Abstract
The diversity-productivity, diversity-invasibility, and diversity-stability hypotheses propose that increasing species diversity should lead, respectively, to increased average biomass productivity, increased invasion resistance, and increased stability. We tested these three hypotheses in the context of cover crop mixtures, evaluating the effects of increasing cover crop mixture diversity on aboveground biomass, weed suppression, and biomass stability. Twenty to forty cover crop treatments were replicated three or four times at eleven sites using eighteen species representing three cover crop species each from six pre-defined functional groups: cool-season grasses, cool-season legumes, cool-season brassicas, warm-season grasses, warm-season legumes, and warm-season broadleaves. Each species was planted in monoculture, and the most diverse treatment contained all eighteen species. Remaining treatments included treatments representing intermediate levels of cover crop species and functional richness and a no cover crop control. Cover crop planting dates ranged from late July to late September with both cover crop and weed aboveground biomass being sampled prior to winterkill. Stability was assessed by evaluating the variability in cover crop biomass for each treatment across plots within each site. While increasing cover crop mixture diversity was associated with increased average aboveground biomass, this was the result of the average biomass of the monocultures being drawn down by low yielding species rather than due to niche complementarity or increased resource use efficiency. At no site did the highest yielding mixture out-yield the highest yielding monoculture. Furthermore, while increases in cover crop mixture diversity were correlated with increases in weed suppression and increases in biomass stability, we argue that this was largely the result of diversity co-varying with aboveground biomass, and that differences in aboveground biomass rather than differences in diversity drove the differences observed in weed suppression and stability. The results of this study contradict popular interpretations of the diversity-productivity, diversity-invasibility, and diversity-stability hypotheses.