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Abstract

Background: Patient-derived xenograft is the model of reference in oncology for
drug response analyses. Xenografts samples have the specificity to be composed
of cells from both the graft and the host species. Sequencing analysis of
xenograft samples therefore requires specific processing methods to properly
reconstruct genomic profiles of both the host and graft compartments.

Results: We propose a novel xenograft sequencing process pipeline termed
SMAP for Simultaneous mapping. SMAP integrates the distinction of host and
graft sequencing reads to the mapping process by simultaneously aligning to both
genome references. We show that SMAP increases accuracy of species-assignment
while reducing the number of discarded ambiguous reads compared to other
existing methods. Moreover, SMAP includes a module called SMAP-fuz to
improve the detection of chimeric transcript fusion in xenograft RNAseq data.
Finally, we apply SMAP on a real dataset and show the relevance of pathway and
cell population analysis of the tumoral and stromal compartments.

Conclusions: In high-throughput sequencing analysis of xenografts, our results
show that: i. the use of ad hoc sequence processing methods is essential, ii. high
sequence homology does not introduce a significant bias when proper methods
are used and iii. the detection of fusion transcripts can be improved using our
approach. SMAP is available on GitHub: cit-bioinfo.github.io/SMAP
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Background
In oncology, Patient-derived xenografts (PDX) is to date the closest available model

to the human disease. Despite having obvious a priori limitations, e.g. an altered

microenvironment with species divergence, their resemblance with primary tumors

is manifold higher than in vitro cell culture. PDX are increasingly used for many

aspects of clinically relevant cancer research programs such as drug discovery or

identification of drug resistance mechanisms [1, 2]. Among the most promising as-

pect of PDX models is the possibility to test novel treatments while generating

large-scale molecular profiles on the same tumor sample. The resulting data can

then be used to identify predictive biomarkers. Deep sequencing is the method of

choice to generate exhaustive molecular profiles. However, sequencing PDX sam-

ples has a major pitfall: it necessarily involves sequencing RNA or DNA from both

human grafted cells and host cells, generally mice. Although this might appear as

unwanted and a waste of costly sequencing reads, it is on the contrary a unique

opportunity to accurately capture simultaneously molecular signals from the tumor

and the stroma [3]. Indeed, the cellular composition and function of the tumor mi-

croenvironment has a major impact on key aspects of the disease such as tumor

initiation, growth, metastasis or therapeutic resistance [4, 5, 6]. This unique po-

tential of studying the microenvironment of tumors in an in vivo model defines a
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particularly challenging task of simultaneously analyzing a mixture of sequencing

reads from two distinct but phylogenetically-close species.

Several bioinformatics approaches have been proposed and used to process se-

quencing data from the mix of host and graft cells. The simplest one consists in

independently mapping the entire set of xenograft reads to the human genome or

the mouse genome only and quantify the transcriptomes from thereon. We termed

this approach ”independent mapping”. Intuitively, this approach may introduce

strong quantification bias in homologous genes. The first methodology specifically

designed to process xenograft sequencing called Xenome [7], uses an interesting k-

mer dictionary approach to assess the species from which each read originates. It is

based on the unexpectedly small number of common k-mers in the transcriptomes

of human and mice. Xenome can simply be used to classify and separate reads

prior to their mapping. Another approach, S3 for Species-Specific Sequencing [8],

was recently used in breast cancer to assign human and mouse read origin from

xenograft transcriptome profiles. S3 relies on post-mapping processing by filtering

out any reads that mapped to the murine genome with a predefined mapping score

difference. Similarly to S3, an additional approach named Disambiguate proposes

to align reads to both species independently and assign reads to the species with

higher quality alignments [9].

In this study, we propose a novel approach termed SMAP for Simultaneous Map-

ping. SMAP uses the mapping step to select the best matching locus for each gene

in either genome.

Results
Overview of SMAP: Simultaneous Mapping for Patient-derived xenografts

SMAP is a mapper-agnostic method that runs in three steps to assign each sequenc-

ing read (or read pair) to the most relevant species (see Fig 1).

