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Human decisions are known to be systematically biased. A prominent example4

of such a bias occurs during the temporal integration of sensory evidence. Pre-5

vious empirical studies differ in the nature of the bias they observe, ranging6

from favoring early evidence (primacy), to favoring late evidence (recency).7

Here, we present a unifying framework that explains these biases and makes8

novel neurophysiological predictions. By explicitly modeling both the approx-9

imate and the hierarchical nature of inference in the brain, we show that tem-10

poral biases depend on the balance between “sensory information” and “cate-11

gory information” in the stimulus. Finally, we present new data from a human12

psychophysics task that confirm that temporal biases can be robustly changed13

within subjects as predicted by our models.14

Imagine a doctor trying to infer the cause of a patient’s symptoms from an x-ray image.15

Unsure about the evidence in the image, she asks a radiologist for a second opinion. If she tells16

the radiologist her suspicion, she may bias his report. If she does not, he may not detect a faint17
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diagnostic pattern. If the evidence in the image is hard to detect or ambiguous, the radiologist’s18

second opinion, and hence the final diagnosis, may be swayed by the doctors initial hypothe-19

sis. We argue that the brain faces a similar problem during perceptual decision-making: any20

decision-making area combines sequential signals from sensory brain areas, not directly from21

sensory input. If those signals themselves reflect inferences that combine both prior expecta-22

tions and sensory evidence, we suggest that this can then lead to an observable confirmation23

bias (1).24

Formalizing this idea in the context of approximate Bayesian inference requires extending25

classic evidence-integration models to include an explicit intermediate sensory representation26

(Figure 1b). We explicitly model the inferences of the intermediate sensory representation27

and find that task difficulty is modulated by two distinct types of information: the information28

between the stimulus and sensory representation (sensory information), and the information29

between sensory representation and category (category information) (Figure 1b). The balance30

between these distinct types of information can indeed explain puzzling discrepancies in the31

literature with regards to the temporal weighting of evidence across a wide range of studies.32

Even in tasks where all evidence is equally informative about the correct category, existing33

studies typically report one of three distinct motifs: some find that early evidence is weighted34

more strongly (a primacy effect) (2, 3) some that information is weighted equally over time35

(as would be optimal) (4–6), and some find late evidence being weighted most heavily (a re-36

cency effect) (7) (Figure 1a,c). There are myriad differences between these studies such as sub-37

ject species, sensory modality, stimulus parameters, and computational frameworks (2, 5, 7, 8).38

However, none of these aspects can explain their different findings, whereas the differences39

arise naturally in a hierarchical approximate inference framework.40

Normative models of decision-making in the brain are typically based on the idea of an41

ideal observer, who uses Bayes’ rule to infer the most likely category on each trial given the42
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Figure 1: a) A subject’s “temporal weighting strategy” is an estimate of how their choice is

based on a weighted sum of each frame of evidence ef . Three commonly observed motifs

are decreasing weights (primacy), constant weights (optimal), or increasing weights (recency).

b) Uncertainty in the stimulus about the category may be decomposed into uncertainty in each

frame about a sensory variable (“sensory information”) and uncertainty about the category given

the sensory variable (“category information”). c) Category information and sensory information

may be altered independently, creating a two-dimensional space of possible tasks, where sub-

jects will be at threshold performance whenever the two sources of information are balanced. A

qualitative placement of previous work into this space separates those that find primacy effects

in the upper-left from those that find recency effects or optimal weights in the lower right (see

Supplemental Text for detailed justification).
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stimulus. On each trial in a typical task, the stimulus consists of multiple “frames” presented in43

rapid succession. (By “frames” we refer to discrete independent draws of stimulus values that44

are not necessarily visual). If the evidence in each frame, ef , is independent and the categorical45

identity of the stimulus is a binary variable C ∈ {−1,+1}, then evidence in favor of C = +146

after F independent frames is p(C = +1|e1, . . . , eF ) ∝ p(C = +1)
F∏

f=1
p(ef |C = +1). The47

ideal observer reports the most likely category, for instance by reporting the sign of log p(C =48

