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Abstract 

 

DNA methylation (DNAm) is heritable and plays a role in brain development and function through 

transcriptional regulation. Aberrant DNAm in human brain has been linked to psychiatric disorders, 

potentially as mediators of common genetic risk variants. In this study, we hypothesize that common risk 

variants for psychiatric disorders may act through affecting DNAm level in human brain. We first aimed 

to investigate the heritability pattern of DNAm levels in the human prefrontal cortex. Secondly, through 

imputation-driven methylome-wide association study (MWAS), we aimed to identify CpG sites whose 

methylation levels are genetically associated and that show methylation-trait associations in the prefrontal 

cortex of patients with schizophrenia or bipolar disorder. Our heritability analysis showed that, of 

~370,000 CpG sites measured with the Illumina HumanMethylation450 microarray, 17% were heritable 

(p < 0.05), with a mean heritability of 0.22. Heritable CpG sites were enriched in intergenic regions, CpG 

shore, and regulatory regions in prefrontal cortex. Our MWAS approach identified known and potentially 

novel risk genes harboring CpG sites of methylation-trait associations for schizophrenia or bipolar 

disorder, which were not detectable using three alternative strategies (blood-based methylome reference, 

transcriptome-wide association study, and two gene-based association tests). Gene set enrichment 

analysis for genes with methylation-trait association evidence revealed pathways clearly related to 

neuronal functions, but also highlighted additional biological mechanisms that may underlie psychiatric 

disorders, such as microRNA-related regulation. In conclusion, our results showed the power of 

integrating brain methylation data with GWAS for psychiatric risk gene discovery, with potential 

applications in brain-related disorders or traits. 

 

 

 

 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 11, 2018. ; https://doi.org/10.1101/440206doi: bioRxiv preprint 

https://doi.org/10.1101/440206


Introduction 

 

DNA methylation (DNAm) is heritable and plays a critical role in brain development and function 

through transcriptional regulation (1, 2). Family and twin studies have investigated the heritability of 

DNAm for sites across the genome in easily accessible tissues (3-7), but, to our knowledge, there have 

been limited studies of methylation heritability in brain tissue. Indeed, only one study estimated the 

heritability of DNAm  levels of individual CpG dinucleotides attributable to local single nucleotide 

polymorphisms (SNPs) in postmortem brain from unrelated individuals, but the estimation was limited to 

~21,000 CpG sites primarily within promoters (8). The heritability pattern is not known for DNAm sites 

within gene body or intergenic regions, which represent a large portion of DNAm variation and are 

potentially important in epigenetic regulation of gene expression (9-12). 

 

Aberrant DNAm has been linked to psychiatric disorders in candidate gene analysis and epigenome-wide 

association studies (EWAS) of schizophrenia (SCZ) (13, 14), bipolar disorder (BD) (15), and major 

depressive disorder (16, 17). However, the majority of these studies have been of easily accessible 

peripheral tissue (blood), which may not correlate with methylation signals in the brain (18, 19). 

Additionally, due to the challenges of accessing brain tissues, studies that examined brain samples were 

often limited by small sample size. Finally, it is hard to establish a causal role between DNAm change 

and disease as it is unclear whether aberrant DNAm causes disease or vice versa. 

 

Genome-wide association studies (GWAS) indicate that most common genetic risk variants underlying 

complex diseases are noncoding and enriched in regulatory genomic regions in cells or tissues related to 

disease (20), suggesting that risk variants may act through regulation of cell/tissue-specific molecular 

mechanisms, such as methylation or gene expression. For example, SCZ risk variants from GWAS were 

enriched at enhancers active in brain, but not in tissues unlikely to be relevant to SCZ (21). Furthermore, 

statistical genetic approaches like linkage disequilibrium (LD) score regression have shown enrichment of 
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trait heritability in regions with functional annotations that are trait-related and cell-type-specific, 

including enrichment of heritability for SCZ and BP in functional regions specific to the central nervous 

system (22) and even specific subclasses of neurons (23).  

 

In line with a heritable component for DNAm, studies of methylation quantitaive trait loci (meQTL) have 

identified specific SNPs affecting methylation levels of CpG sites in human cell lines (24, 25), peripheral 

tissues (26, 27), and the human brain (13, 28, 29). SNPs associated with meQTL largely act in cis and 

tend more often to be located at distant regulatory regions than at promoters (30, 31). Jaffe et al have 

shown that a large fraction of GWAS risk loci for SCZ contains an meQTL detected in adult frontal 

cortex (13). Significant enrichment of SCZ risk variants has also been observed among meQTLs 

calculated in prenatal brain tissue (29). It is therefore likely that DNAm may mediate the effect of 

genotype on disease risk for a proportion of risk variants. 

 

In the current study, we first aimed to investigate the extent to which DNAm levels are determined by cis-

genetic variations in human prefrontal cortex for ~370,000 CpG sites measured with the Illumina 

HumanMethylation450 microarray. Secondly, through imputation of methylation-trait association 

statistics from GWAS summary statistics, we aimed to identify CpG sites whose methylation is 

genetically associated, and that show methylation-trait associations in the prefrontal cortex for two major 

psychiatric disorders ─ SCZ and BD. 

