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Functional clustering of dendritic activity during decision-making 

 

Kerlin A12, Mohar B12, Flickinger D1, MacLennan BJ1, Davis C1, Spruston N1, Svoboda K1*  

Summary 

The active properties of dendrites support local nonlinear operations, but previous imaging and 
electrophysiological measurements have produced conflicting views regarding the prevalence of 
local nonlinearities in vivo. We imaged calcium signals in pyramidal cell dendrites in the motor 
cortex of mice performing a tactile decision task. A custom microscope allowed us to image the 
soma and up to 300 µm of contiguous dendrite at 15 Hz, while resolving individual spines. New 
analysis methods were used to estimate the frequency and spatial scales of activity in dendritic 
branches and spines. The majority of dendritic calcium transients were coincident with global 
events. However, task-associated calcium signals in dendrites and spines were 
compartmentalized by dendritic branching and clustered within branches over approximately 10 
µm. Diverse behavior-related signals were intermingled and distributed throughout the dendritic 
arbor, potentially supporting a large computational repertoire and learning capacity in individual 
neurons. 
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Introduction 

Neurons are bombarded by information from thousands of synaptic inputs, which are sculpted by 
the active properties of dendrites (Stuart and Spruston, 2015). The role of active dendrites in 
single-neuron computation remains unclear. Active membrane conductances may simply 
counteract location-dependent disparities and passive sublinearities across synapses, producing 
neurons that integrate input in a point-like, linear manner (Bernander et al., 1994; Cash and Yuste, 
1999; Spencer and Kandel, 1961). Alternatively, passive and active compartmentalization of input 
signals may divide the dendrite into computational subunits (Koch et al., 1982; Rall and Rinzel, 
1973; Tran-Van-Minh et al., 2015), generating neurons capable of a variety of mathematical 
operations (Koch et al., 1983; B. W. Mel, 1992; Poirazi et al., 2003; Shepherd and Brayton, 1987). 
These local dendritic operations could dramatically increase the capacity of individual neurons to 
store information (Archie and Mel, 2000; Poirazi and Mel, 2001). 

In vitro studies have demonstrated many different types of regenerative events in dendrites, all of 
which are associated with calcium influx (Jaffe et al., 1992; Kim and Connors, 1993; Regehr et 
al., 1989; Tank et al., 1988). Events vary in the extent of their spread within the dendrite. Back-
propagating action potentials (bAPs) can generate widespread calcium transients, dependent on 
firing patterns and synaptic input (Jaffe et al., 1992; Magee and Johnston, 1997; Spruston et al., 
1995; Waters et al., 2003). Calcium plateau potentials initiated at the apical nexus reliably 
generate calcium transients throughout the apical tuft (Helmchen et al., 1999; Larkum et al., 
1999). In contrast, simultaneously activated synapses can interact in a distance-dependent 
manner to trigger localized regenerative activity at the level of individual branches (Losonczy and 
Magee, 2006; Schiller et al., 1998, 1997; Wei et al., 2001).  

In vivo studies have found that bAPs and plateau potentials are associated with widespread 
dendritic calcium signals (Helmchen et al., 1999; Svoboda et al., 1997; Xu et al., 2012). Some 
studies in addition report a high prevalence of local dendritic spikes (Lavzin et al., 2012; Palmer 
et al., 2014; Smith et al., 2013), but other studies failed to find local dendritic spikes (Hill et al., 
2013; Svoboda et al., 1999, 1997), or report local dendritic spikes at very low rates (Sheffield and 
Dombeck, 2014). The prevalence and functional roles of local dendritic operations during behavior 
therefore remain uncertain. 

Clustering of coactive inputs over small length scales could facilitate the generation of dendritic 
spikes (Losonczy and Magee, 2006; Palmer et al., 2014; Weber et al., 2016). Multiple in vivo 
studies have probed the selectivity of dendritic spine calcium signals in pyramidal neurons of 
primary sensory cortex; some of these studies support clustering of functionally similar inputs 
(Iacaruso et al., 2017; Scholl et al., 2017; Wilson et al., 2016), others do not (Chen et al., 2011; 
Jia et al., 2010; Varga et al., 2011). This discrepancy could reflect the details of the sensory 
features investigated; alternatively, differences in the methods used to disambiguate the 
contribution of bAPs, post-synaptic nonlinearities, and pre-synaptic input to spine calcium signals 
could complicate measurements of synaptic selectivity based on calcium imaging. 

