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Summary1

Human decisions are known to be systematically biased. A prominent example of such a bias2

occurs when integrating a sequence of sensory evidence over time. Previous empirical studies di↵er3

in the nature of the bias they observe, ranging from favoring early evidence (primacy), to favoring4

late evidence (recency). Here, we present a unifying framework that explains these biases and5

makes novel psychophysical and neurophysiological predictions. By explicitly modeling both the6

approximate and the hierarchical nature of inference in the brain, we show that temporal biases7

depend on the balance between “sensory information” and “category information” in the stimulus.8

Finally, we present new data from a human psychophysics task that confirm that temporal biases9

can be robustly changed within subjects as predicted by our models.10

Introduction11

Imagine a doctor trying to infer the cause of a patient’s symptoms from an x-ray image. Unsure12

about the evidence in the image, she asks a radiologist for a second opinion. If she tells the13

radiologist her suspicion, she may bias his report. If she does not, he may not detect a faint14

diagnostic pattern. As a result, if the evidence in the image is hard to detect or ambiguous,15

the radiologist’s second opinion, and hence the final diagnosis, may be swayed by the doctor’s16

initial hypothesis. The problem faced by these doctors exemplifies the di�culty of hierarchical17

inference: each doctor’s suspicion both informs and is informed by their collective diagnosis. If18

they are not careful, their diagnosis may fall prey to circular reasoning. The brain faces a similar19

problem during perceptual decision-making: any decision-making area combines sequential signals20

from sensory brain areas, not directly from sensory input, just as the doctors’ consensus is based21

on their individual diagnoses rather than on the evidence per se. If sensory signals in the brain22

themselves reflect inferences that combine both prior expectations and sensory evidence, we suggest23

that this can then lead to an observable perceptual confirmation bias (Nickerson, 1998).24

We formalize this idea in the context of approximate Bayesian inference and classic evidence-25

integration tasks in which a range of biases has been observed and for which a unifying explanation26
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is currently lacking. Evidence-integration tasks require subjects to categorize a sequence of inde-27

pendent and identically distributed (iid) draws of stimuli (Gold and Shadlen, 2007; Bogacz et al.,28

2006). Previous normative models of evidence integration hinge on two quantities: the amount of29

information available on a single stimulus draw and the total number of draws. One might expect,30

then, that temporal biases should have some canonical form in tasks where these quantities are31

matched. However, existing studies are heterogeneous, reporting one of three distinct motifs: some32

find that early evidence is weighted more strongly (a primacy e↵ect) (Kiani et al., 2008; Nienborg33

and Cumming, 2009) some that information is weighted equally over time (as would be optimal)34

(Wyart et al., 2012; Brunton et al., 2013; Raposo et al., 2014), and some find late evidence being35

weighted most heavily (a recency e↵ect) (Drugowitsch et al., 2016) (Figure 1a,c). While there36

are myriad di↵erences between these studies such as subject species, sensory modality, stimulus37

parameters, and computational frameworks (Kiani et al., 2008; Brunton et al., 2013; Glaze et al.,38

2015; Drugowitsch et al., 2016), none of these aspects alone can explain their di↵erent findings.39

We extend classic evidence-integration models to the hierarchical case by including an explicit40

intermediate sensory representation, analogous to modeling each doctor’s individual diagnosis in41

addition to their consensus in the example above (Figure 1b). Taking this intermediate inference42

stage into account makes explicit that task di�culty is modulated by two distinct types of informa-43

tion exposing systematic di↵erences between existing tasks: the information between the stimulus44

and sensory representation (“sensory information”), and the information between sensory represen-45

tation and category (“category information”) (Figure 1b). These di↵erences alone do not entail any46

bias as long as inference is exact. However, inference in the brain is necessarily approximate and47

this approximation can interfere with its ability to account for its own biases. Implementing two48

approximate hierarchical inference algorithms, we find that they both result in biases in agreement49

with our data, and can indeed explain the puzzling discrepancies in the literature.50

Results51

“Sensory Information” vs “Category Information”52

Normative models of decision-making in the brain are typically based on the idea of an ideal

observer, who uses Bayes’ rule to infer the most likely category on each trial given the stimulus. On
each trial in a typical task, the stimulus consists of multiple “frames” presented in rapid succession.
(By “frames” we refer to discrete independent draws of stimulus values that are not necessarily
visual). If the evidence in each frame, ef , is independent then evidence can be combined by simply
multiplying the associated likelihoods. And if the categorical identity of the stimulus is a binary
variable C 2 {�1,+1}, then this process corresponds to the famous sequential ratio test summing
the log odds implied by each piece of evidence (Wald and Wolfowitz, 1948; Bogacz et al., 2006):

p(C = +1|e1, . . . , eF ) / p(C = +1)
FY

f=1

p(ef |C = +1)

log
p(C = +1|e1, . . . , eF )
p(C = �1|e1, . . . , eF )

= log
p(C = +1)

p(C = �1) +
FX

f=1

log
p(ef |C = +1)

p(ef |C = �1) .

As a result, the ideal observer’s performance is determined by (i) the information about C available53

on each frame, p(ef |C), and (ii) the number of frames per trial.54

However, in the brain, any decision-making area does not base its decision on the externally55

presented stimulus directly, but rather on an intermediate sensory representation of the stimulus.56
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Figure 1: a) A subject’s “temporal weighting strategy” is an estimate of how their choice is based
on a weighted sum of each frame of evidence ef . Three commonly observed motifs are decreasing
weights (primacy), constant weights (optimal), or increasing weights (recency). b) Information in
the stimulus about the category may be decomposed into information in each frame about a sensory
variable (“sensory information”) and information about the category given the sensory variable
(“category information”). c) Category information and sensory information may be manipulated
independently, creating a two-dimensional space of possible tasks. Any level of task performance
can be the result of di↵erent combinations of sensory and category information. A qualitative
placement of previous work into this space separates those that find primacy e↵ects in the upper-
left from those that find recency e↵ects or optimal weights in the lower right (see Supplemental Text
for detailed justification). Numbered references are: [1] Kiani et al., [2] Nienborg and Cumming,
[3] Brunton et al., [4] Wyart et al., [5] Raposo et al., [6] Drugowitsch et al.

3

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 21, 2020. ; https://doi.org/10.1101/440321doi: bioRxiv preprint 

https://doi.org/10.1101/440321
http://creativecommons.org/licenses/by-nc-nd/4.0/


This intermediate representation is itself often assumed to the result an inference process in which57

sensory neurons compute the posterior distribution p(x|e) (Fiser et al., 2010; Pouget et al., 2013;58

Gershman and Beck, 2016; Lange and Haefner, 2020) over some latent variable x given the external59

evidence e in an internal model of the world (Mumford, 1992; Lee and Mumford, 2003; Yuille60

and Kersten, 2006). This process is naturally formalized as hierarchical inference (Figure 1b).61

This implies that the information between the stimulus and category can be partitioned into the62

information between the stimulus and the sensory representation (e to x), and the information63

between sensory representation and category (x to C). We call these “sensory information” and64

“category information,” respectively (Figure 1b). These two kinds of information define a two-65

dimensional space in which a given task is located as a single point (Figure 1c). For example, in66

a visual task each ef would be the image on the screen while xf might be image patches that are67

assumed to be sparsely combined to form the image (Olshausen and Field, 1997). The posterior68

over the latent features xf would be represented by the activity of relevant neurons in visual cortex.69

An evidence integration task may be challenging either because each frame is perceptually70

unclear (low “sensory information”), or because each frame alone is insu�cient to determine the71

category for the whole trial (low “category information”). Consider the classic dot motion task72

(Newsome and Pare, 1988) and the Poisson clicks task (Brunton et al., 2013), which occupy opposite73

locations in the space. In the classic low-coherence dot motion task, subjects view a cloud of moving74

dots, a small percentage of which move “coherently” in one direction. Here, sensory information75

is low since the percept of net motion is weak on each frame. Category information, on the other76

hand, is high, since knowing the true net motion on a single frame would be highly predictive of77

the correct choice (and of motion on subsequent frames). In the Poisson clicks task on the other78

hand, subjects hear a random sequence of clicks in each ear and must report the side with the79

higher rate. Here, sensory information is high since each click is well above sensory thresholds.80