 

Methods 

 

Datasets 

 

DNAm and GWAS SNP genotyping data were available from postmortem dorsolateral prefrontal cortex 

brain tissue samples from 526 individuals. Methylation was measured using the Illumina 
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HumanMethylation450 (450k) microarray, which measures CpG methylation across >485,000 probes. 

The current study used DNAm data from 238 unrelated subjects of European ancestry (100 SCZ patients 

and 138 controls), defined by principal component analysis (PCA) of GWAS data collected from the 

same samples. DNAm data were processed and normalized using the Minfi Bioconductor package in R 

(32). GWAS data were imputed into 1000 Genomes Phase 3 variants using SHAPEIT2 (33)  and 

IMPUTE2 (34). After filtering out SNPs with MAF < 5%, HWE p-value < 0.05, or missing rate > 10%, 

there were 4,402,285 SNPs on autosomes retained for further analyses. Information on tissue processing, 

experimental and bioinformatics procedures related to the methylation data, and genotype data processing 

was described in prior reports (1, 13). 

 

We downloaded GWAS summary statistics from the Psychiatric Genomic Consortium (PGC) website 

(https://www.med.unc.edu/pgc/) for SCZ and BD. We then applied an imputation-driven methylome-

wide association study (MWAS) to the PGC2 GWAS meta-analysis summary statistics.  We retained 

autosomal SNPs with MAF > 0.05 and imputed quality score > 0.8. Coordinates of SNPs were aligned to 

hg19 for all datasets. 

 

SNP-heritability of DNAm 

 

We estimated SNP-heritability of DNAm for CpG sites using GCTA software (35), which calculates the 

genetic relationship matrix (GRM) between subjects and uses the restricted maximum likelihood to 

estimate variance components in a mixed model framework. All pairs of 238 subjects with both GWAS 

and methylation data had a genetic relatedness (��) less than 0.025 and were included for heritability 

estimation. GRM was calculated using SNPs within 1Mb of each CpG site. A number of covariates were 

included in the mixed model, including age, sex, SCZ diagnosis, the top five principal components (PCs) 

from the GWAS data to account for ancestry variability, and the top ten PCs from the methylation data 

(beta values) to control for cellular heterogeneity and latent batch effects. To avoid technical noise arising 
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from SNPs within a probe region, we limited heritability estimation to 370,538 CpG sites whose probes 

did not overlap with any SNPs based on annotations in the minfi Bioconductor package in R (32). 

 

CpG annotations 

 

To investigate the distribution of heritable CpG sites (p < 0.05) across genomic features, we annotated 

CpG sites within three different contexts: 1) gene-based annotations from ANNOVAR (36), including 

exonic, splicing, ncRNA, 5’UTR, 3’UTR, intron, upstream (1 kb upstream of transcription start site), 

downstream (1 kb upstream of transcription end site), and intergenic; 2) annotations by distance to CpG 

island, including island, shelf (~4 kb from islands), shore (~2 kb from islands), and sea (others) using 

annotation information from the Illumina Infinium HM450 manifest file; 3) functional annotations of 15-

core chromatin states, derived using hidden Markov models, in the dorsolateral prefrontal cortex (E073) 

sample from the Epigenome Roadmap project (37).  We used simulation-based approach to estimate the 

enrichment statistics of heritable CpG sites in each annotation category. Specifically, we first generated a 

background distribution from random CpG sets, while matching for CpG density found in heritable CpG 

sites. The enrichment fold was estimated by the ratio of the observed number of heritable CpGs 

overlapping with a specific annotation category to the average number of that from random CpG sets. The 

p-value for enrichment (depletion) was then the proportion of random CpG sets that fall in the same or a 

greater (smaller) number of annotations in each annotation category, as compared to the number found 

within heritable CpG set.   

 

Estimation of the cis-genetic component of methylation 

 

For each heritable CpG site (p < 0.05), we first corrected its methylation level (beta value) by regressing 

out the same set of covariates as included in the heritability analysis. We then built models to predict the 

residual methylation levels using SNPs within 1Mb of each CpG. We investigated three modeling 
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schemes: top SNP, polygenic score, and elastic net. In the top SNP model, the SNP was simply chosen as 

the one with the strongest association with methylation. In the polygenic score model, we included all 

SNPs that were associated with methylation level at a significance level of p < 0.05, and the weights for 

the polygenic score were the effect sizes (beta coefficients from regression) estimated from the training 

sample. In the elastic net model, SNPs were selected using a penalized regression procedure that 

combines LASSO and ridge regression. The parameter α was tuned from 0 to 1 with a step increase by 0.1. 

The final α value was determined as the one with the smallest prediction error from tenfold cross 

validation. To determine the optimal modeling scheme, we compared the fivefold cross-validated 

prediction R2 values (the square of the correlation between predicted and observed methylation) for the 

three modelling schemes. 