The clustering of functionally similar inputs and nonlinear interactions on a scale of tens of 
micrometers would greatly expand the learning and pattern discrimination capacity of neurons 
(Mel, 1991, 1992). Here, we developed novel calcium imaging and analysis methods to estimate 
the spatial structure of activity in dendrites while mice performed a decision-making task. Previous 
calcium imaging studies in dendrites during behavior have imaged short stretches of dendrite 
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(Cichon and Gan, 2015; Sheffield and Dombeck, 2014), making it difficult to disambiguate global, 
branch-specific, or spine-specific activity. To address these issues, we developed a custom 
microscope and imaging strategy that enabled us to simultaneously record calcium signals 
throughout a large part of the dendritic tree, while still resolving signals at the level of individual 
spines. We also developed methods that leverage these near-simultaneous recordings to correct 
for brain motion and estimate the spatial scales of dendritic activity.  

We imaged pyramidal neurons in the anterior lateral motor (ALM) cortex as mice performed a 
tactile decision-making task with well-defined sample, planning, and response epochs (Guo et al., 
2014a). Anterior lateral motor (ALM) cortex is critical for decision making and planned directional 
licking in rodents (Guo et al., 2014b; Li et al., 2016). Neurons within ALM (Chen et al., 2017; Guo 
et al., 2014b) and connected regions (Guo et al., 2017) exhibit diverse behavioral selectivity 
during a tactile decision task. We mapped the prevalence, selectivity, and organization of task-
associated signals across the dendritic tree of individual neurons. We found that nearby spines 
and segments of dendrite had similar behavioral selectivity, and that the branching structure of 
the dendritic tree compartmentalizes task-associated calcium signals. 

Results 

High-resolution and Large-scale Dendritic Calcium Imaging During Tactile 
Decision-making 
We imaged calcium-dependent fluorescence changes (‘calcium transients’) in the dendrites of 
GCaMP6f-expressing neurons in the anterior lateral motor (ALM) cortex of mice performing a 
tactile delayed-response task (Guo et al., 2014b). To characterize the spatial organization of task-
related signals within dendritic arbors, it was critical to image large parts of the dendrite with high 
spatial and temporal resolution. We constructed a two-photon laser-scanning microscope (Denk 
and Svoboda, 1997) that allows rapid (approximately 15 Hz) imaging of the soma and contiguous 
dendrite in three dimensions, while resolving calcium transients in individual dendritic spines 
(Figure 1A). Two mirror galvanometers and a remote focusing system (Botcherby et al., 2008) 
steer 16 kHz scan lines (24 µm long) arbitrarily in three dimensions (Sofroniew et al., 2016). The 
system provided a 0.35 µm lateral and 1.9 µm axial resolution in the center and 0.56 µm lateral 
and 4.0 µm axial resolution at the edges of a 525 µm x 525 µm x 300 µm FOV.  

Stable and sparse neuronal labeling is required for high signal-to-noise ratio and accurate 
reconstructions of dendritic morphology. We used Cre driver lines with sparse expression in L2/3 
of ALM (Syt17_NO14-Cre) or L5 (Chrna2_OE25-Cre; Gerfen et al., 2013). Chrna2_OE25-Cre 
mice expressed in a subpopulation of pyramidal tract (PT) neurons and not intratelencephalic (IT) 
neurons (Figure S1; Gerfen et al., 2013). These lines were crossed with a GCaMP6f reporter line 
(Ai93; Madisen et al., 2015) and tTa-expressing lines (see Methods). Expression was sufficiently 
sparse and bright to allow reconstruction of dendritic arbors from two-photon anatomical stacks 
(Figure 1B,F). We first traced the dendritic arbors of individual neurons (Figure 1B,F). The 
morphological data were then imported by custom software for selecting dendritic branches for 
fast imaging. The software calculated imaging sequences that optimize the actuator trajectories 
to maximize speed and coverage (Figure 1C,G). We used iterative, non-rigid registration to 
correct recordings for motion in three dimensions (Figure 1D,E,H,I; Figure S2, Video S1 and 
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Methods). These methods allowed us to record calcium transients in the soma, dendrites (up to 
300 µm total length), and up to 150 spines. 