First, chimeric genome and transcriptome are constructed by the concatenation

of the host and graft species genomes. Then, a conventional alignment pipeline pro-

cesses the unsorted sequencing reads using the chimeric genome, thereby mapping

all sequences simultaneously on both genomes. Finally, aligned reads are separated

based on which part of the chimeric genome they are best aligned to, host or graft,

and all reads with an identical alignment score on both genomes are removed. The

output of SMAP is a strictly distinct pair of aligned read files (BAM) or gene count

matrices, one for the graft and one for the host. Common analysis can then be

applied separately such as mutation calling, copy number analysis or gene expres-

sion and pathway analysis. As immunocompromised mice are the most widespread

chassis for PDX, we will hereafter refer to the host species as murine and the graft

as human.

Overview of the SMAP-fuz methodology

Reliable detection of chimeric transcripts, an aberrant genetic event of gene fusion

with high pathogenic potential especially in cancer, is proposed here to also take

advantage of the specificity of PDX sequencing. Fusion detection is a challenging

task and a large number of methods have been devised to perform it from RNAseq

data (reviewed in [10, 11]).
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Figure 1 Schematic representation of SMAP. SMAP is designed to process high-throughput
sequencing reads from PDX samples which are considered as a mix of tumor cells of the grafted
species (usually human) and of stromal cells from the host species (usually mouse). Each
sequencing read is processed by a mapping pipeline which uses both genomes (and/or
transcriptomes) of both species. Reads are simultaneously mapped to both genomes and only
those for which the first and only best alignment is made on one of the two species genome are
kept and assigned to their respective species. Typical mapping cases ending in the assignment of a
read to the human, murine genome or neither are shown. In the special case of a read partially
mapping to two distinct chromosomes from both species, the alignment is stored for use in
subsequent analysis of fusion transcript detection.

The problem to tackle is the removal of the excessive rate of spurious fusions

that are due to local mapping errors. The core idea relies on the assumption that

no chimeric transcript can result from the fusion of a mouse gene with a human

gene. Therefore, the characteristics - in terms of junction read and spanning frag-

ment counts - of these false fusions are used to define a null probability distribution

and compute a statistics for any potential human-human fusion. The SMAP fusion

approach is described in Fig 2 in which it is applied to STAR-Fusion output. How-

ever, the process is independent of the fusion detection algorithm as it only requires

metrics to build the null probability distribution.

Null distributions of junction read count and spanning fragment count were es-

timated by fitting a Negative Binomial distribution on their empirical distribution

for interspecies fusions - fusions between a human gene and a mouse gene - which

were considered as spurious fusions:

Y j ∼ NB(µj , kj)

and

Y s ∼ NB(µs, ks)

where µj and µs are the mean of junction and spanning read counts distributions

respectively and kj and ks are the dispersion parameter of junction and spanning

read counts distributions respectively.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 11, 2018. ; https://doi.org/10.1101/440008doi: bioRxiv preprint 

https://doi.org/10.1101/440008


Blum et al. Page 4 of 13

0 2 4 6 8 10

0
2

4
6

8

JunctionReads

Sp
an

ni
ng

Fr
ag

s

●
●●

●●
●●●
●● ●●●●●

●

●●●
●

●
● ●

●
● ●

●

● ●● ●
●

●
●● ●

●●
●

●
●●● ●●

●●●●● ● ●
●

●
●●

●●
●

●
●

●

●
●

●●
●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

>0.1 (fdr)
<0.1 (fdr)
<0.05 (fdr)
<0.01 (fdr)
<0.001 (fdr)

False Fusion
True Fusion

Prob. distribution

0.00 0.15 0.30

Parametric p−values (negative binomial)

Pr
ob

. d
is

tri
bu

tio
n

0.
00

0.
06

a b

Spurious fusions (human-
murine fusions)

Spanning: null distribution
(Negative binomial)

Junction: null distribution 
(Negative Binomial)

human-human fusions

RAW FUSIONS

P-value for each 
human-human fusion 

spanning count 

P-value for each 
human-human 

fusion junction count 

• Combining P-value 
• FDR correction

Figure 2 SMAP-fuz approach. a. Overall SMAP-fuz approach based on the repository of
inter-species fusion transcripts, i.e. detected fusions between human and murine genes. A null
distribution is built from the available fusion characteristics, here the number of spanning
fragments and of junction reads, to model the background noise of fusion detection. These
distributions are used to then score the human-only fusion transcripts detected. b. Illustrative
example of SMAP-fuz results on simulated data. Plot shows observed spanning and junction
counts. Dots correspond to fusions and are colored according to their corresponding FDR P-value
computed by SMAP-fuz. Spurious fusions (inter-species fusions) are represented by a smoothed
color density scatterplot.