Category information, however, is low, since knowing the side on which a single click was presented81

provides only little information about the correct choice for the trial as a whole (and the side of the82

other clicks). Another way to think about category information is as “temporal coherence” of the83

stimulus: the more each frame of evidence is predictive of the correct choice, the more the frames84

must be predictive of each other, whether a frame consists of visual dots or of auditory clicks. Note85

that our distinction between sensory and category information is di↵erent from the well-studied86

distinction between internal and external noise; in general, both internal and external noise will87

reduce the amount of sensory and category information.88

Optimal inference requires accounting for all possible sources of information. Ideally, then,89

sensory areas would not only represent the current evidence, p(xf |ef ), but should incorporate prior90

information based on previous frames to compute p(xf |e1, . . . , ef ). While the sensory area no longer91

has direct access to the earlier frames, this is mathematically equivalent to using the current belief92

in the category C as a prior:93

p(xf |e1, . . . , ef ) / p(ef |xf )
X

c

p(C = c|e1, . . . , ef�1)| {z }
pf�1(C)

p(xf |C = c). (1)

Mechanistically, this suggests that the brain’s running estimate of the category, pf�1(C), should94

be continuously fed back to sensory areas, acting as a prior that biases the representation to agree95

with the current belief about the category (Lee and Mumford, 2003; Haefner et al., 2016; Tajima96

et al., 2016; Lange and Haefner, 2020). Importantly, such a bias is optimal in the sense that it97

makes instantaneous sensory estimates more accurate. Despite this instantaneous sensory bias,98

exact inference in this model does not induce any bias in the posterior over the category C. That99

is, although the ideal observer’s inference about xf is biased by e1, . . . , ef�1, this bias is removed100
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by precisely accounting for it in the update to pf (C) (Zylberberg et al., 2018).101

Unlike the ideal observer, inference is in the brain is necessarily approximate ((Fiser et al.,102

2010; Pouget et al., 2013) and the implications of this fact on evidence integration has so far been103

unknown. Below, we consider two models, each implementing approximate hierarchical inference in104

one of the two major classes of approximate inference schemes known from statistics and machine105

learning: sampling-based and variational inference (Bishop, 2006; Murphy, 2012), both of which106

have been previously proposed models for neural inference (Fiser et al., 2010; Pouget et al., 2013).107

In both models, a confirmation bias arises as a direct consequence of the approximate nature108

of inference over the intermediate sensory variables in the brain. The strength of the predicted109

confirmation bias depends directly on the amount of category information in the stimulus, since that110

governs how strongly past frames inform inferences about the present frame. Our models predict an111

overweighting of early evidence when sensory information is low and category information is high,112

but not when sensory information is high and category information is low, even when performance113

is matched in both conditions (Fig. 1c, for model details see “Approximate inference models”114

section below).115

Qualitatively placing prior studies in the space spanned by these two kinds of information results116

in two clusters: the studies that report primacy e↵ects are located in the upper left quadrant (low-117

sensory/high-category or LSHC) and studies with flat weighting or recency e↵ects are in the lower118

right quadrant (high-sensory/low-category or HSLC) (Figure 1c). This initially suggests that the119

trade-o↵ between sensory information and category information may indeed underlie di↵erences in120

temporal weighting seen in previous studies. Further, this framework allows us to make new and121

easily testable predictions for how simple changes in stimulus statistics of previous studies should122

change the temporal weighting they find (Supplemental Table S1). We next describe a novel set123

of visual discrimination tasks designed to directly probe this trade-o↵ between sensory information124

and category information to test these predictions within individual subjects.125

Visual Discrimination Task126

We designed a visual discrimination task with two stimulus conditions that correspond to the two127

opposite sides of this task space, while keeping all other aspects of the design the same (Figure 2a).128

If our theory is correct, then we should be able to change individual subjects’ temporal weighting129

strategy simply by changing the sensory-category information trade-o↵.130

The stimulus in our task consisted of a sequence of ten visual frames (83ms each). Each frame131

consisted of band-pass-filtered white noise with excess orientation power either in the �45� or the132

+45� orientation (Beaudot and Mullen, 2006) (Figure 2b,d). On each trial, there was a single true133

orientation category, but individual frames might di↵er in their orientation. At the end of each134

trial, subjects reported whether the stimulus was oriented predominantly in the �45� or the +45�135

orientation. The stimulus was presented as an annulus around the fixation marker in order to136

minimize the e↵ect of small fixational eye movements (Methods).137

If the brain’s intermediate sensory representation reflects the orientation in each frame, then138

sensory information in our task is determined by how well each frame determines the orientation139

of that frame (i.e. the amount of “noise” in each frame), and category information is determined140

by the probability that any given frame’s orientation matches the trial’s category. We chose to141

quantify both sensory information and category information, using signal detection theory, as the142

area under the receiver-operating-characteristic curve for ef and xf (sensory information), or for xf143

and C (category information). Hence for a ratio of 5 : 5, a frame’s orientation does not predict the144

correct choice and category information is 0.5. For a ratio of 10 : 0, knowledge of the orientation of145
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Figure 2: Summary of experiment design. a) Category information is determined by the expected
ratio of frames in which the orientation matches the correct category, and sensory information is
determined by a parameter  determining the degree of spatial orientation coherence (Methods).
At the start of each block, we reset the staircase to the same point, with category information at
9 : 1 and  at 0.8. We then ran a 2-to-1 staircase either on  or on category information. The
LSHC and HSLC ovals indicate sub-threshold trials; only these trials were used in the regression to
infer subjects’ temporal weights. b) Visualization of a noisy stimulus in the LSHC condition. All
frames are oriented to the right. c) Psychometric curves for all subjects (thin lines) and averaged
(thick line) over the  staircase. Shaded gray area indicates the median threshold level across all
subjects. d) Example frames in the HSLC condition. The orientation of each frame is clear, but
orientations change from frame to frame. e) Psychometric curves over frame ratios, plotted as in
(c).
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Figure 3: Subjects’ temporal weights. a-b) Temporal weights for individual subjects (thin lines)
and the mean across all subjects (thick lines). Weights are normalized to have a mean of 1 to
emphasize shape rather than magnitude. Individual subjects’ curves were fit using a cross-validated
smoothness term for visualization purposes only (Methods). c) Di↵erence of normalized weights
(HSLC�LSHC). Despite variability across subjects in (a-b), each subject reliably changes in the
direction of a recency e↵ect. d) Change in slope between the two task contexts for each subject
is consistently positive. Points are median slope values after bootstrap-resampling of the data.
We summarize subjects’ temporal weighting strategy with an exponential fit; the slope parameter
� > 0 corresponds to recency and � < 0 to primacy (similar results for linear fits, see SI).

a single frame is su�cient to determine the correct choice and category information is 1. Exactly146

quantifying sensory information depends on individual subjects, but likewise ranges from 0.5 to 1.147

For a more detailed discussion, see Supplementary Text.148

Using this stimulus, we tested 12 human subjects (9 naive and 3 authors) comparing two149

conditions intended to probe the di↵erence between the LSHC and HSLC regimes. Starting with150

both high sensory and high category information, we either ran a 2:1 staircase lowering the sensory151

information while keeping category information high, or we ran a 2:1 staircase lowering category152

information while keeping sensory information high (Figure 2a). These are the LSHC and HSLC153

conditions, respectively (Figure 2b,d). For each condition, we used logistic regression to infer,154

for each subject, the influence of each frame onto their choice. Subjects’ overall performance was155

matched in the two conditions by setting a performance threshold below which trials were included156

in the analysis (Methods).157

In agreement with our hypothesis, we find predominantly flat or decreasing temporal weights158

in the LSHC condition (Figure 3a). However, when the information is partitioned di↵erently –159

in the HSLC condition – we find flat or increasing weights (Figure 3b). Importantly, despite160

variability between subjects in each condition, a within-subject comparison revealed that the change161

in slope between the two conditions was as predicted for all subjects (Figure 2c,d) (p < 0.05 for162

10 of 12 subjects, bootstrap). This demonstrates that the trade-o↵ between sensory and category163

information in a task robustly changes subjects’ temporal weighting strategy as we predicted, and164

further suggests that the sensory-category information trade-o↵ may resolve the discrepant results165

in the literature.166
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Approximate inference models167