Mice performed a whisker-based object localization task (Guo et al., 2014b). A pole was 
presented at one of two locations (for 1.25 s) and withdrawn; after a delay epoch (2 s), mice licked 
either a right or left lickport based on the previous pole location (Figure 2A). In L2/3 neurons, we 
imaged the soma or proximal apical dendrite as a reference for multi-branch (‘global’) events 
associated with bAPs (Figure 2B, Video S2). For each imaging session (maximum one session 
per day; median duration: 61 minutes) we targeted dendrites that were not previously imaged. 
We imaged a total of 3728 spines on 11.4 mm of dendrite from 14 neurons (7 mice; 52 behavioral 
sessions; per-session medians: 241 trials, 74 spines, 221 µm of dendrite). In L5 neurons, we 
imaged the apical trunk as a reference for global events in the apical tuft (Figure 2C, Video S3). 
We imaged a total of 655 spines on 3.9 mm of dendrite from five neurons (4 mice; 16 behavioral 
sessions; per-session medians: 276 trials, 39 spines, 259 µm of dendrite). 

The Majority of Dendritic Calcium Transients are Coincident with Global 
Events  
Our imaging approach provided a map of calcium transients across the dendritic arbor during 
behavior. We simultaneously imaged the soma, where signals reflect action potentials, and 
subthreshold calcium signals are negligible (Berger et al., 2007; Svoboda et al., 1997; Figure 2B). 
We observed activity restricted to single spines (Figure 2B, time-point i) as well as activity 
restricted to isolated dendritic branches, in the absence of detectable activity in the soma of a 
L2/3 neuron (Figure S3), or the apical trunk of a L5 neuron (Figure 2C, time-point ii). However, 
these isolated dendritic events were rare. Instead, most events were ‘global’, in that calcium 
transients were detected simultaneously throughout the soma and all of the imaged parts of the 
dendritic arbor (Figure 2B, time-point ii; Figure 2C, time-point i).  

Detecting local dendritic events could be limited by the signal-to-noise ratio of our measurements. 
Although ex vivo (Golding et al., 2002a) and in vivo (Svoboda et al., 1999) experiments indicate 
that the calcium influx triggered by local regenerative dendritic events is larger than the influx 
triggered by bAPs, we avoided assumptions about the magnitude or discrete nature of local 
events in dendrites during behavior. To estimate of the prevalence of local events, we calculated 
a sample-by-sample probability that the global reference (soma or apical trunk) was below and 
the dendrite above a range of DF/F thresholds, while accounting for measurement noise (see 
Methods, Figure 3A, Figure S4). We used these probabilities to estimate the proportion of activity 
that was independent of (i.e., not coincident with) the global reference. We also performed this 
analysis on spines. We limited our L2/3 data to sessions with simultaneous recording from the 
soma (234 dendritic segments, 30 µm long; 1625 spines). All of our L5 tuft recordings included 
simultaneous measurements from the apical trunk. 

In L2/3 dendrites, independent dendritic activity was rare. For example, with the somatic threshold 
set to detecting 1-2 spikes (approximately 15% DF/F; Chen et al., 2013) the probability of 
independent activity in L2/3 dendrites barely rose above the expected false discovery rate across 
a range of DF/F thresholds (Figure 3C, mean difference at threshold of DF/F > 1: 0.037 ± 0.009). 
In contrast, the proportion of independent activity in spines was higher by one order of magnitude 
(Figure 3B,C; see Figure S4 for complete co-active, independent, and false discovery rate grids). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 10, 2018. ; https://doi.org/10.1101/440396doi: bioRxiv preprint 

https://doi.org/10.1101/440396
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

The proportion of independent activity in spines was close to 30%, even at thresholds where the 
false discovery rate approached zero (mean difference at threshold of DF/F > 1: 0.324 ± 0.006). 

A higher proportion of independent dendrite activity was observed in L5 tufts, compared to L2/3 
dendrites (Figure 3C, mean difference at threshold of DF/F > 1: 0.15 ± 0.02, p < 10-12 Wilcoxon 
rank-sum test), although the majority of activity was still coincident with the global signal 
measured in the apical trunk. The distribution of independent activity across individual dendrite 
segments was skewed, especially in L2/3 (Figure 3D), where the top 10% most independent 
segments accounted for 76% of all independent activity (versus 35% for L5 dendrite segments; p 
< 0.001 K-S test on distributions). Independent activity in dendrites often took the form of a 
sustained elevation in fluorescence that began with a global event but outlasted the global event 
by 100s of milliseconds or even several seconds (Figure S3). However, these low rates of 
independent activity do not preclude local modulation of the amplitude of dendritic signals during 
global events.  