The variance of the Negative Binomial distribution is µ+ µ2

k in this parametriza-

tion. For each human fusion, p-values for junction reads and spanning fragments

were calculated giving these distributions. We used Fisher’s Method [12] to combine

both p-values as follows:

−2
2∑
i=1

ln(pi)

Under null hypothesis (equivalent to all single null hypotheses true) this statistics

follows a Chi-squared distribution with 4 degrees of freedom. Corresponding P-

values were calculated for each human fusion and were corrected for multiple testing

using FDR method.

Null distributions of junction read count and spanning fragment count were es-

timated by fitting a Negative Binomial distribution on their empirical distribution

for interspecies fusions - fusions between a human gene and a mouse gene - which

were considered as spurious fusions:

Y j ∼ NB(µj , kj)

and

Y s ∼ NB(µs, ks)

where µj and µs are the mean of junction and spanning read counts distributions

respectively and kj and ks are the dispersion parameter of junction and spanning

read counts distributions respectively.
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The variance of the Negative Binomial distribution is µ+ µ2

k in this parametriza-

tion. For each human fusion, p-values for junction reads and spanning fragments

were calculated giving these distributions. We used Fisher’s Method [12] to combine

both p-values as follows:

−2
2∑
i=1

ln(pi)

Under null hypothesis (equivalent to all single null hypotheses true) this statistics

follows a Chi-squared distribution with 4 degrees of freedom. Corresponding P-

values were calculated for each human fusion and were corrected for multiple testing

using FDR method.

Mapping and species assignment performance

In order to assess the proposed method, we simulated xenograft RNAseq data with

a mix of human and mouse reads using diverse settings of sequencing errors, mu-

tations rate and read length (see table 1). The purpose of this simulation analysis

is to compare various approaches for Xenograft sequencing data processing and to

compare their ability to assign each read to the correct species.

Table 1 Sample table title. This is where the description of the table should go.

Species Read Mutation Error
length (bp) rate rate

Ideal human 50 0 0
mouse 50 0 0

Mutations human 50 0.01 0
mouse 50 0.001 0

Mutations human 50 0.01 0.001
and errors mouse 50 0.001 0.001

Ideal human 100 0 0
mouse 100 0 0

Mutations human 100 0.01 0
mouse 100 0.001 0

Mutations human 100 0.01 0.001
and errors mouse 100 0.001 0.001

The simulated datasets were processed using five different strategies: naively, by

independent mapping the entire sequencing data to the human or mouse genomes

and using SMAP, Xenome, S3 or Disambiguate. Figure 3 shows the rate of human

reads correctly assigned to the human genome (True Positives), the rate of lost

human reads that were unmapped or considered as ambiguous (False negatives)

and the rate of murine reads assigned incorrectly to the human genome (False

Positives). Supplementary figure 1 shows the same results for the murine genome.

The results demonstrate that mapping a mix of human and murine sequences

directly onto the human genome results in a large number of false positive murine

sequence alignments to the human genome. Disambiguate exhibits as well poor

results in terms of false positive rate showing that its criteria based on quality

alignment score used to distinguish species is not sufficient to correctly assign reads.

SMAP and S3 as well as to some extent Xenome align virtually no murine se-

quences to the human genome, approaching an ideal specificity. However, Xenome

and in particular S3 systematically discards more human sequences by considering
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Figure 3 Performance of reads mapping to the human genome. Barplots of the true positive (a
and (d), false negatives (b and (e) and false positive (c and (f) rates obtained by the different
alignment strategies of mixed human and murine reads. Bars represent the mean and error bars
the standard deviation of five replicate simulation experiments. a. Proportions of the human reads
mapped to the human genome (True Positive),b. Proportions of the lost human reads unmapped
or ambiguous (False negatives) and c. Proportions of the murine reads mapped to the human
genome (False Positive) in various settings of read simulation parameters (see table 1). d.
Proportions of the human reads mapped to the human genome (True Positive) e. Proportions of
the lost human reads unmapped or ambiguous (False negatives) and f. Proportions of the murine
reads mapped to the human genome (False Positive) in simulations on sets of genes with various
levels of homology between the human and murine orthologs.

them as ambiguous. Overall, these results show that specific methods are necessary

to process PDX sequencing data to avoid significant bias in downstream analysis.