We will now show that these significant changes in evidence weighting for di↵erent stimulus statis-168

tics arise naturally in common models of how the brain might implement approximate inference.169

In particular, we show that both a neural sampling-based approximation (Hoyer and Hyvärinen,170

2003; Fiser et al., 2010; Haefner et al., 2016; Orbán et al., 2016) and a parametric (mean-field)171

approximation (Beck et al., 2013; Raju and Pitkow, 2016) can explain the observed pattern of172

changing temporal weights as a function of stimulus statistics.173

Optimal inference in our task, as in other evidence integration tasks, requires computing the174

posterior over C conditioned on the evidence e1, . . . , ef , which can be expressed as the Log Posterior175

Odds (LPO),176

log
p(C = +1|e1, . . . , ef )
p(C = �1|e1, . . . , ef )| {z }

LPOf

= log
p(C = +1)

p(C = �1) +
fX

i=1

log
p(ei|C = +1)

p(ei|C = �1)| {z }
LLOi

, (2)

where LLOf is the log likelihood odds for frame f (Gold and Shadlen, 2007; Bogacz et al., 2006).177

To reflect the fact that the brain has access to only one frame of evidence at a time, this can178

be rewritten this as an online update rule, summing the previous frame’s log posterior with new179

evidence gleaned on the current frame:180

LPOf = LPOf�1 + LLOf . (3)

This expression is derived from the ideal observer and is still exact. Since the ideal observer weights181

all frames equally, the online nature of inference in the brain cannot by itself explain temporal182

biases. Furthermore, because performance is matched in the two conditions of our experiment,183

their di↵erences cannot be explained by the total amount of information, governed by the likelihood184

p(ef |C).185

To understand how biases arise, we must examine the log likelihood odds term, LLO, in detail.186

In a hierarchical model, computing p(ef |C) for each C requires marginalizing over the intervening187

xf as follows:188

p(ef |C) /
Z

p(ef |xf )p(xf |C)dxf

/ Ep(xf |ef )


p(xf |C)

p(xf )

�
,

(4)

This suggests that evidence about the current frame is formed in a two step process: first, xf is189

inferred given ef , and second an expectation is taken with respect to p(xf |ef ), where the operand190

of the expectation depends only on the relation between xf and C. No sub-optimalities nor biases191

have been introduced yet.192

A key assumption in our models that gives rise to temporal biases is that sensory areas represent193

the approximate posterior belief over xf given all available information, i.e. including the earlier194

frames in the trial (equation (1)). This assumption di↵ers from some models of inference in the195

brain that assume populations of sensory neurons strictly encode the likelihood of the stimulus (or196

instantaneous posterior) (Ma et al., 2006; Beck et al., 2008), but is consistent with other models197

from both sampling and parametric families (Berkes et al., 2011; Haefner et al., 2016; Raju and198

Pitkow, 2016; Tajima et al., 2016).199
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As introduced in equation (1), representing the full posterior over xf implies taking into account200

all previous frames. In other words, the brain’s belief about xf depends both on the external201

evidence, ef , via the likelihood, but also on the brain’s current belief about C, via the prior. If202

this were not the case – if sensory areas represented only the instantaneous evidence p(ef |xf ) –203

then integrating evidence in an unbiased way would simply be a matter of applying equation (4).204

However, such an inference scheme comes at the expense of a worse instantaneous representation205

(Zylberberg et al., 2018).206

There is thus tension between inferences at two timescales. Instantaneously, it seems advanta-207

geous to represent p(xf |e1, . . . , ef ), while integrating evidence online requires an expectation taken208

with respect to p(xf |ef ) (equation (4)). Assuming that the former is represented by sensory areas,209

the decision area of an approximate ideal observer now needs to correct for, or “subtract out”210

its influence on those sensory responses. Approximations either to the posterior p(xf |e1, . . . , ef )211

itself or to the bias-correction may underlie the observed behavioral biases. To test this, we imple-212

mented approximate hierarchical online inference (where “online” means observing a single frame213

at a time) for a discrimination task using two previously proposed frameworks for how inference214

might be implemented in neural circuits: neural sampling (Hoyer and Hyvärinen, 2003; Fiser et al.,215

2010; Haefner et al., 2016; Orbán et al., 2016) and mean field variational inference (Beck et al.,216

2013; Raju and Pitkow, 2016) (Figure 4).217

Sampling model218

The neural sampling hypothesis states that variable neural activity over brief time periods can be219

interpreted as a sequence of samples from the brain’s posterior over latent variables in its internal220

model. In our model, samples of xf are drawn from the full posterior having incorporated the221

running estimate of pf (C) (equation (1), Methods), but from equation (4) we would like to use222

these samples to compute an expectation with respect to only the instantaneous evidence, p(xf |ef ).223

The canonical way to compute an expectation with respect to one distribution using samples from224

another is “importance sampling,” which weights each sample so as to adjust for the di↵erence225

between the two distributions (Shi and Gri�ths, 2009; Murphy, 2012, Chapter 23). In the most226

extreme case of continual online updates, one could imagine that the brain computes each update227

to pf (C) after observing a single sample of xf . In this case, no correction would be possible; a228

downstream area would be unable to recover the instantaneous distribution p(xf |ef ) from a sample229

sample from the full posterior p(xf |e1, . . . , ef ). If the brain is able to base each update on multiple230

samples, then the importance weights of each sample in the update account for the discrepancy231

between p(xf |ef ) and p(xf |e1, . . . , ef ) (Methods). While this approach is unbiased in the limit of232

infinitely many samples, it incurs a bias for a finite number – the relevant regime for the brain233

(Owen, 2013). The bias is as if the expectation in (4) is taken with respect to an intermediate234

distribution that lies between the fully biased one (p(xf |e1, . . . , ef )) and the unbiased one (p(xf |ef ))235

(Cremer et al., 2017).236

Under-correcting for the prior that was fed back results in a positive feedback loop between237

decision-making and sensory areas which we call a “perceptual confirmation bias.” Importantly,238

this feedback loop is strongest when category information is high, corresponding to stronger feed-239

back, and sensory information is low, since that makes xf less dependent on ef . Figure 4b and240

Supplemental Figure S5a-c show performance for the ideal observer and for the resulting sampling-241

based model, respectively, across all combinations of sensory and category information. White lines242

show threshold performance (70% correct) as in Figure 1c.243

This model reproduces the primacy e↵ect, and how the temporal weighting changes as the244

stimulus information changes seen in previous studies. Importantly, it predicted the same within-245
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Figure 4: Approximate inference models explain results. a) The di↵erence in stimulus statistics
between HSLC and LSHC trade-o↵s implies that the relevant sensory representation is di↵erentially
influenced by the stimulus or by beliefs about the category C. A “confirmation bias” or feedback
loop between x and C emerges in the LSHC condition but is mitigated in the HSLC condition.
Black lines indicate the underlying generative model, and red/blue lines indicate information flow
during inference. Arrow width represents coupling strength. b) Performance of an ideal observer
reporting C given ten frames of evidence. White line shows threshold performance, defined as 70%
correct. c) Performance of the sampling model with � = 0.1. Colored dots correspond to lines in
the next panel. d) Temporal weights in the model transition from recency to a strong primacy
e↵ect, all at threshold performance, as the stimulus transitions from the high-sensory/low-category
to the low-sensory/high-category conditions. e) Using the same exponential fit as used with human
subjects, visualizing how temporal biases change across the entire task space. Red corresponds to
primacy, and blue to recency. White contour as in (c). Black lines are iso-contours for slopes
corresponding to highlighted points in (c). f-h) Same as c-d but for the variational model with
� = 0.1.
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subject change seen in our data (Haefner et al., 2016). However, double-counting the prior alone246

cannot explain recency e↵ects (Supplemental Figure S5a-c,j-l).247

There are two simple and biologically-plausible explanations for the observed recency e↵ect248

which turn out to be mathematically equivalent. First,the brain may try to actively compensate249

for the prior influence on the sensory representation by subtracting out an estimate of that influence.250