Task-related Calcium Signals in the Dendrite 
To characterize the local modulation of dendritic activity we estimated and removed the bAP-
related component of calcium transients (Figure S5). Our analysis shows that different 
conclusions can be drawn from signals processed with or without bAP-subtraction. Thus, we 
analyze and present results from both. 

Task-associated calcium transients in dendritic spines were consistent across behavioral trials 
(Figure 4A-D). Prior to removal of the bAP component, the task-associated responses of 
individual spines ranged from nearly identical to the soma (Figure 4A, B; spine i) to largely non-
overlapping (Figure 4C, D; spine ii), but on the whole trial-averaged activity was high during 
epochs when soma activity was high (Figure 4E). Removal of the bAP-related component 
sharpened (Figure 4A, B; spine ii), eliminated (Figure 4A, B; spine i), or had no effect (Figure 4C, 
D; spine ii) on the apparent selectivity of individual spines. After subtraction, the distribution of 
trial-averaged spine activity was less focused on epochs with somatic activity (Figure 4F).  

To obtain a one-dimensional measure of the selectivity of responses for behavioral epoch, we 
treated the mean responses during sample, delay and response epochs as the magnitudes of 
three vectors separated by 120° in a polar space (Figure 5). The angle of the vector average then 
determined the epoch selectivity of each dendritic segment or spine (Figure 5B). To quantify and 
visualize trial-type selectivity, dendritic segments and spines were then given one of three colors 
depending on whether signals were selective for right (blue), left (red), or switched selectivity 
across epochs (purple; Figure 5C). In L2/3 dendrites (see Figure 5A-C for an example session), 
63% of spines and 74% of short dendrite segments (~3 µm, see Methods) exhibited significant (p 
< 0.01, nonparametric ANOVA and standard error for epoch angle of < 30 degrees) activity 
selective for specific trial epochs. 20% of spines and 30% of short dendrite segments exhibited 
significant (p < 0.05, permutation test with Bonferroni correction) selectivity for trial-type (right vs. 
left) during at least one of the epochs. Similar selectivity was observed in L5 tuft dendrites (see 
Figure 5F-H for an example session; for all sessions: epoch selective: 46% of spines and 39% of 
dendrite segments, trial-type selective: 27% of spines and 38% of dendrite segments). Similar 
proportions of spines and dendritic segments with selectivity were observed after bAP subtraction 
(L2/3, Figure 5D,E,  epoch selective: 53% of spines, 67% of dendrite segments, trial-type 
selective: 18% of spines and 27% of dendrite segments; L5, Figure 5I,J, epoch selective: 47% of 
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spines, 54% of dendrite segments, trial-type selective: 28% of spines and 35% of dendrite 
segments). 

To quantify the diversity of task-related calcium signals in the dendrite, we analyzed differences 
in selectivity between pairs of selective spines from the same neuron. The distributions of pairwise 
differences in epoch selectivity was left-skewed for spine pairs of both L2/3 (Figure 5K, mean: 30 
deg., 95% CI: 23 - 37 deg., IQR: 28 deg.) and L5 neurons (Figure 5L, 57 deg., 95% CI: 45 – 71 
deg, IQR: 106 deg.). Epoch selectivity was significantly different (p < 0.05, bootstrap across trials) 
for 27% of spine pairs in layer 2/3 dendrite and 43% of spine pairs in L5 tuft dendrite. bAP 
subtraction shifted measures of diversity in epoch selectivity slightly higher (Figure 5O-Q, L2/3: 
mean: 43 deg., 95% CI: 34 – 52 deg., IQR: 47 deg., significantly different: 31%; L5 tuft: mean: 60 
deg., 95% CI: 46 – 78 deg., IQR: 127 deg., significantly different: 44%). Spine pairs exhibited 
different trial-type selectivity at proportions similar to epoch selectivity for both L2/3 and L5 (Figure 
5M,P). Similar diversity of epoch and trial-type selectivity was observed between pairs of dendrite 
segment (data not shown). 