It is expected that there is a high level of discrepancies between the reference

genomes and the sequencing reads, which can either originate from sequencing errors

or genetic variances (e.g. polymorphism, mutations), may degrade the capability of

sequence processing pipeline to assign reads to their correct species. As reported in

figure 3, three of the tested pipelines suffer only moderately from these divergences

with correct assignment rates dropping in a realistic setting of less than 1% for

independent mapping (100bp: 2.4h, 50 bp: 5.3h), Xenome (100bp: 9h, 50 bp:

1.1%) or SMAP (100 bp: 2.3h, 50 bp: 5.9h) as compared to an ideal setting.

S3, which is overall much less performant, is greatly impacted by the number of

discrepancies between the sequencing reads and the genome with 33.7% drop in

the rate of correct assignment between the ideal and mutation and error setting at

100 bp (11.4% at 50bp). On the other hand, errors in species-assignment are not

impacted by discrepancies between sequencing reads and the genome. Altogether,

sequencing longer reads (i.e. 100 bp compared to 50 bp) increases the rate of correct

and decreases the rate of incorrect species-assignment for every method, except S3.

The exceeding stringency of S3 could be explained by a higher absolute number of

mapping errors in longer reads in a constant error rate setting. Likewise, S3 gave

better results on the murine genome, as mouse reads were simulated with lower

mutation rate (Supplementary figure 1). Overall, the use of SMAP results in better
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read assignment with a significantly lower rejection rate and a virtually null rate of

false species-assignment even in highly mutated samples.

Estimating the impact of inter-species gene homology

The homology between the coding sequences of Humans and Mice is the prime

difficulty to overcome in PDX genomic studies. Sequencing reads from human genes

which have a highly homologous murine ortholog are expected to be more frequently

assigned to the wrong species genome.

In order to quantify the impact of homology on xenograft sequencing, reads were

simulated specifically on subsets of orthologous genes with variable levels of sequence

similarity. In figure 3, we show that the species-assignment errors of sub-optimal

methods are highly correlated with the level of sequence similarity. For instance,

naively mapping the mix of human/murine PDX reads to the human genome as

well as Disambiguate approach result in more than 30% of the murine reads in-

correctly assigned to the human genome in highly homologous genes (more than

95% similarity). This rate drops significantly to 12% and below 10% in orthologous

genes with lower levels of homology. Homology has less impact on the number of

false positives in other methods with only Xenome misclassifying less than 1 per

thousand reads for highly homologous genes.

Overall, SMAP systematically outperforms other method by assigning more reads

to their correct genome while maintaining a low near-null false positive rate.

Evaluation of SMAP-fuz

In order to quantify the impact of SMAP on fusion detection, the processing pipeline

was applied to simulated transcriptomes with known fusion events. Figure 4 reports

several accuracy metrics comparing the detection of fusion with or without SMAP-

fuz. The proposed approach does not remove true fusions while discarding a large

number of wrongly detected fusions (80% for 50bp reads, 65% for 100bp reads).

Overall, using SMAP-fuz for fusion detection results in an extensive improvement

in false discovery (as measured by the positive predictive value PPV) with virtually

no trade-off in sensitivity.

Application to pancreatic cancer xenograft gene expression analysis

To illustrate the value of SMAP, we used a cohort of pancreatic adenocarcinoma

(PDAC) patient-derived xenografts ([13]). PDAC is a neoplastic disease with one of

the highest proportions of tumor associated stroma which is increasingly recognized

as having a major clinical impact. The cohort is composed of 30 human PDAC

grafted in immunocompromised mice.

Using SMAP, we separated the tumor and stromal compartments, and retrieved

the pathways specific to each of them (figure 5, full table in Supplementary figure 2).

