebral cortex in a manner linked to functional connectivity within language networks, also 

suggests that they have continuing roles in maintaining adult cortical circuitry for its regionally-

specialized roles. Their continued expression into adulthood certainly attests to adult functions, 

although these are poorly understood. Further support for the particular importance of these 

genes for the sentence processing network came from the fact that some of them showed higher 

gene expression in sentence network regions than elsewhere in the cortex, and none showed 

significantly lower expression in sentence network regions.  

Several of the consensus genes associated with the sentence processing network have 

previously been reported to contain common polymorphisms or rare mutations which impact 

on language- and reading-related phenotypes, or else disorders which can be accompanied by 
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reduced linguistic abilities such as intellectual disability, ASD or schizophrenia. ROBO1 has 

well established roles in brain development (Hannula-Jouppi et al., 2005; St Pourcain et al., 

2014), and has been implicated in dyslexia as well as phonological short term memory (Bates 

et al., 2011; Hannula-Jouppi et al., 2005), while its homologue ROBO2 has been linked with 

expressive vocabulary during early language acquisition (St Pourcain et al., 2014). Mutations 

in MET are a risk factor for ASD (Campbell et al., 2006; Jackson et al., 2009; Mukamel et al., 

2011; Sousa et al., 2009), and MET is also regulated by the transcription factor FOXP2 

(Mukamel et al., 2011), which causes developmental verbal dyspraxia when mutated (Lai et al., 

2001). PRRX1 is associated with intellectual disability and delayed language acquisition (Lam 

& Morris, 2016). Mutations of CNTN6 have been reported in patients with speech and language 

delays, intellectual disability, and atypical ASD (Kashevarova et al., 2014). CTXN3 has been 

linked to schizophrenia (Lewis et al., 2003; Potkin et al., 2010). These observations suggest that 

our consensus gene set linked to the sentence processing network might provide additional 

candidates for future studies of language-related individual differences, and 

neurodevelopmental disorders. In addition, a recent study used functional connectivity based 

on rs-fMRI, in combination with Allen brain gene expression data, to identify 136 genes highly 

correlated with the modular organization of intrinsic connectivity networks (although not 

defined on the basis of task functional data) (Richiardi et al., 2015). We found that nine of those 

genes overlap with our set of 41 genes (CNTN6, CTXN3, LAIR2, MGP, SHD, TGFBI, ASGR2, 

CDR2L, IQCJ). The overlap of these genes is encouraging despite the different datasets, 

methods and brain region definitions used in the other study.  

No large-scale GWAS studies have yet been published for reading/language measures in 

the general population, nor for disorders such as dyslexia or language impairment which involve 

language-related deficits. However, through analysis of large-scale GWAS summary statistics 

for ASD, a disorder that can also involve linguistic deficits (Kleinhans et al., 2008; Lombardo 

et al., 2015), we found that the consensus gene set associated with connectivity in the sentence 

processing network is enriched for common SNPs that contribute to the polygenic liability to 

ASD in the population. It is therefore possible that variants in these genes associate with ASD 

due, at least in part, to dysfunction of high-level language networks. Note that, while language-

related deficits may no longer be considered core to ASD in the latest edition of the Diagnostic 

and Statistical Manual of Mental Disorders (DSM 5) (American Psychiatric Association, 2013), 

the earlier DSM-IV criteria were used for the large-scale GWAS whose results we used in the 

present study (Autism Spectrum Disorders Working Group of The Psychiatric Genomics, 2017), 
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in which language delays were considered an important aspect of the disorder (Grzadzinski, 

Huerta, & Lord, 2013). No such enrichment signal for ASD was observed for gene sets 

associated with the other functional networks that we analyzed by way of comparison, i.e., 

spatial navigation, multiple demand, and default mode networks. Interestingly, a recent large-

scale brain imaging analysis of ASD found that cortical thinning was present in many of the 

regions included in our definitions of the sentence-processing network (van Rooij et al., 2018). 

For schizophrenia and intelligence we found no enrichment of association signals within the 

consensus gene set associated with the sentence processing network. This pattern may relate to 

severity, as language deficits in schizophrenia patients have been reported to be less severe than 

in ASD patients (again based on earlier diagnostic criteria) (Chisholm, Lin, Abu-Akel, & Wood, 

2015; Spek & Wouters, 2010). Alternatively, the genetic underpinnings of high-level language 

processing may be of little relevance to schizophrenia, or intelligence in the general population. 

However, statistical power to detect these relations may also be an issue. 

There is at present no consensus in the field on what should constitute the precise high-level 

language network and how best to define it (E. Fedorenko & Thompson-Schill, 2014; L. 