 

Imputation-driven methylome-wide association study (MWAS) 

 

We performed MWAS to identify CpGs sites with methylation-trait association evidence by imputing 

GWAS summary statistics into methylation-trait association statistics for two psychiatric disorders SCZ 

and BD. To impute as many CpG sites as possible, we reintroduced CpG sites whose probes overlapped 

SNPs. Imputation was done for 49,442 CpG sites that were heritable (p < 0.05) and had a cross-validated 

prediction R2 > 0.01 by elastic net. Following the same theoretical framework as a transcriptome-wide 

association study (TWAS) (38), MWAS uses methylation data to compute weights for SNP association 

statistics from GWAS. In brief, based on our existing brain samples with both methylome and GWAS 

data, we used elastic net to estimate the genetic effects on DNAm level for SNPs within 1 Mb of each 

CpG site. The methylation-trait association statistic was then calculated as a weighted linear combination 

of SNP-trait association statistics from GWAS, with weights being equal to estimated effect sizes on 

DNAm level from elastic net. Formally, let Z be a vector of the Z-statistic for association between the 

GWAS trait and SNPs within 1Mb of a CpG site. We define W as a vector of weights that are effect sizes 

of the same set of SNPs on methylation level derived by elastic net. The imputed Z-statistic of 
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methylation-trait association is then ��/�� ∑ �	
�/�, where ∑ is the correlation matrix among SNPs 

that can be estimated from an ancestry-matched reference sample. Bonferroni correction was used to 

control for multiple testing of 49,442 CpGs with a significance threshold of p = 1×10-6 for each disorder. 

We made the SNP weights on DNAm for each CpG site publicly available at: 

https://figshare.com/s/052a0b729c3c7ad7b535. 

 

TWAS and gene-based association tests 

 

We examined whether significant genes discovered by MWAS could be similarly uncovered by three 

alternative strategies. The first strategy utilized the MWAS framework, but used SNP weights derived 

from a blood-based methylome reference from http://mcn.unibas.ch/files/EstiMeth_Distribution.zip (39). 

The second strategy was TWAS with the weights derived from gene expression data using dorsolateral 

prefrontal cortex, downloaded from the TWAS website (http://gusevlab.org/projects/fusion/#reference-

functional-data). The third strategy involved two gene-level association tests for common variants, 

GATES (40) and VEGAS-sum (41). We assigned a SNP to a gene if it was located within the gene, based 

on NCBI 37.3 gene annotation, or within 20 kb upstream or downstream of the gene, to capture cis 

regulatory variants. GATES uses an extended Simes procedure to derive a gene-based p-value and is 

powerful when there is only one or a few causal SNPs. VEGAS-sum computes a gene-level p-value using 

simulations from a multivariate normal distribution and is powerful when there are multiple independent 

causal SNPs. Pairwise SNP correlations within a gene were estimated based on the genotype data of 

unrelated CEU samples from the 1000 Genomes Project. The total number of tests were 86,431 (CpGs), 

5,419 (genes), and 24,583 (genes) for MWAS-blood, TWAS, and two gene-based tests, respectively. The 

Bonferroni–corrected significance threshold for each strategy was set at p = 5.8×10-7 (MWAS-blood), p = 

9×10-6 (TWAS), and p = 2×10-6 (GATES and VEGAS-sum). 
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Gene set enrichment analysis 

 

To understand the biology of genes with CpG sites of methylation-trait associations, we conducted gene 

set enrichment analysis using the logistic regression-based method LRpath (42), which relates the odds of 

gene set membership with the gene-level association signals, while adjusting for potentially confounding 

factors. Specifically, for each gene set, we defined the dependent variable y as 1 for genes in the set, and 0 

for all other genes. The independent variable x is –log (p), where p is the gene-based p value defined by 

the smallest p-value among all imputed methylation-traits associations for CpG sites within a gene. 

Logistic regression is used to model the log-odds of a gene belonging to a specific gene set as a function 

of x. We included the number of imputed CpG sites within a gene as a covariate to control for potential 

confounding effect due to gene size difference. Gene sets were from two resources: 1) gene sets that are 

potentially important in psychiatric disorders (72 gene sets) (43), and 2) canonical pathways, Gene 

Ontology, and microRNA targets from MSigDB (v5.2) (5,986 gene sets) (44). To facilitate interpretation 

of the results, we included gene sets that overlapped at least 20, but not more than 2,000 genes with our 

tested genes. False discovery rate (FDR) q-values were calculated to account for multiple testing using the 

R statistical package “qvalue” (www.r-project.org). 

 

We used hierarchical clustering to group significant gene sets into clusters based on similarity of their 

gene profiles (45). We first defined a gene overlapping matrix by counting the number of overlapping 

genes for each pair of gene sets. The Pearson correlation coefficient R was then calculated for each pair of 

gene sets based on their overlap profiles. The distance matrix for hierarchical clustering was then 1 � �. 