The heatmap of human-mouse orthologs reveals specific pathway activity between

the tumoral amd stromal compartments despite a high homology rate of the ortologs

involved. The heatmap clearly shows the absence of expression of genes involved in

biological functions generally attributed to transformed epithelial tumor cells in

the stromal compartment such as cytokeratins, proliferation (e.g. Cell cycle, DNA

replication), DNA damage repair (e.g. Homologous recombination, mismatch repair)
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Figure 4 Evaluation of SMAP-fuz on the 100 simulated fusions. a. Number of total fusions
(Tot), True Positive (TP), False Positive (FP) and False Negative (FN) fusions for each method
using 50bp or 100bp sequencing reads. b. Evaluation metrics of the different approaches for
fusions detections. Bars represent the mean and error bars the standard deviation of five replicate
simulation experiments.

or more specifically to PDAC (e.g.. vitamin digestion and absorption, metabolic

functions). Conversely, stromal-specific pathways such as those expressed by specific

immune cell population (e.g. Natural killer cytotoxicity, B-cell receptor pathway)

or cancer-associated fibroblasts (e.g. related to smooth muscle and extracellular

matrix or ECM) are expressed by murine-stromal cells. Well-known oncogenes that

are highly homologous between human and mouse were found as over-expressed in

the tumoral compartment compared to the stroma (Supplementary figure 3).

To validate the specificity of the stromal and tumor gene expression profiles gen-

erated by SMAP, we sought to estimate the relative quantities of cell populations

generally found in the tumor microenvironment using MCPcounter [14]. As shown

in figure 5b, nearly all cell types are exclusively expressed by the stromal-murine

cells, especially fibroblasts as expected.

Finally, to illustrate the value of SMAP fusion, we report (figure 5c) the number of

false fusions (human-mouse fusion transcripts) after the application of the SMAP-

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 11, 2018. ; https://doi.org/10.1101/440008doi: bioRxiv preprint 

https://doi.org/10.1101/440008


Blum et al. Page 9 of 13

CD8 T cells
Cytotoxic lymphocytes
T cells
NK cells
B lineage
Neutrophils
Monocytic lineage
Endothelial cells
Fibroblasts

PD
AC

00
1.

T
PD

AC
00

3.
T

PD
AC

00
4.

T
PD

AC
00

5.
T

PD
AC

00
6.

T
PD

AC
00

7.
T

PD
AC

00
8.

T
PD

AC
00

9.
T

PD
AC

03
2.

T
PD

AC
01

1.
T

PD
AC

01
2.

T
PD

AC
01

3.
T

PD
AC

01
4.

T
PD

AC
01

5.
T

PD
AC

01
6.

T
PD

AC
01

7.
T

PD
AC

01
8.

T
PD

AC
01

9.
T

PD
AC

02
0.

T
PD

AC
02

1.
T

PD
AC

02
2.

T
PD

AC
02

3.
T

PD
AC

02
4.

T
PD

AC
02

5.
T

PD
AC

02
6.

T
PD

AC
02

7.
T

PD
AC

02
8.

T
PD

AC
02

9.
T

PD
AC

03
0.

T
PD

AC
03

1.
T

PD
AC

00
1.

S
PD

AC
00

3.
S

PD
AC

00
4.

S
PD

AC
00

5.
S

PD
AC

00
6.

S
PD

AC
00

7.
S

PD
AC

00
8.

S
PD

AC
00

9.
S

PD
AC

03
2.

S
PD

AC
01

1.
S

PD
AC

01
2.

S
PD

AC
01

3.
S

PD
AC

01
4.

S
PD

AC
01

5.
S

PD
AC

01
6.

S
PD

AC
01

7.
S

PD
AC

01
8.

S
PD

AC
01

9.
S

PD
AC

02
0.

S
PD

AC
02

1.
S

PD
AC

02
2.

S
PD

AC
02

3.
S

PD
AC

02
4.

S
PD

AC
02

5.
S

PD
AC

02
6.

S
PD

AC
02

7.
S

PD
AC

02
8.

S
PD

AC
02

9.
S

PD
AC

03
0.

S
PD

AC
03

1.
S

Tumor/human Stroma/murine

2 1 0 -1 -2

PD
AC

00
1.

T
PD

AC
00

3.
T

PD
AC

00
4.

T
PD

AC
00

5.
T

PD
AC

00
6.

T
PD

AC
00

7.
T

PD
AC

00
8.

T
PD

AC
00

9.
T

PD
AC

03
2.

T
PD

AC
01

1.
T

PD
AC

01
2.

T
PD

AC
01

3.
T

PD
AC

01
4.