Labache et al., 2018). To circumvent this problem, we focused on sentence-level processing 

specifically, but used three complementary approaches for defining brain regions important for 

this function: one based on a conjunction of three task contrasts and functional laterality (SmSA; 

L. Labache et al., 2018), one based on a large-scale meta-analysis of prior neuroimaging studies 

(SSA; Yarkoni et al., 2011), and one based on a single task contrast (OcSA; E. Fedorenko et 

al., 2010). Reassuringly, our three approaches to defining sentence-level processing regions 

yielded similar sets of regions, especially with respect to areas in the inferior frontal and middle 

temporal gyri. Likely because of the overlap between the three network definitions, their 

transcriptomic correlates were also similar, as well as the contributions of individual genes. 

This overall concordance supports the validity of the different definitions, allowing us to define 

a consensus set of genes that emerged consistently across all definitions and both of the rs-fMRI 

datasets, and is thus not dependent solely on any individual approach for defining the functional 

network. 

Although multiple cognitive processes are likely to be involved in sentence processing, at 

least two of the key elements, syntax and semantics, are tightly integrated in the brain, while 

combinatorial processing is a key part of both of them (Evelina Fedorenko, Mineroff, 

Siegelman, & Blank, 2018). Regardless, we do not assume any straightforward mapping of 

high-level linguistic processing to a small subset of underlying genes. As noted in the 
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introduction, the creation and maintenance of brain circuits underlying language networks 

surely depends on the coordinated actions of very many genes. Here we show that the overall 

transcriptional similarity of regions involved in sentence processing is correlated with their 

functional connectivity, and we identify a relatively small number of genes which contribute to 

that correlation most strongly and consistently, based on current data. We expect many more 

genes will be identifiable in relation to this functional network, as higher quality gene 

expression datasets are generated, and that some combinations of genes may be more or less 

important for particular cognitive sub-processes. 

Functional connectivity of regions during task performance is correlated with that observed 

at rest, which suggests an “intrinsic” architecture of functional organization (Blank et al., 2014; 

Cole et al., 2014; L. Labache et al., 2018), which may also be linked to individual differences 

in behaviour (Arnold, Protzner, Bray, Levy, & Iaria, 2014; Kong, Wang, et al., 2017). Thus, 

the set of regions for sentence processing defined here could be used in future studies of very 

large datasets, such as the UK Biobank (Sudlow et al., 2015) or ENIGMA Consortium 

(Thompson et al., 2014), which include neuroanatomical and/or intrinsic connectivity data but 

limited task fMRI data for language functions. For instance, the functional regions defined here 

could be used to investigate structural/functional variability during maturation, aging, and/or 

pathological processes in the general population, including those associated with developmental 

language disorders.  

For the comparison networks included in this study, i.e. the spatial navigation, multiple 

demand, and default mode networks, we also found similar overall correlations between the 

functional connectivity networks and the corresponding transcriptomic networks, although with 

largely different individual genes contributing. This was indicated by relatively low correlations 

of GCI scores across different networks, and also that different functional networks produced 

distinct results in gene ontology analysis. There were individual genes  such as MET that 

showed a relatively high contribution to the connectivity-transcriptomic correlation for the 

sentence processing network, but negligible contributions to other functional networks. 

Therefore, although the existence of connectivity-transcriptome correlations appears to be 

ubiquitous across functional networks, our study yields the important basic insight that different 

functional networks can involve differently weighted genetic contributions at the level of 

cortical gene expression. This is broadly consistent with genetic correlations between different 

cognitive abilities such as verbal and non-verbal performance, as assessed in population genetic 

analysis, which often indicate shared but also independent genetic effects on such pairs of traits 
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(Trzaskowski, Shakeshaft, & Plomin, 2013). Our study therefore suggests a novel approach to 

complement existing genetic epidemiological approaches, for understanding the general versus 

specific influences on diverse cognitive abilities. Note that, in the present study, in order to 

achieve comparable statistical power in the network similarity analysis across different 

networks, we purposely defined similar numbers of top regions for each comparison network, 

even though this meant using different thresholds for including regions in each comparison 

network. Further studies may investigate how using more or less inclusive definitions of these 

functional networks affect relationships with gene expression.  

The present study was based on gene expression data from a small number of donors in the 

Allen Brain database. Post-mortem brain tissues suitable for transcriptomic analysis are 

difficult to collect from individuals who were healthy immediately prior to death, which is 

necessary since RNA degrades within hours after death. Thus, the availability of high-quality 

gene expression data from the human brain is necessarily limited. Moreover, most of the Allen 

brain data, and all the data used for the present study, are based on the older and relatively noisy 

transcriptomic technology of microarrays, rather than the more accurate, latest method of RNA 

sequencing. In addition, some genes known to be involved in language, such as FOXP2 (Lai et 

al., 2001), had to be excluded from our analyses because of the inclusion criterion of stability 

across donors. FOXP2 showed a low inter-donor differential stability of 0.22 across cerebral 

cortex samples, especially low across frontal samples (-0.07) and across temporal samples (0.16) 

in the Allen brain data (M. Hawrylycz et al., 2015). Thus, it is likely that data of sufficient 

quality were not available for other genes too, that might have been of relevance to language 

networks, such that future studies using RNA sequencing in larger numbers of individuals, and 

with more sampling per cortical region, would be well motivated. In addition, inter-individual 

variabilities have been observed in the precise locations of language-sensitive regions (E. 