Hierarchical clustering was performed using the “ward” method implemented in R function “hclust”. The 

dendrogram and heatmap were plotted using the R function “heatmap.2”. Clusters of related gene sets 

were manually determined to represent biologically relevant groups. 

 

Results 
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SNP-heritability of DNAm 

 

We estimated the SNP-heritability of DNAm levels for each CpG site using SNPs within 1 Mb. Figure 1a 

shows the distribution of heritability estimates for all, heritable (p ≤ 0.05), and non-heritable (p > 0.05) 

CpG sites separately. The average heritability was 0.050 across all CpG sites, heritable and nonheritable, 

ranging from 0 to 0.99. There were 62,387 (17%) CpG sites reaching a nominal level of significance for 

the heritability estimate (p < 0.05), with an average heritability of 0.22, ranging from 0.022 to 0.99. 

Heritable CpG sites tended to be more continuous (Figure 1b) and had higher variance on average in 

methylation levels (beta-value) than non-heritable CpG sites (Wilcoxon rank sum test, p < 2.2×10-16) 

(Figure 1c). We investigated the distribution of heritable CpG sites across genomic features within 

different contexts. Heritable CpG sites were enriched in intergenic regions, CpG shore, and regulatory 

genomic regions (flanking active TSS and enhancers) in prefrontal cortex, but were depleted in 5’UTR, 

CpG islands, active TSS and strong transcription states in prefrontal cortex (Figure 1d). 

 

We further estimated the SNP-heritability of DNAm levels using 100 neurotypical control samples. The 

heritability estimates were highly correlated between all samples and the neurotypical only samples (R2 = 

0.85, Supplementary Figure 1). The average heritability in the neurotypical only sample was 0.062 across 

all CpG sites, which was slightly higher than the average estimates from the overall samples (0.05). 

Compared to the overall samples, there were fewer CpGs (48,359, 13%) reaching nominal significance 

for the heritability estimates (p < 0.05), possibly due to the smaller sample size. In accordance with the 

pattern observed in the overall samples, heritable CpG sites tended to be more continuous and variable in 

methylation levels than non-heritable CpG sites, enriched in intergenic regions, CpG shore, flanking 

active TSS states in prefrontal cortex;  heritable CpG sites were depleted in 5’UTR, CpG islands, and 

active TSS states in prefrontal cortex (Supplementary Figure 2). 
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Predicting the cis-genetic component of DNAm 

 

We evaluated whether the DNAm levels of heritable CpGs could be imputed from the genotype data for 

SNPs within 1 Mb of the CpG. We used fivefold cross-validation to compare predictive performance of 

three modeling schemes: top SNP, polygenic score and elastic net. Of the 32,949 CpGs for which all three 

models were successfully built, we found that the elastic net approach achieved the best performance with 

an average R2=0.24, followed by the polygenic score (R2=0.16), and the top SNP methods (R2=0.095) 

(Figure 2a). When models were compared on the same CpG sites, 80% of the CpG sites achieved the best 

prediction by elastic net, whereas 18% and 2% of CpG sites were best predicted by the polygenic score 

and the top SNP methods, respectively (Figure 2b).  Using heritability estimates as a benchmark for 

prediction R2, we compared the prediction R2 with the heritability estimate for each CpG (Figure 2c). We 

found that 89% of the CpGs achieved an R2 equal to or larger than the lower bound of heritability 

estimate by elastic net, whereas 68% (polygenic score) and 39% (top SNP) of CpGs achieved such 

performance with the other methods . Overall, the elastic net approach showed the best performance for 

predicting DNAm levels based on different evaluation strategies. The effect sizes derived from elastic net 

were then used to impute differential methylation statistics from GWAS summary statistics. 

 

Imputation-driven methylome-wide association study (MWAS) 

 

We performed imputation-driven MWAS to identify CpGs sites of methylation-trait associations in 

prefrontal cortex for SCZ and BD. We imputed methylation-trait association statistics from PGC2 GWAS 

summary statistics for both disorders. 

 

We identified 914 genome-wide significant (GWS) CpGs with differential methylation evidence for SCZ 

(Figure 3a, Supplementary Table 1). Of these, 883 overlapped original GWAS risk loci (defined by 1 Mb 

upstream and downstream of any GWS SNPs from PGC2 SCZ GWAS); 677 CpGs were within the 
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extended major histocompatibility complex region (chr6:25652464-33771788); 31 CpG sites were 

located more than 1 Mb away from any GWS SNPs from PGC2 SCZ GWAS, suggesting potential novel 

signals not detected by GWAS. Table 1 shows details and methylation-trait association statistics for the 

20 CpG sites mapped to 24 genes. Of note, the gene MORC2-AS1 was far from GWS in PGC2 SCZ 

GWAS (smallest p = 1.5×10-5, 1 Mb window), but contained a CpG site at a gene body with strong 

evidence for methylation-trait association (cg13896476, p = 3.4×10-10). Another CpG site, at promoter of 

MORC2-AS1, also showed significant evidence for methylation-trait association (cg08837037, p = 

1.5×10-8, Supplementary Table 1). Figure 4 shows the regional association plot of methylation-trait 

associations around MORC2-AS1, along with SNP association signals from GWAS and how their weights 

contribute to the top significant CpG.  