T
PD

AC
01

5.
T

PD
AC

01
6.

T
PD

AC
01

7.
T

PD
AC

01
8.

T
PD

AC
01

9.
T

PD
AC

02
0.

T
PD

AC
02

1.
T

PD
AC

02
2.

T
PD

AC
02

3.
T

PD
AC

02
4.

T
PD

AC
02

5.
T

PD
AC

02
6.

T
PD

AC
02

7.
T

PD
AC

02
8.

T
PD

AC
02

9.
T

PD
AC

03
0.

T
PD

AC
03

1.
T

PD
AC

00
1.

S
PD

AC
00

3.
S

PD
AC

00
4.

S
PD

AC
00

5.
S

PD
AC

00
6.

S
PD

AC
00

7.
S

PD
AC

00
8.

S
PD

AC
00

9.
S

PD
AC

03
2.

S
PD

AC
01

1.
S

PD
AC

01
2.

S
PD

AC
01

3.
S

PD
AC

01
4.

S
PD

AC
01

5.
S

PD
AC

01
6.

S
PD

AC
01

7.
S

PD
AC

01
8.

S
PD

AC
01

9.
S

PD
AC

02
0.

S
PD

AC
02

1.
S

PD
AC

02
2.

S
PD

AC
02

3.
S

PD
AC

02
4.

S
PD

AC
02

5.
S

PD
AC

02
6.

S
PD

AC
02

7.
S

PD
AC

02
8.

S
PD

AC
02

9.
S

PD
AC

03
0.

S
PD

AC
03

1.
S

Tumor/human Stroma/murine

0.40.20-0.2-0.4

a

b

0%

5%

10%

15%

all
STAR-Fusion

5% 1% 0.1%

Fa
ls

e 
Fu

si
on

s 
(in

 %
)

STAR-Fusion+SMAP-fuz

c

filter

PDAC transcriptome

KE
G

G
 p

at
hw

ay
s

M
C

Pc
ou

nt
er

Cell	adhesion	molecules	 (CAMs)
Hematopoietic	cell	lineage
Cytokine-cytokine	 receptor	interaction
Chemokine	 signaling	pathway
Natural	killer	 cell	mediated	cytotoxicity
B	cell	receptor	signaling	pathway
Lysosome
Calcium	signaling	pathway
Leukocyte	transendothelial	migration
Toll-like	receptor	signaling	pathway
Focal	adhesion
Vascular	smooth	muscle	 contraction
ECM-receptor	interaction
Regulation	of	actin	cytoskeleton
Histidine	metabolism
Vitamin	digestion	 and	absorption
Biosynthesis	 of	unsaturated	fatty	acids
Steroid	biosynthesis
Glycerophospholipid	 metabolism
Peroxisome
Ubiquitin	mediated	proteolysis
RNA	degradation
DNA	replication
RNA	transport
Spliceosome
Pyrimidine	metabolism
Base	excision	repair
Ribosome	biogenesis	 in	eukaryotes
Cell	cycle
Homologous	 recombination
Mismatch	repair
Cytokeratins
Nucleotide	excision	 repair

20 40 60 80 100

%	of	identity

Figure 5 Pathway enrichment analysis. a. Pathway enrichment analysis of the human tumor and
murine stromal transcriptomes using GSEA. Representation of the metagene expression from the
top 20 significant pathways in both direction. Boxplots represent the variability of sequence
identity percentages between human and mouse orthologs for each pathway. b. MCPcounter
estimations of tumor microenvironment cellular populations quantification. c. Proportions of False
Fusions, determined as inter-species chimeric transcripts, determined by different filtering curation
approaches, including SMAP-fuz. These rates were computed in a cross-validation setting in
which SMAP-fuz null distributions are estimated on a subpart of the samples and used to filter
fusions on the rest of the series.

fuz filter in a 10-fold cross-validation setting (i.e. learning H0 parameters on 90%

of the total fusion and applying the trained filter on remaining unseen 10%). The

results show a significant decrease in the number of false fusions reported by SMAP-

fuz in the PDAC cohort.