That is, the brain could do approximate bias correction to mitigate the e↵ect of the confirmation251

bias. We modeled linear bias correction by explicitly subtracting out a fraction of the running252

posterior odds at each step:253

LPOf  LPOf�1(1� �) + ˆLLOf (5)

where 0  �  1 and ˆLLOf is the model’s (biased) estimate of the log likelihood odds. Second, the254

brain may assume a non-stationary environment, i.e. C is not constant over a trial. Interestingly,255

Glaze et al. (2015) showed that optimal inference in this case implies equation (5), which can256

be interpreted as a noiseless, discrete time version of the classic drift-di↵usion model (Gold and257

Shadlen, 2007) with � as a leak parameter.258

Incorporating equation (5) into our model reduces the primacy e↵ect in the upper left of the259

task space and leads to a recency e↵ect in the lower right (Figure 4c-e, Supplemental Figure S5),260

as seen in the data.261

Variational model262

The second major class of models for how probabilistic inference may be implemented in the brain263

– based on mean-field parametric representations (Ma et al., 2006; Beck et al., 2013) – behaves264

similarly. These models commonly assume that distributions are encoded parametrically in the265

brain, but that the brain explicitly accounts for dependencies only between subsets of variables, e.g.266

within the same cortical area. (Raju and Pitkow, 2016). We therefore make the assumption that267

the joint posterior p(x,C|e) is approximated in the brain by a product of parametric distributions,268

q(x)q(C) (Beck et al., 2013; Raju and Pitkow, 2016). Inference proceeds by iteratively minimizing269

the Kullback-Leibler divergence between q(x)q(C) and p(x,C|e) (Methods). As in the sampling270

model, the current belief about the category C acts as a prior over x. Because this model is unable271

to explicitly represent posterior dependencies between sensory and decision variables, both x and272

C being positive and both x and C being negative act as attractors of its temporal dynamics.273

This yields qualitatively the same behavior as the sampling model: a stronger influence of early274

evidence and a transition from primacy to flat weights as category information decreases. As in the275

sampling model, recency e↵ects emerge only when approximate bias correction is added (Figure276

4f-h, Supplemental Figure S5j-r). Whereas the limited number of samples was the key deviation277

from optimality in the sampling model, here it is the assumption that the brain represents its beliefs278

separately about x and C in a factorized form (Methods).279

Optimal bias correction280

A leak term implements optimal inference in a changing environment (Glaze et al., 2015), but each281

trial of our task is stationary. One might therefore expect that a leak term, or � > 0, would impair282

the model’s performance in our task. On the other hand, we motivated the leak term by suggesting283

that it could approximately correct for the confirmation bias. Under this second interpretation,284

one might instead expect performance to improve for some � > 0, especially for conditions where285

the confirmation bias was strong.286

We investigated the relationship between the leak (�) and model performance. First, we sim-287

ulated the importance sampling model with � = 0.1 and � = 0.5 and compared its performance288
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Figure 5: Optimizing performance with respect to � (see also Supplemental Figure S6). a) Model
performance across task space with � = 0.5 (compare with Figure 4c in which � = 0.1). b)

Di↵erence in performance for � = 0.5 versus � = 0.1. Higher � improves performance in the
upper part of the space where the confirmation bias is strongest. c) Optimizing for performance,
the optimal �⇤ depends on the task. Where the confirmation bias had been strongest, optimal
performance is achieved with a stronger leak term. d) Model performance when the optimal �⇤

from (c) is used in each task. e) Comparing the ideal observer to (d), the ideal observer still
outperforms the model but only in the upper part of the space. f) Temporal weight slopes when
using the optimal �⇤ are flat everywhere. The models reproduce the change in slopes seen in the
data only when � is fixed across tasks (compare Figure S5).
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across the space of category and sensory information (Figure 5a-b). We found that in the LSHC289

regime where the confirmation bias had been strongest, the larger value of � counteracts the bias290

and leads to better performance, but in the HSLC regime where there had been no confirmation291

bias, the optimal � is zero (Figure 5c). We thus see that the optimal value of � depends on the292

task statistics, i.e. the balance of sensory information and category information: the stronger the293

primacy e↵ect or confirmation bias measured above, the higher � must be to correct for it (Figure294

5d). Analogous results were found for the variational model (Supplemental Figure S6).295

We next asked what the e↵ect would be on the model’s temporal weights if it could utilize the296

best � for each task. We found that the ��optimized model displayed near-flat weights across the297

entire space of tasks (Figure 5e). Our data therefore imply that either the brain does not optimize298

its leak to the statistics of the current task, or that it does so on a timescale that is slower than a299

single experimental session (roughly 1hr, Methods).300

Predictions for Neurophysiology301

Both the sampling and variational models induce a confirmation bias by creating an “attractor”302

dynamic between di↵erent levels of the cortical hierarchy – the decision-making area and the relevant303

sensory areas. Our model therefore makes a number of novel and testable neurophysiological304

predictions.305

First, our model predicts that both “choice probabilities” (Britten et al., 1996; Cumming and306

Nienborg, 2016) and “di↵erential correlations” (Moreno-Bote et al., 2014) in populations of task-307

relevant sensory neurons will be stronger in contexts where category information is high and sensory308

information is low, i.e. when subjects exhibit primacy e↵ects (Wimmer et al., 2015; Haefner et al.,309

2016). This is because the feedback from the decision-making to sensory areas in our model ex-310

plicitly biases the sensory representation in the direction that encodes the stimulus strength, which311

is the f 0�direction (Tajima et al., 2016; Lange and Haefner, 2020). Our model is thus consistent312

with recent evidence that noise correlations contain a task-dependent component in the f 0 direction313

(Bondy et al., 2018).314

Second, our model predicts that apparent attractor-dynamics measured in both sensory and315

decision-making areas are in fact driven by inter- rather than within-area dynamics, and will de-316

pend on the decision-making context. In particular, categorization tasks should induce a stronger317

confirmation bias, and hence stronger attractor-like dynamics, than equivalent estimation tasks,318

as was recently reported (Tajima et al., 2017). This observation, as well as our above prediction,319

contrasts with classic attractor models which posit a recurrent feedback loop within a decision320

making area (Wang, 2008; Wimmer et al., 2015).321

Discussion322

Our work makes three main contributions. First, we show that online inference in a hierarchical323

model can result in characteristic task-dependent temporal biases, and further that such biases324

naturally arise in two specific families of biologically-plausible approximate inference algorithms.325

Second, explicitly modeling the mediating sensory representation allows us to partition the infor-326

mation in the stimulus about the category into two parts – “sensory information” and “category327

information” – defining a novel two-dimensional space of possible tasks. Third, we collect new data328

confirming a critical prediction of our theory, namely that individual subjects’ temporal biases329

change depending on the nature of the information in the stimulus. These results strongly suggest330

that the discrepancy in temporal biases reported by previous studies is resolved by considering how331

their tasks trade o↵ sensory and category information.332
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The “confirmation bias” emerges in our models as the result of four key assumptions. Our first333

assumption is that inference in evidence integration tasks is hierarchical, and that the brain ap-334

proximates the posterior distribution over both the category, C, and intermediate sensory variables,335

x. This is in line with converging evidence that populations of sensory neurons encode posterior336

distributions of corresponding sensory variables (Lee and Mumford, 2003; Yuille and Kersten, 2006;337

Berkes et al., 2011; Beck et al., 2013) incorporating dynamic prior beliefs via feedback connections338

(Lee and Mumford, 2003; Yuille and Kersten, 2006; Beck et al., 2013; Nienborg and Roelfsema,339

2015; Tajima et al., 2016, 2017; Orbán et al., 2016; Haefner et al., 2016; Lange and Haefner, 2020),340

which contrasts with other probabilistic theories in which only the likelihood is represented in341

sensory areas (Ma et al., 2006; Beck et al., 2008; Orhan and Ma, 2017; Walker et al., 2019).342

Our second key assumption is that evidence is accumulated online. In our models, the belief343

over C is updated based only on the posterior from the previous step and the current posterior over344

x. This can be thought of as an assumption that the brain does not have a mechanism to store345

and retrieve earlier frames veridically, but must make use of currently available summary statistics.346

This is consistent with drift-di↵usion models of decision-making (Gold and Shadlen, 2007). As347

mentioned in the main text, the assumptions until now – hierarchical inference with online updates348