 

We identified 28 GWS CpGs with methylation-trait association evidence for BD (Figure 3b, 

Supplementary Table 2). Of these, 14 overlapped original GWAS risk loci and 14 were at least 1 Mb 

away from any GWS SNPs. Table 2 shows details and methylation-trait association statistics for the 10 

CpG sites mapped to 11 unique genes. Notably, CNIH2, which encodes a subunit of the ionotropic 

glutamate receptor in the human brain, showed strong evidence for methylation-trait association at a CpG 

site in the promoter region (cg19026260, p=8.9×10-9), whereas the strongest GWAS signals within 1 Mb 

of CNIH2 was only at p = 2.1×10-7. Figure 5 shows the regional association plot of methylation-trait 

associations around CNIH2, along with SNP association signals from GWAS and how their weights 

contribute to the top significant CpG.   

 

Comparison with alternative analytical strategies 

 

We evaluated three alternative strategies in their ability to detect the potential novel risk genes discovered 

above, which were at least 1 Mb away from any GWS SNPs (Supplementary Table 3). Among the 24 

potential novel risk genes from PGC2 SCZ, only five genes were detected: TMX2 (GATES, p = 6.9×10-7; 
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VEGAS-sum, p = 1.0×10-6), C11orf31 (VEGAS-sum, p = 1.0×10-6), CORO7 (TWAS, p=2.3×10-7), 

TMTC1 (TWAS, p = 1.8×10-8), and BCL2L12 (VEGAS-sum, p = 2.0×10-6). For the ten potential novel 

risk genes from PGC2 BD, only PACS1 was identified (VEGAS-sum, p=1.0×10-6). 

 

Gene set enrichment analysis 

 

We conducted gene set enrichment analyses to examine whether genes with methylation-trait associations 

clustered into biological functional groups. Full gene set analysis results are shown in Supplementary 

table 4 (SCZ) and Supplementary table 5 (BD).  

 

Figure 6 shows summary results for 60 gene sets with enriched methylation-trait association evidence for 

SCZ (q-values ≤ 0.05). We grouped gene sets into eight major clusters. The highlighted gene sets in each 

cluster include: 1) genes involved in synaptic transmission and plasticity (dark red); 2) RBFOX1, 

RBFOX2, RBFOX3 regulatory networks, FMRP targets, synaptic genes, voltage-gated calcium channel 

transporters, missense constrained genes, mutation intolerant genes; SCZ candidate genes (green); 3) 

genes encoding voltage-gated calcium channels, genes related to membrane depolarization during action 

potential, genes associated with SCZ (p <10-4), autism de novo genes (orange); 4) microRNA targets, SCZ 

de novo genes (blue); 5) microRNA targets, chromatin regulator CHD8 targets (red); 6) genes involved in 

antigen processing and presentation, genes associated with BP (p <10-4) (brown); 7) genes involved in cell 

adhesion (black); 8) genes involved in axoneme assembly (dark blue). 

 

Supplementary Figure 3 shows summary results for 51 gene sets with enriched methylation-trait 

association evidence for BD (q-values ≤ 0.05). Gene sets were grouped into five major clusters. The 

highlighted gene sets in each cluster include: 1) microRNA targets, SCZ de novo genes, and genes 

involved in cell adhesion (blue); 2) RBFOX1, RBFOX2, RBFOX3 regulatory networks, FMRP targets, 

synaptome, mutation intolerant genes (red); 3) genes involved in synaptic plasticity and transmission  
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(green); 4) ion channel genes, missense constrained genes, calcium signaling pathway (purple); 5) genes 

involved in integrin signaling, genes associated with BP and depression (p <10-4)  (orange).   

 

Discussion 

 

In the current study, we have shown that DNAm levels are heritable for ~17% of the CpG sites examined 

in human prefrontal cortex. Heritable DNAm sites tended to be more variable and enriched in intergenic 

and regulatory regions in brain. Through imputation of methylation-trait association from GWAS 

summary statistics, we identified known and potentially novel risk genes with methylation-trait 

association evidence that were not detectable using three alternative strategies. Gene set enrichment 

analysis for genes with methylation-trait association evidence revealed pathways related to neuronal 

functions, as well as other biological mechanisms potentially underlying psychiatric disorders, consistent 

with prior analyses based on GWAS (46) and gene expression data (47-49) . 