Discussion and conclusion
As PDX is a method of choice for in vivo drug discovery, its specificity as a hy-

brid species system requires dedicated sequencing processing approaches. Indeed,

we show in this study that naive approaches, consisting in ignoring that PDX tu-

mors are mixed cells of different species (noted independent), can result in up to

10% overall misassigned reads and 30% in genes with high homology. The effect

of spurious false positive species-assigned reads may have significant effects on any

downstream analyses, for instance in variant calling where all human/murine diver-

gence may be considered as a mutation. As well, for gene expression, in particular

in cases in which the murine gene is highly expressed as compared to its human

ortholog. Therefore, ill-advised processing of PDX sequencing data can introduce a

large bias to subsequent analyses.

In order to overcome such consequential issues, we propose a simple and effec-

tive approach termed SMAP for simultaneous mapping. We show the superiority

of our proposed approach over the few available ones. SMAP only implies minor
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modifications of standard sequencing processing pipelines and results in major im-

provements. In particular, SMAP increases the yield of correctly mapped reads while

preserving a virtually null level of false positive species assignments. We also show

that high homologies between host and graft genomes have virtually no impact on

the accuracy of read alignment in terms of species-assignment when using SMAP.

Moreover, the computation time necessary for SMAP to process mixed raw reads

into two complete transcriptomes is inferior to other methods (see Supplementary

figure 4).

In addition to improving xenografts sequencing, we also propose to take advan-

tage of xenografts to increase the reliability of available fusion detection algorithms.

The approach, termed SMAP-fuz, uses the spurious human-murine fusions to build

a null model of false positives and better retrieves fusion transcripts that stand

above the background noise. This strategy aims to be a replacement for filter- and

threshold-based approaches by rather adapting to specificities of each sequencing

dataset and fitting null model in a data-driven approach. We showed in both simu-

lated and real datasets that this approach effectively removes false positive fusions

making the detected sets of chimeric transcripts more reliable. In its current us-

age, SMAP-fuz uses two input metrics to estimate the background distribution, the

number of spanning fragments and the number of junction reads. However, as addi-

tional characteristics are developed to score putative fusion transcripts, for instance

expression consistency or sequence homology, these can be simply integrated into

SMAP-fuz null model to further improve the identification of chimeric genes.

In this work, SMAP was assessed on simulated transcriptomes of human-murine

xenografts as well as on real pancreatic PDX. The use of a real dataset shows the

extent to which the complex species mixture can be highly valuable to computation-

ally reconstruct the transcriptome of both the tumor and stromal compartments.

Materials and methods
PDX Transcriptome simulations

Xenograft transcriptomes were simulated in silico as a mix of half human and half

murine pair-end sequencing reads simulated from a subset of ortholog genes. All

human/murine orthologous gene pairs were downloaded from the MGI (Mouse

Genome Informatics: www.informatics.jax.org). All pairs of Human/Murine

transcripts were blasted and those with a significant match of at least 1kb were

kept. From these selected pairs, five sets of 50 homologous transcript pairs were

randomly selected based on their level of homology from highly homologous (more

than 95%) to low homology (less than 80%).

In order to rigorously control the levels of sequencing error and mutation on read

simulations, reads were simulated using wgsim (github.com/lh3/wgsim, [15]) based

on the ensembl release 75 cDNA reference of the human (GRCh37) and murine

(GRCm38) transcriptomes. 10,000 pair-end reads were simulated for each set of

the selected human and murine ortholog pairs. Whole transcriptomes, i.e. using all

murine and human transcripts, were simulated using different settings of sequencing

errors and mutations as listed and named in table 1. The entire simulation procedure

was repeated 5 times. As wgsim is originally proposed as a DNA read simulator
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which is used here on a reference transcriptome, we investigated whether the use

of an RNA-specific read simulator would impact the results and our conclusion. To

do so, we simulated reads using Polyester [16] using the same settings. For each

setting, 5 classes of expression (10 genes in each) were considered: 5, 25, 70, 200 or

700 reads on average. The entire simulation procedure was repeated 5 times and the

results reported in supplementary figure 5 shows that using DNA or RNA specific

reads simulators has no impact on this comparative study.

Fusion simulations

Fusim [17] was used to simulate 100 fusion transcripts from the Human reference

transcriptome (Homo sapiens GRCh37 build, ensembl v75). RNAseq data was sim-

ulated using wgsim with 50M reads from the total human transcriptome, 20M reads

from the total mouse transcriptome and 500 000 from the 100 human fusion tran-

scripts. Fusion transcripts were simulated with diversity of expression level as shown

by a high range of RPKM (Supplementary figure 6). Reads were simulated using

the Mutations and errors settings (table 1). Simulations with 50 and 100 read-

lengths were performed. The entire simulation procedure, including the simulation

of a novel fusion transcript, was repeated 5 times.