+1|e1, . . . , eF )− log p(C = −1|e1, . . . , eF ).49

The ideal observer’s performance is limited only by (i) the information about C available on50

each frame, p(ef |C), and (ii) the number of frames per trial. In the brain, however, a decision-51

making area computing a belief about the correct choice only has access to the sensory repre-52

sentation of the stimulus, which we call x, not to the outside stimulus e directly. For example, in53

a visual task each ef would be the image on the screen while inferences about xf are represented54

by the concurrent activity of relevant neurons in visual cortex. This implies that the information55

between the stimulus and category can be partitioned into the information between the stimulus56

and the sensory representation, and the information between sensory representation and cat-57

egory, which we call “sensory information” and “category information,” respectively (Figure58

1b). These two kinds of information span a two-dimensional space with a task being defined by59

a single point (Figure 1c).60

To illustrate this difference, consider the classic dot motion task (9) and the Poisson clicks61

task (5), which occupy opposite locations in the space spanned by sensory and category infor-62

mation. In the classic low-coherence dot motion task, subjects view a cloud of moving dots,63

some percentage of which move “coherently” in one direction. Here, sensory information is64

low since evidence about the net motion direction at any time is weak. Category information,65

on the other hand, is high, since knowing the “true” motion on a single frame would be highly66

predictive of the correct choice (and of motion on subsequent frames). In the Poisson clicks67
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task, subjects hear a random sequence of clicks in each ear and must report the side with the68

higher rate. Here, sensory information is high since each click is well above sensory thresholds,69

but category information is low since knowing the side on which a single click was presented70

provides only little information about the correct choice (and the side of the other clicks). An-71

other way to think about category information is as “temporal coherence” of the stimulus: the72

more each frame of evidence is predictive of the correct choice, the more the frames must be73

predictive of each other, whether a frame consists of visual dots or of auditory clicks. Note74

that our distinction between sensory and category information is different from the well-studied75

distinction between internal and external noise; in general, both internal and external noise will76

reduce the amount of sensory and category information.77

If we assume that the sensory representation, which itself is an inference about the actual78

stimulus, incorporates prior expectations (10–12), then, as we show below, approximate infer-79

ence models predict that this will lead to a primacy effect when sensory information is low and80

category information is high, but not when sensory information high and category information81

is low. Indeed, a qualitative placement of prior studies in the space spanned by these two kinds82

of information demonstrates that studies that find early weighting are located in the upper left83

quadrant (low-sensory/high-category or LSHC) and studies with equal or late weighting in the84

lower right quadrant (high-sensory/low-category or HSLC) (Figure 1c). This suggests that the85

different trade-off between sensory information and category information may indeed underlie86

differences in temporal weighting seen in previous studies. Further, with this framework it is87

straightforward to predict how simple changes in stimulus statistics should change the temporal88

weighting (Table S1). To test this critical model prediction, we designed a visual discrimination89

task with two stimulus conditions that correspond to the two opposite sides of this task space,90

while keeping all other aspects of the design the same (Figure 2a). If our theory is correct,91

then we should be able to change individual subjects’ temporal weighting strategy simply by92
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changing the sensory–category information trade-off.93

The stimulus in our task consisted of a sequence of ten visual frames (83ms each). Each94

frame consisted of band-pass-filtered white noise with excess orientation power either in the95

−45◦ or the +45◦ orientation (13) (Figure 2b,d). On each trial, there was a single true orien-96

tation category, but individual frames might differ. At the end of each trial, subjects reported97

whether the stimulus was oriented predominantly in the −45◦ or the +45◦ orientation. The98

stimulus was presented as an annulus around the fixation marker in order to minimize the effect99

of small fixational eye movements (Supplemental Methods).100

If the brain represents the orientation in each frame, then sensory information in our task is101

determined by how well each frame determines the orientation of that frame (i.e. the amount of102