Previous studies of the functional responses of dendritic spines estimated and removed the bAP 
component based on linear regression of the signals from a spine versus nearby dendrite (Chen 
et al., 2013; Iacaruso et al., 2017; Wilson et al., 2016). Computer simulations show that this 
approach produces biased estimates of correlations between nearby spines (Figure S7). In 
addition, it does not account for differences in the decay times of bAP-generated transients in the 
soma compared to the dendrites. To overcome these issues, we deconvolved the reference signal 
(soma or apical trunk; Pnevmatikakis et al., 2016; Vogelstein et al., 2010), determined the 
amplitude and exponential decay that best fit each dendritic segment or spine signal (when 
convolved with the reference signal), and subtracted this fit (Figure S5).  

Systematic errors in bAP-subtraction could affect the apparent organization of task-related 
calcium signals in the dendrite. Under- or over- subtraction can produce inaccurate correlations 
between the bAP reference signal and spines as well as hypo- or hyper-diversity in the selectivity 
of spines (Figure 6B). To analyze the robustness of various measures of dendritic calcium signals 
to our subtraction approach, we performed computer simulations with different assumptions about 
the processes underlying the spike-to-fluorescence transformation (Figure S6). We found that our 
subtraction procedure, as well as other linear subtraction methods we tested, failed to produce 
robust estimates of correlations between spines and the global reference signal. Thus, we 
avoided a quantitative comparison of input (spine signals) and output (reference signals). It 
follows that the post-subtraction diversity of task-related selectivity (Figure 5N,O) may not be 
robustly estimated. However, the diversity of selectivity measured without subtraction (Figure 
5K,L) provides a lower bound on the diversity of task-related selectivity. Simulations also indicated 
that signals processed with our approach to bAP-component removal produced robust estimates 
of the spatial structure of dendritic activity (Figure 6C, Figure S7).   

Spatial Clustering of Task-related and Trial-to-trial Signals 
Nearby spines and dendrites exhibited similar selectivity (Figure 5). To quantify the similarity of 
selectivity as a function of distance along the dendrite, we calculated the correlation of average 
responses (‘signal correlation’) between pairs of spines and pairs of dendritic segments (Figure 
7A). We randomly selected non-overlapping sets of trials to calculate trial-average responses of 
each dendritic segment or spine in the pair, which prevented trial-to-trial correlations (‘noise 
correlations’) from contaminating our estimates of signal correlation (Cohen and Kohn, 2011). Our 
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imaging methods allowed us to measure pairwise correlation from simultaneous recordings at 
distances considerably longer than previous studies (Iacaruso et al., 2017; Wilson et al., 2016). 
Pairwise correlations were strongest for nearby dendritic segments and spines in both L2/3 
dendrites and L5 tufts (Figure 7B,C; p < 0.001 for both, nonparametric ANOVA comparison to 
shuffle). These signal correlations (especially in L2/3 dendrites) had a long linear decay in addition 
to the short exponential component estimated in studies of visual cortex (Iacaruso et al., 2017; 
Wilson et al., 2016). Fits to this exponential-linear function (see Methods), provided estimates of 
the length constant of the exponential component that ranged from 7 to 19 µm (Figure 7C). 
Differences in exponential length constant between spine pairs, dendrite pairs, L2/3 neurons, and 
L5 neurons were not significant (p > 0.05 for all comparisons, shuffles across sessions).  
Combining across cell types, we estimated a length constant of 8 ±	4 µm for dendrite segments 
and 13 ±	6 µm for spines. 

In addition, we measured noise correlation among spines and dendrite segments. These noise 
correlations may reflect variable sensation and behavior during task performance, common 
sources of input, or other processes. As with signal correlations, we observed a strong effect of 
distance on pairwise noise correlations (Figure 7E,F) for dendrite segment pairs and spine pairs 
in L2/3 dendrites and L5 tufts (p <0.001 for both, nonparametric ANOVA comparison to shuffle) . 
Fits to the exponential-linear function provided estimates of the length constant of the exponential 
component that ranged from 9 to 18 µm (Figure 7F). Differences in exponential length constant 
between spine pairs, dendrite pairs, L2/3 neurons, and L5 neurons were not significant (p > 0.05 
for all comparisons, shuffles across sessions). Combining across cell types, we estimated a length 
constant of 10 ±	3 µm for dendrite segments and 14 ±	3 µm for spines. Thus, the spatial profile of 
noise correlations within the dendrite was not significantly different from the profile for signal 
correlations. 