– do not entail any temporal biases for an ideal observer.349

Third, we implemented hierarchical online inference making specific assumptions about the350

limited representational power of sensory areas. In the sampling model, we assumed that the brain351

can draw a limited number of independent samples of x per update to C. Interestingly, we found352

that in the small sample regime, the models is inherently unable to account for the prior bias of353

C on x in its updates to C. Existing neural models of sampling typically assume that samples354

are distributed temporally (Hoyer and Hyvärinen, 2003; Fiser et al., 2010), but it has also been355

proposed that the brain could run multiple sampling “chains” distributed spatially (Savin and356

Denève, 2014). The relevant quantity for our model is the total e↵ective number of independent357

samples that can be generated, stored, and evaluated in a batch to compute each update. The358

more samples, the smaller the bias predicted by this model.359

We similarly limited the representational capacity of the variational model by enforcing that the360

posterior over x is unimodal, and that there is no explicit representation of dependencies between361

x and C. Importantly, this does not imply that x and C do not influence each other. Rather, the362

Variational Bayes algorithm expresses these dependencies in the dynamics between the two areas:363

each update that makes C = +1 more likely pushes the distribution over x further towards +1,364

and vice versa. Because the number of dependencies between variables grows exponentially, such365

approximates are necessary in variational inference with many variables (Fiser et al., 2010). The366

Mean Field Variational Bayes algorithm algorithm that we use here has been previously proposed367

as a candidate algorithm for neural inference (Raju and Pitkow, 2016).368

The assumptions up to now predict a primacy e↵ect but cannot account for the observed recency369

e↵ects. When we incorporate a leak term in our models, they reproduce the observed range of biases370

from primacy to recency. The existence of such a leak term is supported by previous literature371

(Usher and McClelland, 2001; Bogacz et al., 2006). Further, it is normative in our framework372

in the sense that reducing the bias in the above models improves performance (Figure 5). The373

optimal amount of bias correction depends on the task statistics: in the LSHC regime where the374

confirmation bias is strongest, a higher � is needed to correct for it. While it is conceivable that375

the brain would optimize this leak term to the task (Brunton et al., 2013; Piet et al., 2018), our376

data suggest the leak term is stable across our LSHC and HSLC conditions, or adapted slowly.377

It has been proposed that post-decision feedback biases subsequent perceptual estimations378

(Stocker and Simoncelli, 2007; Talluri et al., 2018). While in spirit similar to our confirmation bias379

model, there are two conceptual di↵erences between these models and our own: First, the feedback380
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from decision area to sensory area in our model is both continuous and online, rather than condi-381

tioned on a single choice after a decision is made. Second, our models are derived from an ideal382

observer and only incur bias due to approximations, while previously proposed “self-consistency”383

biases are not normative and require separate justification.384

Alternative models have been previously proposed to explain primacy and recency e↵ects in385

evidence accumulation. Kiani et al. (2008) suggested that an integration-to-bound process is more386

likely to ignore later evidence even when task-relevant stimuli are of a fixed duration (Kiani et al.,387

2008). Deneve (2012) showed that simultaneous inference about stimulus strength and choice and388

in tasks with trials of variable di�culty can lead to either a primacy or a recency e↵ect (Deneve,389

2012). However, both models of evidence integration are based entirely on total information per390

frame (i.e. p(C|ef )) and hence cannot explain the di↵erence between the data for the LSHC and391

the HSLC conditions since both conditions are matched in terms of total information. In general,392

any model based only on p(C|ef ) cannot explain the pattern in our data. While such a model can393

coexist with the confirmation bias dynamic proposed by our model, it is not su�cient to explain the394

pattern in our data for which the trade-o↵ between sensory- and category-information is crucial.395

It has also been proposed that primacy e↵ects could be the result of near-perfect integration396

of an adapting sensory population (Wimmer et al., 2015; Yates et al., 2017). For this mechanism397

to explain our full results, however, the sensory population would need to become less adapted398

over frames in our HSLC condition, while at the same time more adapted in the LSHC condition.399

We are unaware of such an adaptation mechanism in the literature. Further, although the circuit400

dynamics of sensory populations could in principle explain our behavioral results, this would not401

predict top-down neural e↵ects such as the task-dependence of the dynamics of sensory populations402

(Tajima et al., 2017) nor the origin and prevalence of di↵erential correlations (Bondy et al., 2018),403

both of which are consistent with our model, as described above.404

Models of “leaky” evidence accumulation are known to result in recency e↵ects (Usher and405

McClelland, 2001; Kiani et al., 2008; Brunton et al., 2013; Glaze et al., 2015). Interestingly, leaky406

evidence accumulation has also been shown to be optimal in non-stationary environments (Glaze407

et al., 2015) and could thus in principle indicate that subjects assume such non-stationarity in our408

HSLC condition. However, this explanation alone cannot explain the presence of primacy e↵ects409

in the LSHC condition. In sum, while there are numerous existing models that can explain either410

primacy or recency e↵ects with dedicated mechanisms, ours is the first model to predict the full411

range of biases and how they may be controlled by the stimulus statistics. Further, because our412

approximate inference models compute log posterior odds, previously proposed mechanisms like413

integration to bound are complementary and could be incorporated into our framework.414

While our focus is on the perceptual domain in which subjects integrate evidence over a timescale415

on the order of tens or hundreds of milliseconds, analogous principles hold in the cognitive domain416

over longer timescales. The crucial computational motif underlying our model of the confirmation417

bias is hierarchical inference over multiple timescales. An agent in such a setting must simultane-418

ously make accurate judgments of current data (based on the current posterior) and track long-term419

trends (based on all likelihoods). For instance, Zylberberg et al. (2018) identified an analogous420

challenge when subjects must simultaneously make categorical decisions each trial (their “fast”421

timescale) while tracking the stationary statistics of a block of trials (their “slow” timescale), anal-422

ogous to our LSHC condition. As the authors describe, if subjects base model updates on posteriors423

rather than likelihoods, they will further entrench existing beliefs (Zylberberg et al., 2018). How-424

ever, the authors did not investigate order e↵ects; our confirmation bias would predict that subjects’425

estimates of block statistics is biased towards earlier trials in the block (primacy). Schustek et al.426

(2018) likewise asked subjects to track information across trials in a cognitive task more analogous427

to our HSLC condition, and report close to flat weighting of evidence across trials Schustek and428
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Moreno-bote (2018).429

The strength of the perceptual confirmation bias is directly related to the integration of internal430

“top-down” beliefs and external “bottom-up” evidence previously implicated in clinical dysfunctions431

of perception (Jardri and Denéve, 2013). Therefore, the di↵erential e↵ect of sensory and category432

information may be useful in diagnosing clinical conditions that have been hypothesized to be433

related to abnormal integration of sensory information with internal expectations (Fletcher and434

Frith, 2009).435

Hierarchical (approximate) inference on multiple timescales is a common motif across percep-436

tion, cognition, and machine learning. We suspect that all of these areas will benefit from the437

insights on the causes of the confirmation bias mechanism that we have described here and how438

they depend on the statistics of the inputs in a task.439

Methods440

Visual Discrimination Task441

We recruited students at the University of Rochester as subjects in our study. All were compensated442

for their time, and methods were approved by the Research Subjects Review Board. We found no443

di↵erence between naive subjects and authors, so all main-text analyses are combined, with data444

points belonging to authors and naive subjects indicated in Figure 3d.445

Our stimulus consisted of ten frames of band-pass filtered noise (Beaudot and Mullen, 2006;446

Nienborg and Cumming, 2014) masked by a soft-edged annulus, leaving a “hole” in the center for447

a small cross on which subjects fixated. The stimulus subtended 2.6 degrees of visual angle around448

fixation. Stimuli were presented using Matlab and Psychtoolbox on a 1920x1080px 120 Hz monitor449

with gamma-corrected luminance (Brainard, 1997). Subjects kept a constant viewing distance of450

36 inches using a chin-rest. Each trial began with a 200ms “start” cue consisting of a black ring451

around the location of the upcoming stimulus. Each frame lasted 83.3ms (12 frames per second).452

The last frame was followed by a single double-contrast noise mask with no orientation energy.453