 

Heritability estimates of DNAm levels may vary across tissues and study designs. Twin studies reported 

an average heritability of 12–18% in whole blood (7, 50), 5% in placenta (7), and 19% in adipose tissue 

(28). A family study showed an average heritability of 13% in CD4+ cells (3). One study reported an 

average SNP-heritability of 29% across heritable CpG sites in colorectum (51). There has been to date 

only one study that estimated the SNP-heritability of DNAm in brain, but that was limited to ~27,000 

CpGs located primarily in promoters (8). We found modest correlation of heritability estimates (r = 0.48) 

for a common subset of CpGs between our study and the frontal cortex results of Quon et al (8). The 

variation of heritability estimates may be attributable to differences in brain samples and analytical 

approach. For example, we used a more narrowly defined single prefrontal cortical region---dorsolateral 

prefrontal cortex---from samples with a wide range of ages, whereas Quon et al used the whole frontal 

cortex largely from adults; we used SNPs within 1 Mb window of CpGs, but Quon et al used a window 

size of 50 kb. Importantly, our study differs from the previous one by virtue of a more than tenfold 
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increase of CpG sites (~380,000) across a much broader portion of the genome, including intergenic and 

gene body regions. In addition, our study has a larger sample size than the previous one (238 versus 150) 

and thus higher power to detect heritable CpG sites. We found a higher mean heritability for CpG sites in 

intergenic regions than for those at promoter regions. We also observed that heritable CpG sites tended to 

be located in intergenic regulatory genomic regions, suggesting a potentially important role in regulation 

of gene expression.  

 

We evaluated three modeling schemes for their ability to predict the cis-genetic component of DNAm 

levels for CpG sites with a nominal significance level for heritability estimates. We found the highest 

performance for elastic net and the lowest performance for the top SNP method, suggesting that DNAm 

levels tend to be influenced by multiple SNPs. This observation is consistent with the result from a 

previous study in which elastic net achieved the best performance for predicting the cis-genetic 

component of gene expression using SNPs within 1 Mb of a gene (52). Future work might employ other 

approaches to improve the prediction accuracy for DNAm levels.  For example, recent work has included 

imputation of gene expression using the best linear predictor and the Bayesian linear mixed model (38), 

which can also be evaluated for DNAm prediction in the future. 

 

Compared to a single marker association, the proposed MWAS features similar advantages as the TWAS 

method that aims to impute expression-trait association from GWAS summary statistics. First, both 

methods have significantly reduced multiple testing burdens compared to GWAS, though there are 

slightly more DNAm sites tested in MWAS than genes tested in TWAS. Second, because MWAS aims to 

detect methylation differences that are genetically driven, significant findings from MWAS may indicate 

a causal relationship between differential methylation and trait, whereas for EWAS the identified 

methylation difference may be a consequence of disease. This was further supported by the limited 

correlation (r = 0.025) between the MWAS signals (Z-score) from PGC SCZ2 GWAS and the EWAS 

signals (T-score) from the comparison of brains of SCZ versus controls identified in our previous study 
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(13). Third, MWAS may increase the power to detect DNAm sites of small effect by taking advantage of 

GWAS summary statistics from large samples. In addition, MWAS has a unique advantage of higher 

coverage of genomic regions compared to TWAS. For example, MWAS covers CpGs in more than 

10,000 genes in our study, whereas TWAS only contains ~5,000 genes for the prefrontal cortex region 

examined. Furthermore, DNAm levels may be a more proximal read out of genetic variation than gene 

expression levels, at least as measured in homogenate tissue at one time point (53), and MWAS may have 

greater power than TWAS in risk gene discovery in some situations. 

 

We identified known and novel risk genes by applying MWAS to two major psychiatric disorders.  We 

detected a number of potentially novel risk genes through application of MWAS to PGC2 SCZ GWAS 

(table 1). For example, KCNN3 was suspected to be involved in SCZ by candidate gene and gene 

expression studies (54-56); ANKS1B was among the top findings in a genome-wide pharmacogenomic 

study of antipsychotic treatment response in SCZ, which mediates the effect of quetiapine on working 

memory (57); TTBK1 was found to harbor de novo mutations in sporadic cases of childhood onset SCZ 

(58); earlier linkage and candidate gene analysis showed the association evidence of BRD1 with SCZ (59), 

which was further supported by a recent functional study, demonstrating that BRD1 regulates behavior, 

neurotransmission, and expression of SCZ risk-enriched gene sets in mice (60). The association between 

CNIH2 and BD is also noteworthy. CNIH2 encodes a subunit of the ionotropic glutamate receptor in the 

human brain, and has been shown to influence the efficacy of excitatory synaptic transmission (61).  

 

Gene set enrichment analysis of MWAS association signals not only revealed pathways related to 

neuronal functions, such as synaptic genes and FMRP targets, but also highlighted other biological 

mechanisms that may underlie psychiatric disorders. One implication is the likely involvement of 

chromatin remodeling in SCZ as indicated by the enrichment of association signals in CHD8 targets. 

CHD8 is a DNA binding protein and acts as a chromatin remodeling factor. Genes targeted by CHD8 in 

human midfetal brain were enriched for functions related to transcriptional regulation and chromatin 
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modification (62). CHD8 is also one of the most frequently mutated genes in autism (63-65), consistent 

with other data suggesting some genetic overlap between autism and SCZ (66). Perhaps the most notable 

highlight from gene set analysis is the involvement of microRNA-related regulation mechanism in 

psychiatric disorders. We found significant enrichment of microRNA targets for both disorders. 