To control for artefactual correlations due to residual image motion, we analyzed correlations in 
pairs with short Euclidean distance (< 15 µm) but longer distance along the dendrite (> 30 µm). 
In dendrites of L2/3 neurons – where a sufficient number of pairs met this criteria – pairs with 
short Euclidean distance had significantly lower correlation than pairs with an equivalent distance 
along the dendrite (Figure 7C,F, purple points), indicating that residual motion makes little 
contribution to the distance-dependent correlations.  

Dendritic Branching Compartmentalizes Task-related Calcium Signals 
Impedance mismatch at branch points (Marlin and Carter, 2014; Müllner et al., 2015) and branch-
specific regulation of excitability (Losonczy et al., 2008) may compartmentalize signals to dendritic 
branches. To test if this influences behavior-related calcium signals, we compared the similarity 
of selectivity within and across branches. The distribution of epoch selectivity was clearly different 
from branch to branch in some imaging sessions (Figure 8A). We measured the mean signal 
correlation for spine and dendrite pairs within versus across branches. Branch location had a 
significant effect on spine and dendrite pairs from both L2/3 and L5 tuft (Figure 8B). This could 
reflect an influence of branch structure, the distance-dependence of signal correlations, or both. 
To selectively test for an influence of branch points, we restricted the data to pairs less than 10 
µm apart that were either within a branch or crossed a single branch point. Correlations were 
lower when a branch point was crossed (Figure 8C; p < 0.05 for all groups of pairs except L5 tuft 
spines). 
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Discussion 

We recorded activity in the dendrites and spines of motor cortex pyramidal neurons as mice 
performed a tactile discrimination task. The majority of calcium transients in the dendrites were 
coincident with global events. Localized independent events were rare and occurred with higher 
frequency in the dendritic tufts of L5 neurons than in the dendrites of L2/3 neurons. The 
amplitudes of local calcium signals were modulated by task-related variables. The calcium signals 
were spatially clustered within individual dendritic branches. Our data suggest that sensorimotor 
signals are compartmentalized within the dendrites of neurons in motor cortex, consistent with 
models in which branch-specific information enhances the computational and learning capacity 
of neural circuits (Poirazi and Mel, 2001; Wu and Mel, 2009). 

Simultaneous Imaging of Soma, Contiguous Dendrites, and Spines  
Our microscope and imaging strategy allowed us to obtain near-simultaneous, high-resolution 3D 
images of the soma and up to 300 µm of contiguous dendrite and spines at 15 Hz. This provided 
several advantages over functional imaging of dendrites that intersect one or two imaging planes 
(Cichon and Gan, 2015; Sheffield and Dombeck, 2014). First, we were able to sample dendrites 
more efficiently. Second, imaging long stretches of contiguous dendrite allowed us to localize 
activity to specific dendritic regions (Figure S3; Figs. 7, 8). Third, averaging fluorescence across 
extended (30 µm) dendritic segments improved the SNR for our branch measurements (Figure 
3) and reduced contamination of dendritic shaft signals by spine signals. 

For rapid scanning in 3D we used a resonant mirror, mirror galvanometers, and remote focusing 
(Botcherby et al., 2008). Actuator control signals were optimized computationally (see Methods). 
This approach offers some advantages over acousto-optical scanning methods, which can have 
higher rates of dendrite and spine imaging (Nadella et al., 2016; Szalay et al., 2016), but a smaller 
field-of-view (FOV) and 1.5 – 3 times lower resolution depending on location in the FOV. Dense 
and high-resolution images of the targeted dendrite and nearby space were critical for identifying 
and excluding signals from crossing axons and boutons that would otherwise appear as strongly 
independent dendrite or spine activity (see Methods). In the future, point-scanning systems 
combining motionless and mechanical deflection may provide the optimal trade-offs between 
speed, resolution, and FOV for dendrite and spine imaging (Heberle et al., 2016). Even higher 
imaging speeds can be obtained using alternatives to point-scanning, such as imaging with an 
elongated focus (Lu et al., 2017) or tomographic scans (Kazemipour et al., 2018), but at the 
expense of requiring higher average laser power and computational reconstruction of signal 
sources. 