Subjects then had a maximum of 1s to respond, or the trial was discarded (Supplemental Figure454

S1). The stimulus was designed to minimize the e↵ects of small fixational eye movements: (i) small455

eye movements do not provide more information about either orientation, and (ii) each 83ms frame456

was too fast for subjects to make multiple fixations on a single frame.457

The stimulus was constructed from white noise that was then masked by a kernel in the Fourier458

domain to include energy at a range of orientations and spatial frequencies but random phases459

(Beaudot and Mullen, 2006; Nienborg and Cumming, 2014; Bondy et al., 2018) (a complete descrip-460

tion and parameters can be found in the Supplemental Text). We manipulated sensory information461

by broadening or narrowing the distribution of orientations present in each frame, centered on462

either +45� or �45� depending on the chosen orientation of each frame. We manipulated category463

information by changing the proportion of frames that matched the orientation chosen for that464

trial. The range of spatial frequencies was kept constant for all subjects and in all conditions.465

Trials were presented in blocks of 100, with typically 8 blocks per session (about 1 hour). Each466

session consisted of blocks of only HSLC or only LSHC trials (Figure 2). Subjects completed467

between 1500 and 4400 trials in the LSHC condition, and between 1500 and 3200 trials in the468

HSLC condition. After each block, subjects were given an optional break and the staircase was469

reset to  = 0.8 and pmatch = 0.9. pmatch is defined as the probability that a single frame matched470

the category for a given trial. In each condition, psychometric curves were fit to the concatenation471

of all trials from all sessions using the Psignifit Matlab package (Schütt et al., 2016), and temporal472

weights were fit to all trials below each subject’s threshold.473
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Low Sensory-, High Category-Information (LSHC) Condition474

In the LSHC condition, a continuous 2-to-1 staircase on  was used to keep subjects near threshold475

( was incremented after each incorrect response, and decremented after two correct responses in476

a row). pmatch was fixed to 0.9. On average, subjects had a threshold (defined as 70% correct) of477

 = 0.17±0.07 (1 standard deviation). Regression of temporal weights was done on all sub-threshold478

trials, defined per-subject.479

High Sensory-, Low Category-Information (HSLC) Condition480

In the HSLC condition, the staircase acted on pmatch while keeping  fixed at 0.8. Although pmatch481

is a continuous parameter, subjects always saw 10 discrete frames, hence the true ratio of frames482

ranged from 5:5 to 10:0 on any given trial. Subjects were on average 69.5% ± 4.7% (1 standard483

deviation) correct when the ratio of frame types was 6:4, after adjusting for individual biases in the484

5:5 case. Regression of temporal weights was done on all 6:4 and 5:5 ratio trials for all subjects.485

Logistic Regression of Temporal Weights486

We constructed a matrix of per-frame signal strengths S on sub-threshold trials by measuring the487

empirical signal level in each frame. This was done by taking the dot product of the Fourier-domain488

energy of each frame as it was displayed on the screen (that is, including the annulus mask applied489

in pixel space) with a di↵erence of Fourier-domain kernels at +45� and �45�. This gives a scalar490

value per frame that is positive when the stimulus contained more +45� energy and negative when491

it contained more �45� energy. Signals were z-scored before performing logistic regression, and492

weights were normalized to have a mean of 1 after fitting.493

Temporal weights were first fit using (regularized) logistic regression with di↵erent types of494

regularization. The first regularization method consisted of an AR0 (ridge) prior, and an AR2495

(curvature penalty) prior. We did not use an AR1 prior to avoid any bias in the slopes, which is496

central to our analysis.497

To visualize regularized weights in Figure 3, the ridge and AR2 hyperparameters were chosen498

using 10-fold cross-validation for each subject, then averaging the optimal hyperparameters across499

subjects for each task condition. This cross validation procedure was used only for display pur-500

poses for individual subjects in Figure 3a-c of the main text, while the linear and exponential fits501

(described below) were used for statistical comparisons. Supplemental Figure S4 shows individual502

subjects’ weights with no regularization.503

We used two methods to quantify the shape (or slope) of w: by constraining w to be either504

an exponential or linear function of time, but otherwise optimizing the same maximum-likelihood505

objective as logistic regression. Cross-validation suggests that both of these methods perform sim-506

ilarly to either unregularized or the regularized logistic regression defined above, with insignificant507

di↵erences (Supplemental Figure S3). The exponential is defined as508

w
exponential

f = ↵ exp (�f) (6)

where f refers to the frame number. � gives an estimate of the shape of the weights w over time,509

while ↵ controls the overall magnitude. � > 0 corresponds to recency and � < 0 to primacy. The510

� parameter is reported for human subjects in Figure 3d, and for the models in Figure 4e,h.511

The second method to quantify slope was to constrain the weights to be a linear function in512

time:513

w
linear

f = a+ slope⇥ f (7)
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where slope > 0 corresponds to recency and slope < 0 to primacy.514

Figure 3d shows the median exponential shape parameter (�) after bootstrapped resampling of515

trials 500 times for each subject. Both the exponential and linear weights give comparable results516

(Supplemental Figure S2).517

To compute the combined temporal weights across all subjects (in Figure 3a-c), we first esti-518

mated the mean and variance of the weights for each subject by bootstrap-resampling of the data519

500 times without regularization. The combined weights were computed as a weighted average520

across subjects at each frame, weighted by the inverse variance estimated by bootstrapping.521

Because we are not explicitly interested in the magnitude of w but rather its shape over stimulus522

frames, we always plot a “normalized” weight, w/mean(w), both for our experimental results523

(Figure 3a-c) and for the model (Figure 4d,g).524

Approximate inference models525

We model evidence integration as Bayesian inference in a three-variable generative model (Figure526

4a) that distills the key features of online evidence integration in a hierarchical model (Haefner527

et al., 2016). The variables in the model are mapped onto the sensory periphery (e), sensory cortex528

(x), and a decision-making area (C) in the brain.529

In the generative direction, on each trial, the binary value of the correct choice C 2 {�1,+1}530

is drawn from a 50/50 prior. xf is then drawn from a mixture of two Gaussians:531

x(gen)f ⇠
(
N (+C,�2

x) with prob. equal to category info.

N (�C,�2

x) otherwise
(8)

Finally, each ef is drawn from a Gaussian around xf :532

e(gen)f ⇠ N (xf ,�
2

e) (9)

When we model inference in this model, we assume that the subject has learned the correct model533

parameters, even as parameters change between the two di↵erent conditions. This is why we ran534

our subjects in blocks of only LSHC or HSLC trials on a given day.535

Category information in this model can be quantified by the probability that x(gen)f is drawn536

from the mode that matches C. We quantify sensory information as the probability with which an537

ideal observer can recover the sign of xf . That is, in our model sensory information is equivalent538

to the area under the ROC curve for two univariate Gaussian distributions separated by a distance539

of 2, which is given by540

sensory info. = �(
p
2/�e) (10)

where � is the inverse cumulative normal distribution.541

Because the e↵ective time per update in the brain is likely faster than our 83ms stimulus frames,542

we included an additional parameter nU for the number of online belief updates per stimulus frame.543

In the sampling model described below, we amortize the per-frame updates over nU steps, updating544

nU times per frame using 1

nU
ˆLLOf . In the variational model, we interpret nU as the number of545

coordinate ascent steps.546

Simulations of both models were done with 10000 trials per task type and 10 frames per trial.547

To quantify the evidence-weighting of each model, we used the same logistic regression procedure548

that was used to analyze human subjects’ behavior. In particular, temporal weights in the model549

are best described by the exponential weights (equation (6)), so we use � to characterize the model’s550

biases.551
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Sampling model552

The sampling model estimates p(ef |C) using importance sampling of x, where each sample is553

drawn from a pseudo-posterior using the current running estimate of pf�1(C) ⌘ p(C|e1, .., ef�1) as554

a marginal prior:555

x(s)f ⇠ Q(x) / p(ef |xf )
X

c

p(xf |C = c)pf�1(C = c) (11)

Using this distribution, we obtain the following unnormalized importance weights.556

ŵ(s) =

 
X

c

p(x(s)f |C = c)pf�1(C = c)

!�1

(12)

In the self-normalized importance sampling algorithm these weights are then normalized as follows,