Interestingly, targets of the hsa-miR-221 and hsa-miR-222 were found to be enriched for both disorders. 

Intriguingly, reduced expression of miR-221 was observed following chronic treatment with the 

antidepressant paroxetine in both rat hippocampus (67) and human lymphoblastoid cell lines (68). 

Additionally, we found significant enrichment of association signals in mutation-intolerant genes or 

missense constrained genes in both disorders. Our results are consistent with recent studies that have 

shown an enrichment of de novo mutations or rare risk variants in mutation-intolerant genes for 

neurodevelopmental disorders such as autism, intellectual disability and developmental delay, as well as 

SCZ (69-72). 

  

This work should be viewed in light of several limitations. First, MWAS was designed to identify 

methylation-trait associations for DNAm sites that have a genetic component. It is therefore not suited to 

detect methylation differences caused exclusively by environmental factors. That being said, our 

heritability estimates themselves may be diluted by environmental factors.  Indeed, the average 

heritability estimate from the overall samples was slightly lower than the estimate from the neurotypical 

samples alone, consistent with the possibility that systematic environmental factors (e.g. medical 

treatment) diminish heritability statistics in patients. Second, the number of DNAm sites that can be 

accurately imputed is limited by the training sample size and tissue types. Future studies will benefit from 

larger training samples and diverse tissues related to disease. Third, the Illumina CpG chip that we used is 

a relatively low resolution survey of the DNA methylation landscape, and though in includes many CpGs 

not in the 5’ domain of genes and in CpG islands, the majority of CpGs are still in these regions.  Fourth, 

MWAS can only identify risk SNPs that act through regulation of DNAm levels; it is not able to detect 

SNPs acting through mechanisms that are independent of DNAm regulation. Therefore, we view MWAS 
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as by no means a replacement for current methods, such as TWAS or other gene-based tests, but as a 

complementary approach for uncovering genetic underpinnings underlying complex diseases. 

 

In summary, we have shown the heritability pattern of DNAm in human prefrontal cortex. We further 

demonstrated the power of integrating the brain methylome with GWAS for psychiatric risk gene 

discovery, an approach which has potential applications in other brain-related disorders or traits. 
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Figure 1. SNP-based heritability analysis of DNAm levels: a) Distribution of heritability estimates for all, 

heritable (p ≤ 0.05), and non-heritable (p > 0.05) CpG sites; b) Distribution of methylation levels (beta-

value) for all, heritable (p ≤ 0.05), and non-heritable (p > 0.05) CpG sites; c) Boxplot for variance of 

methylation levels (beta-value) for heritable (p ≤ 0.05) and non-heritable (p > 0.05) CpG sites; d) 

Enrichment of heritable CpG sites across genomic features within three different contexts: genomic 

locations (blue), distance to CpG islands (grey), and functional states in the dorsolateral prefrontal cortex 

(red). The x-axis represents enrichment fold. The y-axis labels the different features examined. The dotted 

yellow line indicates no enrichment (fold = 1). The numbers next to each bar are enrichment p-values. 

 

Figure 2. Evaluation of prediction performance (R2) for three modeling schemes: a) Boxplot of prediction 

performance (R2) for three modeling schemes. Red points represent the mean value of R2 across CpG sites; 

b) Barplot for the proportion of CpGs achieving the best prediction performance under each modeling 

scheme; c) Comparison of prediction performance (R2) with heritability estimates (h2). The figure shows 

the cross-validated prediction performance (R2 in red) in comparison to methylation heritability estimates 

(black). The gray zone shows the 95% confidence intervals of heritability estimates. 

 

Figure 3. Genome-wide association plot for methylation-trait associations for schizophrenia and bipolar 

disorder (PGC2). The dotted red line indicates significance thresholds. Red points represent significant 

CpG sites that are at least 1Mb away from genomewide significant SNPs. 

 

Figure 4. Regional association plot around the top significant CpG within MORC1-AS. The upper panel 

shows gene names and locations based on hg19 coordinates. The middle panel shows association strength 

of top significant CpG (blue diamond) and surrounding CpG sites (black) within 1Mb. The bottom panel 

shows association signals of SNPs from GWAS at the same region. SNPs are colored according to their 

weights contributing to the top significant CpG. 
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Figure 5. Regional association plot around the top significant CpG within CNIH2. The upper panel shows 

gene names and locations based on hg19 coordinates. The middle panel shows association strength of top 

significant CpG (blue diamond) and surrounding CpG sites (black) within 1Mb. The bottom panel shows 

association signals of SNPs from GWAS at the same region. SNPs are colored according to their weights 

contributing to the top significant CpG. 