“noise” in each frame), and category information is determined by the probability that any given103

frame’s orientation matches the trial’s category. For a ratio of 5 : 5, a frame’s orientation does104

not predict the correct choice and category information is zero. For a ratio of 10 : 0, knowledge105

of the orientation of a single frame is sufficient to determine the correct choice and category106

information is high. For a more detailed discussion, see Supplementary Text.107

Using this stimulus, we tested 12 human subjects (9 naive and 3 authors) comparing two108

conditions intended to probe the difference between the LSHC and HSLC regimes. Starting109

with both high sensory and high category information, we either ran a staircase lowering the110

sensory information while keeping category information high, or we ran a staircase lowering111

category information while keeping sensory information high (Figure 2a). These are the LSHC112

and HSLC conditions, respectively (Figure 2b,d). For each condition, we used logistic regres-113

sion to infer, for each subject, the influence of each frame onto their choice. Subjects’ overall114

performance was matched in the two conditions by defining threshold performance as 70%115

correct (supplementary materials).116

In agreement with our hypothesis, we find predominantly flat or decreasing temporal weights117
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Figure 2: Summary of experiment design. a) In our task, category information is determined

by the ratio of frame categories, and sensory information is determined by a noise parameter κ.

At the start of each block, we reset the staircase to the same point, with category information at

9 : 1 and κ at 0.8. We then ran a 2-to-1 staircase either on κ or on category information, always

the same on a given day. The LSHC and HSLC ovals indicate sub-threshold trials; only these

trials were used in regression to infer subjects’ temporal weights. b) Visualization of a noisy

stimulus in the LSHC condition. All frames are oriented to the right. c) Psychometric curves

for all subjects (thin lines) and averaged (thick lines) over the κ staircase. Shaded gray area

indicates the median threshold level across all subjects. d) Visualization of frames in the HSLC

condition. Each frame the orientation is clear, but oreintations change from frame to frame. e)

Psychometric curves over frame ratios, plotted as in (c).
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Figure 3: Regression of subjects’ temporal weights. a-b) Temporal weights for individual sub-

jects (thin lines) and the mean across all subjects (thick lines). Weights are always normalized

to have a mean of 1. Individual subjects’ curves were fit using a cross-validated smoothness

term (Supplemental Methods). c) Difference of normalized weights (HSLC−LSHC). Despite

variability across subjects in (a-b), each subject reliably changes in the direction of a recency

effect. d) Change in slope between the two task contexts for each subject is consistently pos-

itive. We summarize subjects’ temporal weighting strategy with an exponential fit; the slope

parameter β > 0 corresponds to recency and β < 0 to primacy (Supplemental Methods).
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when sensory information is low and category information is high (Figure 3a). When the infor-118

mation is partitioned differently – into high sensory and low categorical information – we find119

flat or increasing weights (Figure 3b). Despite variability between subjects in each condition, a120

within-subject comparison revealed that the change in slope between the two conditions was as121

predicted for every single subject (Figure 2c,d) (p < 0.05 for 9 of 12 subjects, bootstrap). This122

demonstrates that the trade-off between sensory and category information in a task robustly123

changes subjects’ temporal weighting strategy as we predicted, and reconciling the discrepant124

results in the literature.125

We will now show that these significant changes in evidence weighting for different stimulus126

statistics arise naturally in common models of how the brain might implement approximate127

inference. In particular, we show that both a neural sampling-based approximation (11, 14–16)128

and a parametric (mean-field) approximation (17,18) to exact inference can explain the observed129

pattern of changing temporal weights as a function of stimulus statistics.130

The crucial assumption in both models is that the brain computes a posterior belief over131

both C and x given the external evidence, i.e. p(x,C|e), not just over the categorical variable132