ŵ(s) =
w(s)

P
iw

(i)
,

though we found that this had no qualitative e↵ect on the model’s ability to reproduce the trends557

in the data. The above equations yield the following estimate for the log-likelihood ratio needed558

for the belief update rule in equation (5):559

ˆLLOf = log

SP
s=1

p(x(s)f |C = +1)w(s)

SP
s=1

p(x(s)f |C = �1)w(s)

(13)

In the case of infinitely many samples, these importance weights exactly counteract the bias intro-560

duced by sampling from the posterior rather than likelihood, thereby avoiding any double-counting561

of the prior, and hence, any confirmation bias. However, in the case of finite samples, S, biased562

evidence integration is unavoidable.563

The full sampling model is given in Supplemental Algorithm S1. Simulations in the main text564

were done with S = 5, nU = 5, normalized importance weights, and � = 0 or � = 0.1.565

Variational model566

The core assumption of the variational model is that while a decision area approximates the pos-567

terior over C and a sensory area approximates the posterior over x, no brain area explicitly rep-568

resents posterior dependencies between them. That is, we assume the brain employs a mean field569

approximation to the joint posterior by factorizing p(C, x1, . . . , xF |e1, . . . , eF ) into a product of ap-570

proximate marginal distributions q(C)
QF

f=1
q(xf ) and minimizes the Kullback-Leibler divergence571

between q and p using a process that can be modeled by the Mean-Field Variational Bayes algorithm572

(Murphy, 2012).573

By restricting the updates to be online (one frame at a time, in order), this model can be seen as574

an instance of “Streaming Variational Bayes” (Broderick et al., 2013). That is, the model computes575

a sequence of approximate posteriors over C using the same update rule for each frame. We thus576

only need to derive the update rules for a single frame and a given prior over C; this is extended577

to multiple frames by re-using the posterior from frame f � 1 as the prior on frame f .578

As in the sampling model, this model is unable to completely discount the added prior over579

x. Intuitively, since the mean-field assumption removes explicit correlations between x and C, the580
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model is forced to commit to a marginal posterior in favor of C = +1 or C = �1 and x > 0 or581

x < 0 after each update, which then biases subsequent judgments of each.582

To keep conditional distributions in the exponential family (which is only a matter of math-583

ematical convenience and has no e↵ect on the ideal observer), we introduce an auxiliary variable584

zf 2 {�1,+1} that selects which of the two modes xf is in:585

zf =

(
+1 with probability equal to category info

�1 otherwise
(14)

such that586

xf ⇠ N (zfC,�
2

x). (15)

We then optimize q(C)
QF

f=1
q(xf )q(zf ).587

Mean-Field Variational Bayes is a coordinate ascent algorithm on the parameters of each ap-588

proximate marginal distribution. To derive the update equations for each step, we begin with the589

following (Murphy, 2012):590

log q(xf ) Eq(C)q(zf )[log p(C, xf , zf |ef )] + const

log q(zf ) Eq(C)q(xf )
[log p(C, xf , zf |ef )] + const

log q(C) Eq(xf )q(zf )[log p(C, xf , zf |ef )] + const

(16)

After simplifying, the new q(xf ) term is a Gaussian with mean given by equation (17) and constant591

variance592

µxf  
�2
eµCµzf + �2

xef
�2
e + �2

x
(17)

where µC and µz are the means of the current estimates of q(C) and q(z).593

For the update to q(zf ) in terms of log odds of zf we obtain:594

LPOzf  log
p(zf = +1)

p(zf = �1) + 2
µxfµC

�2
e + �2

x
. (18)

Similarly, the update to q(C) is given by:595

LPOC  log
p(C = +1)

p(C = �1) + 2
µxfµzf

�2
x

(19)

Note that the first term in equation (19) – the log prior – will be replaced with the log posterior596

estimate from the previous frame (see Supplemental Algorithm S2). Comparing equations (19) and597

(3), we see that in the variational model, the log likelihood odds estimate is given by598

ˆLLOf = 2
µxfµzf

�2
x

(20)

Analogously to the sampling model we assume a number of updates nU reflecting the speed of599

relevant computations in the brain relative to how quickly stimulus frames are presented. Unlike600

for the sampling model, naively amortizing the updates implied by equation (20) nU times results601

in a stronger primacy e↵ect than observed in the data, since the Variational Bayes algorithm602

naturally has attractor dynamics built in. Allowing for an additional parameter ⌘ scaling this603

update (corresponding to the step size in Stochastic Variational Inference (Ho↵man et al., 2013))604

seems biologically plausible because it simply corresponds to a coupling strength in the feed-forward605

direction. Decreasing ⌘ both reduces the primacy e↵ect and improves the model’s performance.606

Here we used ⌘ = 0.05 in all simulations based on a qualitative match with the data. The full607

variational model is given in Algorithm S2.608
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Sensory Information and Category Information in Pre-
vious Literature

In this section we justify our categorization of previous studies’ stimuli into the low-sensory/high-
category information (LSHC) or high-sensory/low-category information (HSLC) regime in
relation to Figure 1 and Table S1. While category information and sensory information are
well defined in our model, in the brain they will depend on the nature of the intermediate
variable x relative to e and C, and those relationships depend on the sensory system under
consideration. For instance, a high spatial frequency grating may contain high sensory infor-
mation to a primate, but low sensory information to a species with lower acuity. Similarly,
when “frames” are presented quickly, they may be temporally integrated with the e↵ect
of both reducing sensory information and increasing category information. Therefore, the
placement of each study in the sensory vs category information space is our best estimate,
and we generally only distinguish between high and low along each dimension. Note that for
the orientation discrimination task that we designed, we report the within-subject change
in weights from one task condition to the other, which overcomes the di�culties described
above: while we cannot estimate the absolute values of sensory and category information
due to our limited knowledge about the nature of the human sensory system’s representa-
tion even in our task, our two-staircase task design acting on the two kinds of information
separately guarantees that there will be a change in both sensory information and category
information between the LSHC and HSLC conditions while performance is kept constant.
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Studies finding a primacy e↵ect

Kiani et al. (2008) studied the classic motion direction discrimination task in which a monkey
views a dynamic random dot motion stimulus with a certain percentage of “coherent” dots
moving together and the rest moving randomly (Kiani et al., 2008; Newsome and Pare, 1988).
Monkeys were trained to categorize the direction of motion as predominantly leftward or
rightward. Since the direction of the coherently moving dots (the signal) does not change
over time within a trial, this stimulus contains high category information. Since the motion
direction is di�cult to perceive for any motion frame, it contains low sensory information
(Kiani et al., 2008).

Nienborg et al. (2009) developed a task in which subjects viewed a disc with varying
binocular disparity. The disc moved back and forth relative to a reference plane (the sur-
rounding ring), changing every 10ms, at a rate too high for the macaques’ (and humans’)
binocular system to resolve, resulting in a percept of a jittering cloud of dots which was
located slightly in front of or behind the surrounding ring and blurred in depth (Nienborg –
private communication). After 200 frames presented over 2 seconds, subjects judged whether
the center disc was in front or behind the reference plane. Since the location of the perceived
dot cloud is relatively stable, but itself uncertain with respect to the reference, this stimulus
contains high category and low sensory information (Nienborg and Cumming, 2009).

Studies finding a recency e↵ect or flat weighting

In two similar studies by Wyart et al. (2012) and by Drugowitsch et al. (2016), human
participants viewed a sequence of eight clearly visible oriented gratings presented for at least
250ms each. Participants reported whether, on average, the tilt of the eight elements fell
closer to the cardinal or diagonal axes. These tasks contain high sensory information since
for a subject there is little uncertainty about the orientation of any one grating. However
they contain low category information since the orientation of any one grating provides only
little information about the correct choice (Wyart et al., 2012; Drugowitsch et al., 2016).

Brunton et al. (2013) studied both a visual task and an auditory task where subjects
were trained to indicate whether they saw/heard more flashes/clicks on the left or right side
of the midline. These task stimuli contain high sensory information since each flash/click is
high contrast/loud – well above subjects’ detection thresholds. However, they contain low
category information since each flash/click contains only little information about the correct
choice (Brunton et al., 2013).