Fedorenko et al., 2010; Steinmetz & Seitz, 1991) as well as the cytoarchitectonic features of 

higher level cognitive areas (e.g., BA 44 and 45)  (Fischl et al., 2008). To address these issues, 

we focused on only a subset of genes with the highest differential stability across donors, in 

order to ensure a reliable and representative, average map of gene expression, which was 

necessary for this study. Inter-donor differential stability is particularly low for cortical regions 

in the Allen dataset, for the majority of individual genes (Fig. S2), so that only a minority of 

genes have a useful degree of consistency for group-based analysis. Having made a selection 

based on high stability across donors, the reproducibility of our genetic findings with respect to 

two independent rs-fMRI datasets supported their validity. Gene expression data from a larger 
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number of individuals, ideally when both anatomical and functional data from the same 

individuals are available, would help to further improve upon this aspect. However, the 

prospective enrollment of eventual donors of post mortem tissue into brain imaging studies 

during life would be extremely difficult to achieve, within a typical project duration.  

As noted in the Introduction, several recent studies have examined the relationship between 

post mortem brain transcriptomics and in vivo neuroimaging in different datasets (e.g., 

Anderson et al., 2018; Reardon et al., 2018; Richiardi et al., 2015; Seidlitz et al., 2018; Whitaker 

et al., 2016). While these studies have provided strong evidence that patterns of gene expression 

co-vary with anatomical and functional organization of the human brain, none of them focused 

on specific core cognitive functions such as language. Unlike these previous studies, the present 

study provided new evidence for the gene expression correlates of a high-level language 

network, and additionally identified a set of individual genes likely to be important for cortical 

language functions.  

A limitation of our study is the use of transcriptomic data from blocks of cerebral cortical 

tissues, which comprised many cell types. Future databases based on single-cell transcriptomics 

would likely provide further insights. Although efforts to produce such data are underway for 

a limited number of human cerebral cortical regions, no database currently exists which has 

broad mapping over the cerebral cortex. It will be a major undertaking in the future for the 

human brain science community to achieve a widespread cerebral cortical gene expression map 

at single cell resolution. For the time being, we queried our consensus genes associated with 

the language-related network using single-cell or single-nucleus transcriptomic data from brain 

tissues from a restricted number of regions/structures, which gave information about whether 

specific genes are relatively more highly expressed in neurons versus some major classes of 

glial cells. However, even if a gene of interest was expressed at a comparable or higher level in 

glia than neurons, it might still influence neuronal physiology and circuit properties, either 

directly through its expression in neurons, or indirectly via the interactions of surrounding glial 

cells with neurons. 

As regards head motion during scanning, both signal artifacts (e.g., Friston, Williams, 

Howard, Frackowiak, & Turner, 1996; Kong, 2014; Power, Barnes, Snyder, Schlaggar, & 

Petersen, 2012; Satterthwaite et al., 2012) and functionally meaningful and reliable variability 

(e.g., Couvy-Duchesne et al., 2014; Hodgson et al., 2017; Kong et al., 2014; Zeng et al., 2014) 

have been suggested to relate to this. In the present study, we carried out traditional 

preprocessing in relation to head motion, including motion correction, quality control in terms 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 16, 2019. ; https://doi.org/10.1101/439984doi: bioRxiv preprint 

https://doi.org/10.1101/439984
http://creativecommons.org/licenses/by-nc-nd/4.0/


38 
 

of the amount of head motion, and confound regression, but we did not apply further 

preprocessing steps proposed more recently, such as the “scrubbing” method (Power et al., 

2012). Motion issues mainly affect data from young children, the elderly, and disorder groups 

(Kong et al., 2014; Satterthwaite et al., 2012), while most of the subjects involved in the present 

study were healthy young adults, with a good capacity to stay still in scanners. More importantly, 

we found high correlations (up to 0.92) of the functional connectivity patterns extracted from 

two independent rs-fMRI datasets (i.e., BIL&GIN and GEB), and we focused on consensus 

genes arising from the analysis of these two datasets. Thus, any motion-induced artifacts would 

have minimal impact on our analyses. 

In sum, we provide a first description of the overall transcriptomic correlates of brain 

networks underlying high-level linguistic processing, as well as identifying a set of individual 

genes likely to be most important. These findings help elucidate the molecular basis of language 

networks, as distinct from functional networks important for other aspects of cognition. A link 

of this genetic infrastructure to ASD is also suggested by our data. Finally, we propose 

functional connectivity and gene expression analysis as a complementary approach to existing 

genetic epidemiological and genetic association approaches, for understanding complex 

cognitive traits. 
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