C. This assumption differs from some models of approximate inference in the brain that as-133

sume populations of sensory neurons strictly encode the likelihood of the stimulus (19), but is134

consistent with other models from both sampling and parametric families (11, 12, 18).135

In our models, the brain’s belief about x depends both on the external evidence, e, via the136

likelihood, but also on the brain’s current belief about C, via the prior. For a decision-making137

area in the brain to update its belief about C based on current sensory responses, it needs to138

account for, or “subtract out” its influence on those sensory responses. Failure to do so will139

result in “double-counting” evidence presented early in the trial, inducing a positive feedback140

loop between the sensory area and the decision making area (Figure 4a). The stronger the141

decision-making area’s belief in a particular choice, the more likely the sensory representation142
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of x will concur with that belief through the influence of the prior. We call this feedback loop a143

“perceptual confirmation bias.”144

Importantly, the strength of this confirmation bias depends on the relative amount of sensory145

and category information in the stimulus (Figure 4a). It is weakest when the posterior over x is146

dominated by the likelihood, a case that occurs when the category information is much weaker147

than the sensory information. Conversely, the feedback loop is strongest when the category148

information is high compared to the sensory information, as assumed in (11) who found a149

primacy effect in their model.150

To demonstrate and quantify the intuitions laid out above, we implemented approximate on-151

line inference (observing a single frame at a time) for a discrimination task using two previously152

proposed frameworks for how inference might be implemented in neural circuits: neural sam-153

pling (11, 14–16) and Mean Field Variational Inference (17) (Figure 4). The central operation154

in either case is the evaluation of the following ratio (Supplemental Methods)155

log
p(ef |C = +1)

p(ef |C = −1)
= log

∫
xf

p(ef |xf )p(xf |C = +1)dxf∫
xf

p(ef |xf )p(xf |C = −1)dxf
(1)

which quantifies how much the brain’s belief about C should be changed as the result of the156

current evidence ef (20). The assumption that information about C is fed back to x is op-157

erationalized differently in each model, but the effects on the models’ behavior are the same158

(Figure 4, Supplemental Figure S5).159

The neural sampling hypothesis states that variable neural activity over time can be inter-160

preted as a sequence of samples from the brain’s posterior over x. The prior belief about C161

biases the distribution from which samples are generated. The canonical way to compute an162

expectation with respect to one distribution (the likelihood) using samples from another (the163

posterior) is ‘importance sampling’ which weights each sample so as to “subtract out” the prior164

as described above. While this approach is unbiased in the limit of infinitely many samples,165
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Figure 4: Approximate inference models explain results. a) The difference in stimulus statistics

between HSLC and LSHC trade-offs implies that the relevant sensory representation is differ-

entially influenced by the stimulus or by beliefs about the category C. A “confirmation bias” or

feedback loop between x and C emerges in the LSHC condition but is mitigated in the HSLC

condition. Black lines indicate the underlying generative model, and red/blue lines indicate

information flow during inference. Arrow width represents coupling strength (inverse width of

corresponding conditional distribution). b) Performance of an ideal observer reporting C given

ten frames of evidence. White line shows threshold performance, defined as 70% correct. c)

Performance of the sampling model with γ = 0.1. Colored dots correspond to lines in the next

panel. d) Temporal weights in the model transition from recency to a strong primacy effect, all

at threshold performance, as the stimulus transitions from the high-sensory/low-category to the

low-sensory/high-category conditions. e) Using the same exponential fit as used with human

subjects, visualizing how temporal biases change across the entire task space. Red corresponds

to primacy, and blue to recency. White contour as in c. Black lines are iso-contours for slopes

corresponding to highlighted points in c. f-h) Same as c-d but for the variational model with

γ = 0.1.
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it incurs a bias for a finite number – the relevant regime for the brain. The bias is such that it166

under-corrects for the prior that has been fed back, resulting in a positive feedback loop (see167