Stimulus details

The stimulus was constructed from white noise that was then masked by a kernel in the
Fourier domain to include energy at a range of orientations and spatial frequencies but
random phases (Beaudot and Mullen, 2006; Nienborg and Cumming, 2014; Bondy et al.,
2018). The Fourier-domain kernel consisted of a product of two probability density functions
(PDFs): a von Mises PDF over orientation, and a Rician PDF over spatial frequency. This
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is best expressed using polar coordinates in the Fourier domain:

K⇢✓ = vonMises(✓;µ✓,)Rician(⇢;µ⇢, �⇢)

where ✓ is the angular coordinate and ⇢ is the spatial frequency coordinate. After trans-
forming back from the Fourier domain to an image, we applied a soft circular aperture with
a hole cut out in the center for the fixation cross. The full pixel-space mask is defined by
the equation

M = exp(�4⇢̂2)| {z }
Gaussian aperture

⇥ (1 + erf(10⇥ (⇢̂� ⌧ap/wim)))| {z }
Center cutout for fixation cross

where ⇢̂ is the normalized Euclidean distance to the center of the image (⇢̂ = 0 at the center,
and ⇢̂ =

p
2 at the corners), and erf is the Error Function. ⌧ap controlled the width of the

central cutout, and wim is the total width of the stimulus. To summarize, each stimulus
frame, I, was generated according to

I = M ⌦ F�1 [F [W ]⌦K⇢✓]

where F is the 2D discrete Fourier transform, ⌦ is element-wise multiplication of each pixel,
and W is white noise. Images were displayed using Psychtoolbox on a 1920x1080px 120
Hz monitor with gamma-corrected luminance (Brainard, 1997). Using an 8-bit luminance
range (0 to 255), each frame was normalized to 127± c where c is a contrast parameter. All
stimulus parameters are summarized in table S2.
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Algorithms

Algorithm S1 Importance Sampling (IS) model for evidence integration

LPO log p(C=+1)
p(C=�1) . initialize log posterior odds to log prior odds

for f = 1 to F do
for n = 1 to nU do

pC  (1 + exp(�LPO))�1
. current posterior that C = +1

p̂(x) pCN (+1, �2
x) + (1� pC)N (�1, �2

x) . Mixture of Gaussians prior on x

Q(x) p̂(x)p(ef |x)
for s = 1 . . . S do

x
(s) ⇠ Q(x) . sensory sample from current posterior

p
(s)
+  p(x(s)|C = +1) . contribution of each sample to C = +1 pool

p
(s)
�  p(x(s)|C = �1) . contribution of each sample to C = �1 pool

w
(s)  

�P
c p(x

(s)|C = c)pf�1(C = c)
��1

. (unnormalized) weight of each
sample

end for
w  w/

P
s0 w

(s0)
. (optionally) normalize weights

p
tot
+  

P
s p

(s)
+ w

(s)
. aggregate evidence for C = +1

p
tot
�  

P
s p

(s)
� w

(s)
. aggregate evidence for C = �1

ˆLLOf  log ptot+ � log ptot�
LPO LPO(1� �/nU) + ˆLLOf/nU . equations (13,5) amortized for nU updates

end for
end for

Algorithm S2 Variational Bayes (VB) model for evidence integration

LPO log p(C=+1)
p(C=�1) . initialize to log prior odds

for f = 1 to F do
µzf  2p(zf = +1)� 1 . initialize µzf to the prior
for n = 1 to nU do

µC  2(1 + exp(�LPOC))�1 � 1 . convert log-odds to mean of C

µxf
 �2

eµCµzf+�2
xef

�2
e+�2

x
. equation (17)

LPOzf  log p(zf=+1)
p(zf=�1) + 2

µxf µC

�2
x+�2

e
. equation (18)

µzf  2(1 + exp(�LPOzf )
�1 � 1 . convert log-odds to mean of zf

ˆLLOf  
2µxf µzf

�2
x

. Equation (20)

LPO LPO(1� �/nU) + ⌘ ˆLLOf/nU . Equations (5) and (19) amortized for nU

updates with update strength ⌘

end for
end for
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Example study Justification for placement in task
space (Figure 1, color-coded)

Suggested stimulus manipulation
to change weighting (color-coded)

Brunton et al.
(2013), Raposo et
al. (2014)

Each click is perceptually clear
but only weakly predictive of
which side has the higher rate.

Make clicks softer or embed them
in noise and increase di↵erence in
rates between left and right side.

Wyart et al.
(2012), Drugow-
itsch et al. (2016)

Orientation of each frame is clear
but only weakly predictive of
which “deck” the orientations
were drawn from.

Decrease contrast of each frame
or increase pixel noise and reduce
variance of orientations within
each deck.

Kiani et al. (2008) Net motion is weak (low coher-
ence) and constant over a trial.

Increase motion coherence but
vary net motion direction across
stimulus frames within a trial.

Nienborg et al.
(2009)

Percept is of a jittering cloud of
dots whose depth is close to fixa-
tion point.

Increase the distance between
cloud and fixation point in depth;
vary distance across stimulus
frames at a rate resolvable by
depth perception

Table S1: Justification of placement of example prior studies in Figure 1c and description
of stimulus manipulations that will move it to the opposite side of the category–sensory–
information space. Each manipulation corresponds to a prediction about how temporal
weighting of evidence should change from primacy (red) to flat/recency (blue), or vice versa,
as a result.
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Parameter Description Values (Units)
µ⇢ mean spatial frequency 6.90 (cycles per degree)
�⇢ spread of spatial frequency 3.45 (cycles per degree)
 (inverse) spread of orientation energy 0    0.8
c image contrast 22
⌧ap width of central annulus cutout 25 (pixels) or 0.43 (�)
wim full image width & height 120 (pixels) or 2.08 (�)

Table S2: Stimulus parameters.

6

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 21, 2020. ; https://doi.org/10.1101/440321doi: bioRxiv preprint 

https://doi.org/10.1101/440321
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S1: Stimulus timing for each trial in our visual discrimination task
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Figure S2: Same as Figure 3d in the main text, comparing slope ofw using a linear fit (left) or
an exponential fit (right). Using the linear fit, 11 of 12 subjects individually have a significant
increase in slope (p < 0.05). Using the exponential fit, 10 of 12 subjects individually have a
significant increase in slope (p < 0.05).
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Figure S3: Cross-validation selects linear or exponential shapes for temporal weights, com-
pared to both unregularized and AR2-regularized logistic regression. Panels show 20-fold
cross-validation performance of four methods to fit evidence-weighting profiles, separated
by task type and by subject. Magnitudes are always relative to the mean log-likelihood of
the linear model. Error bars show 50% confidence intervals across folds of shu✏ed data.
“Unregularized LR” refers to standard logistic regression with no regularization. “Regular-
ized LR” refers to the ridge- and AR2-regularized logistic regression objective, where the
hyperparameters were chosen to maximize cross-validated fitting performance for each sub-
ject. “Exponential” is is the 3-parameter model where weights are an exponential function
of time (equation (6) plus a bias term). Similarly, the “Linear” model constrains the weights
to be a linear function of time as in equation (7), plus a bias term.
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Figure S4: Same as Figure 3a-c in the main text, but with no regularization applied to
logistic regression for individual subjects. Both here and in the main text, the “combined”
weights are computed using the un-regularized individual weights.
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Figure S5: In both models, larger � increases the prevalence of recency e↵ects across the
entire task space. Panels are as in Figure 4 in the main text. a-c sampling model with
� = 0. d-f sampling model with � = 0.1. g-i sampling model with � = 0.2. j-l variational
model with � = 0. m-o variational model with � = 0.1. p-r variational model with � = 0.2.
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Figure S6: Simulation results for optimal leak (�) for two further model variations, panels
as in Figure 5 in the main text. a-f Variational model results. As in the sampling model, we
see that the optimal value of �⇤ increases with category information, or with the strength
of the confirmation bias. h-l Sampling model results with S = 1 (in the main text we used
S = 5). Since the sampling model without a leak term approaches the ideal observer in the
limit of S !1, the optimal �⇤ was close to 0 for much of the space in the main text figure.
Here, by comparison, �⇤

> 0 is more common because the S = 1 model is more biased.
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