 

Figure 6. Hierarchical clustering of significant gene sets in schizophrenia. Gene sets were grouped into 

eight clusters as indicated by different colors. The color gradient indicates the enrichment p-values of 

each gene set as shown in the middle panel. 
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Table 1. Information and methylation-trait association statistics for CpGs associated with 
schizophrenia 

 
CpGs Chr Position Gene Function z p psmallest

* 

ch.1.1029351R 1 31734918 SNRNP40 Body -5.66 1.50E-08 3.51E-06 

cg06221963 1 154839813 KCNN3 Body -5.01 5.31E-07 3.18E-06 

cg24077277 1 205201540 TMCC2 Body -4.95 7.28E-07 8.69E-07 

cg19875535 5 140030758 IK Body -5.40 6.51E-08 4.28E-07 

cg06503255 5 140053350 DND1 TSS200 -4.97 6.77E-07 4.28E-07 

cg25984996 5 140098398 VTRNA1-2 TSS200 5.18 2.19E-07 4.28E-07 

cg07539045 6 43245571 TTBK1 Body -5.33 9.85E-08 9.61E-07 

cg13305186 11 57508416 TMX2;TMX2; 
C11orf31 

3'UTR;Body; 
TSS1500 

4.95 7.56E-07 6.65E-08 

cg25744127 11 109292505 C11orf87 TSS1500 -4.99 6.12E-07 1.72E-07 

cg14258853 12 29935411 TMTC1 5'UTR 5.18 2.25E-07 7.06E-08 

cg24305861 12 99564273 ANKS1B Body -4.92 8.61E-07 1.28E-06 

cg09069446 16 4462122 CORO7 Body 4.93 8.21E-07 2.79E-07 

cg08460995 16 4526227 HMOX2;HMOX2; 
NMRAL1 

TSS200;5'UTR; 
TSS1500 

-5.03 4.87E-07 2.79E-07 

cg26619894 17 19249164 MIR1180;B9D1 TSS1500;Body 4.98 6.40E-07 7.77E-07 

cg22598241 19 2131519 AP3D1 Body -5.29 1.24E-07 1.22E-06 

cg04052466 19 2251061 AMH Body 5.16 2.50E-07 1.22E-06 

cg09250473 19 50168907 IRF3;IRF3; 
BCL2L12;BCL2L12 

1stExon;5'UTR; 
5'UTR;1stExon 

-4.99 6.06E-07 2.19E-07 

cg13896476 22 31318546 MORC2-AS1 Body -6.28 3.37E-10 1.46E-05 

cg22416021 22 50177941 BRD1 Body 5.25 1.53E-07 3.31E-07 

cg26441486 22 50317300 CRELD2 Body 5.17 2.36E-07 3.31E-07 

 
* the strongest GWAS signals from SNPs within 1Mb of each gene 
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Table 2. Information and methylation-trait association statistics for CpGs associated with bipolar 
disorder 

 
CpGs Chr Position Gene Function z p psmallest

* 

cg20822109 3 183146412 MCF2L2 TSS1500 5.45 5.04E-08 4.25E-05 

cg17797898 7 1950858 MAD1L1 Body -4.93 8.36E-07 2.38E-06 

cg09700701 11 65816819 GAL3ST3 TSS200 4.94 8.01E-07 2.08E-07 

cg14541915 11 65894463 PACS1 Body -5.01 5.51E-07 2.08E-07 

cg19026260 11 66045351 CNIH2 TSS1500 5.75 8.88E-09 2.08E-07 

cg03423112 11 66335975 CTSF;CTSF 5'UTR;1stExon 5.10 3.42E-07 2.08E-07 

cg00757327 12 49390906 DDN Body 5.02 5.06E-07 3.25E-07 

cg03568305 17 38183559 MED24;SNORD124 Body;TSS1500 5.82 6.05E-09 4.50E-07 

cg25909396 17 64300729 PRKCA Body -5.32 1.04E-07 6.25E-06 

cg06409856 19 10750786 SLC44A2 Body -5.00 5.62E-07 1.60E-07 

 
* the strongest GWAS signals from SNPs within 1Mb of each gene 
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Supplementary Figure 1. Scatter plot for heritability estimates from the overall samples and 

neurotypical samples. 

 

Supplementary Figure 2. SNP-based heritability analysis of DNAm levels from neurotypical samples: a) 

Distribution of heritability estimates for all, heritable (p ≤ 0.05), and non-heritable (p > 0.05) CpG sites; b) 

Distribution of methylation levels (beta-value) for all, heritable (p ≤ 0.05), and non-heritable (p > 0.05) 

CpG sites; c) Boxplot for variance of methylation levels (beta-value) for heritable (p ≤ 0.05) and non-

heritable (p > 0.05) CpG sites; d) Enrichment of heritable CpG sites across genomic features within three 

different contexts: genomic locations (blue), distance to CpG islands (grey), and functional states in the 

dorsolateral prefrontal cortex (red). The x-axis represents enrichment fold. The y-axis labels the different 

features examined. The dotted yellow line indicates no enrichment (fold = 1). The numbers next to each 

bar are enrichment p-values. 

 

Supplementary Figure 3. Hierarchical clustering of significant gene sets in bipolar disorder. Gene sets 

were grouped into five clusters as indicated by different colors. The color gradient indicates the 

enrichment p-values of each gene set as shown in the middle panel. 
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