Species-assignment and fusion evaluation metrics

Identical sets of raw read pairs (in FASTQ format) were processed by each tested

pipelines. To quantify the number of correctly species-assigned reads, only uniquely

mapped and properly paired reads were kept. STAR-Fusion (STAR-Fusion: Fast and

Accurate Fusion Transcript Detection from RNA-Seq. bioRxiv) was applied for fu-

sion transcript detection with. STAR-fusion proposes its own filtering process based

on blast analyses (see https://github.com/STAR-Fusion/STAR-Fusion/wiki).

Evaluation metrics were estimated as follow:

TP: True positive. Correctly identified fusions.

FP: Identification of false fusions

TF: Total number of fusions

Sensitivity (%) = (TP/TF) * 100

PPV (Positive predictive value in %) = (TP/(TP+FP)) * 100

TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution [18] )

analysis was performed to make decisions on the basis of multiple criteria results.

For each approach, TOPSIS scores were calculated by equally weighting the two

criteria: sensitivity and PPV.

Pancreatic Patient-Derived Xenograft dataset and analysis

The mRNA sequencing transcriptome of 30 pancreatic Adenocarinoma PDX ([13])

Pancreatic adenocarcinoma therapeutic targets revealed by tumor-stroma cross-talk

analyses in patient-derived xenografts. Cell Reports) were taken from accession E-

MTAB-5039. RNA sequencing was Mapped using SMAP with STAR as mapper

on ensembl (release 75) with feature count for gene counting and upper quartile

normalization was applied. Expression matrix was retrieved only for genes with a

unique ortholog between human and mouse (13,708). Mouse and human expression

data were scaled for direct comparative analysis.
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Filtering for invariant genes: the mean absolute deviation (MAD) was calculated

for each gene and those on the first quartile (25%) were filtered out (10,281 genes

remaining). GAGE R package [19] was used to perform Gene Set Enrichment Anal-

ysis (GSEA) analysis on the scaled gene expression dataset after sample-based zero

mean and unit variance scaling. Gene sets were built based on KEGG database.

The percentages of sequence identity between human and mouse orthologuous genes

where calculated using BLAST and considering human gene sequences as the ref-

erence.

SMAP implementation and usage

SMAP is freely available on github (cit-bioinfo.github.io/SMAP/) and contains

python, bash and R scripts. The SMAP pipeline differs slightly from a normal

sequencing analysis pipeline by changing the reference genome/transcriptome and

by adding one additional post-mapping processing step to separate human and

mouse reads.

After downloading the host and graft species genomes (and transcriptomes for

RNAseq), these are processed by the SMAP_prepareReference.sh shell script

which concatenates the genomes. The new reference genomes are also modified

to keep track of the species of origin. A standard alignment step can then be

applied to the raw xenografts sequences. The SMAP pipeline can then be used

to obtain a gene-count matrix for each species (i.e. for RNAseq) or to split the

aligned reads in BAM format to obtain one BAM per species for subsequent anal-

ysis (e.g. mutation calling, copy number analysis). Additionally, a module inte-

grated in the SMAP pipeline named SMAP-fuz takes as input STAR-Fusion (ini-

tiated by Stransky et al. [20] and implemented in Haas et al. (STAR-Fusion: Fast

and Accurate Fusion Transcript Detection from RNA-Seq. bioRxiv). available at

github.com/STAR-Fusion/STAR-Fusion/releases) output to filter out the spuri-

ous fusions.

List of abbreviations
SMAP: Simultaneous Mapping, PDX: patient derived xenograft, PDAC: pancreatic

adenocarcinoma, PPV: positive predictive value, ECM: extracellular matrix, MGI:

Mouse Genome Informatics, RPKM: Reads Per Kilobase Million, TOPSIS: Tech-

nique for Order of Preference by Similarity to Ideal Solution, TP: true positive, FP:

False positive, TF: Total number of fusions, MAD: mean absolute deviation, GSEA:

Gene Set Enrichment Analysis.
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