Supplemental Methods). Figure 4b,c shows performance for the ideal observer and for the sam-168

pling model, respectively, across all combinations of sensory and category information. White169

lines show threshold performance (70% correct) as in Figure 1c. This model reproduces the170

primacy effect, and how the temporal weighting changes as the stimulus information changes171

seen in previous studies. Importantly, it predicted the same within-subject change seen in our172

data (11). However, double-counting the prior alone does not yet explain recency effects (Figure173

S5a-c,j-l). A simple and biologically-plausible explanation for recency effects is that the brain174

tries to actively compensate for the prior influence on the sensory representation by subtracting175

out an estimate of that influence. That is, the brain could do approximate bias correction to176

mitigate the effect of the confirmation bias. This reduces the primacy effect in the upper left177

of the task space and leads to a recency effect in the lower right (Figure 4c-h, Supplemental178

Figure S5), as seen in the data. Interestingly, a linear bias correction term takes the same form179

as a “leak” term in the classic drift-diffusion framework (Supplemental Methods), and has been180

shown to be optimal for inference in non-stationary environments (8, 20).181

The second major class of models for how probabilistic inference may be implemented in182

the brain – based on mean-field parametric representations (17, 19) – behaves similarly. These183

models commonly assume that distributions are encoded parametrically in the brain, but that184

the brain explicitly accounts for dependencies only between subsets of variables, e.g. within the185

same cortical area. (18). We therefore make the assumption that the joint posterior p(x,C|e)186

is approximated in the brain by a product of parametric distributions, q(x)q(C) (17, 18). In-187

ference proceeds by iteratively minimizing the Kullback-Leibler divergence between q(x)q(C)188

and p(x,C|e) (Supplemental Methods). As in the sampling model, the running estimate the189

category C acts as a prior over x. Because this model is unable to explicitly represent posterior190
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dependencies between sensory and decision variables, it is biased to commit early either to both191

x and C being positive or to both x and C being negative. This yields the same behavior as the192

sampling model: a transition from primacy to flat weights as category information decreases,193

with recency effects emerging only when approximate bias correction is added (Supplemental194

Figure 4f-h). Whereas the limited number of samples was the key deviation from optimality195

in the sampling model, here it is the assumption that the brain represents its beliefs separately196

about x and C in a factorized form and that its instantaneous belief about x is unimodal.197

Both models induce a confirmation bias by creating an “attractor” dynamic between differ-198

ent levels of the cortical hierarchy – the decision-making area and the relevant sensory areas.199

Our model therefore makes two testable neurophysiological predictions when subjects show200

a primacy effect: (i) the presence of so-called “differential correlations” (11, 21) in popula-201

tions of task-relevant sensory neurons, and (ii) a reduction of those correlations, as well as any202

primacy effect, when cortical feedback is inactivated. Our model further predicts that attractor-203

like dynamics in sensory cortex will depend on the decision-making context, as was recently204

reported (22). This observation, as well as our two novel predictions, contrasts with classic205

attractor models which posit a recurrent feedback loop within a decision making area (23).206

As in the classic sequential probability ratio test, both models maintain a running estimate207

of posterior odds over time (20). The confirmation bias mechanism is thus complementary to208

other aspects of evidence integration like “integration to bound” (2) or uncertainty over stimulus209

strength (24).210

In the brain, decisions are not based directly on external evidence but on intermediate repre-211

sentations . If those intermediate representations themselves in part reflect prior beliefs, and if212

inference in the brain is approximate, then this is likely to result in a bias. The nature of this bias213

is directly related to the integration of internal “top-down” beliefs and external “bottom-up” ev-214

idence previously implicated in clinical dysfunctions of perception (25). Importantly, we have215
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shown how the strength of this effect depends on the nature of the information in the task in a216

way that may generalize to cognitive contexts where the confirmation bias is typically studied.217
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