Identifying task-related activity in individual dendritic spines required recordings across 100 or 
more behavioral trials. Brain movement during task performance, especially during licking 
(Andermann et al., 2010; Komiyama et al., 2010), made stable spine recordings challenging. We 
addressed this issue by developing an iterative clustering and registration algorithm to obtain 
submicron, nonrigid registration (see Figure S2, Video S1 and Methods).  

Analysis and Interpretation of Calcium Signals in Dendrites and Spines 
Understanding local dendritic operations will require precise measurements of synaptic activity 
and various post-synaptic processes. Calcium influx into the dendritic shaft and spines is 
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produced by synaptic receptors and voltage-gated calcium channels. Both types of conductances 
are modulated by synaptic currents and postsynaptic electrogenesis, complicating the 
interpretation of dendritic calcium signals. Synaptic signals can be isolated during dendritic spine 
imaging by abolishing bAPs, using invasive approaches that hyperpolarize (Jia et al., 2010; Levy 
et al., 2012) or depolarize (Mainen et al., 1999) the neuron. These manipulations, however, are 
difficult to apply in behaving animals, especially in chronic imaging preparations, and could trigger 
plasticity (Wigström et al., 1986). Several studies (Chen et al., 2013; Iacaruso et al., 2017; Scholl 
et al., 2017; Wilson et al., 2016) have instead interpreted signals from nearby dendrites as a 
reference for computational removal of the bAP signal in spines. However, signals in the nearby 
dendrite are not necessarily exclusively or linearly related to bAPs: local synaptic input can 
generate coincident dendritic spikes (Golding and Spruston, 1998; Losonczy and Magee, 2006), 
as well as amplify or suppress the amplitudes of bAP calcium transients in the dendrite (Magee 
and Johnston, 1997; Waters and Helmchen, 2004). To obtain a reference signal that more directly 
reflects action potentials, we used simultaneously recorded signals from the soma of L2/3 
neurons, where subthreshold depolarization has a negligible impact on calcium signals (Berger 
et al., 2007; Svoboda et al., 1997). We developed a new bAP subtraction method that accounts 
for differences in calcium dynamics across compartments, especially the long decay dynamics in 
the soma compared to the dendrite. 

Computer simulations indicated that conclusions drawn from this approach are still limited (Figure 
S6). Inferred correlations between input (spines) and output (soma) did not reliably predict true 
correlations, even in simple and linear models of the relationship between activity and 
fluorescence signals in dendritic spines. This was also true for all linear subtraction methods we 
tested. Correlations at timescales shorter than the decay of the GCaMP signals were most 
affected. This is also the timescale over which synaptic input would be expected to influence 
somatic spiking, and therefore neuronal output. We therefore avoided drawing conclusions about 
how synaptic input might drive output.  

Other measures of the spatial structure of dendritic activity, however, were robustly estimated 
using our bAP subtraction approach (Figure 6, 7 and Figure S7). We simulated pre-synaptic 
clustering or post-synaptic cooperativity with varying length scales, based on the real geometry 
and numbers of spines analyzed for L2/3 neurons (see Figures 1B-E,2B,3B,4A,5A,8A for example 
sessions). Using our subtraction methods on simulated data, the presence or absence of 
structured correlations was accurately detected and the inferred length scale of pairwise 
correlations closely matched the simulated scale. These estimates were robust to potential 
differences in the rate of calcium extrusion across different dendritic compartments, which was 
simulated with a distance-dependent variation in decay dynamics (see Methods). The length 
scales we estimate could reflect pre- and post-synaptic processes and should thus be regarded 
as a description of the local component of calcium signals in the dendrite. 

Incorporation of assumptions about the temporal or functional structure of pre- and post-synaptic 
activity into bAP-removal methods may facilitate more accurate inference of input-output 
correlations. Studies of the functional properties of dendritic spines in visual cortex have excluded 
spines from analysis where removal of the bAP-component is suspect, using inclusion criteria 
based on the shape of receptive fields of synaptic inputs, or the magnitude of correlation with 
output (Iacaruso et al., 2017; Smith et al., 2013). We did not apply any such constraints on the 
task-related responses of inputs to ALM neurons. However, future bAP subtraction methods could 
use other a priori information about temporal structure of input and output activity as constraints. 
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These constrains could include the binary nature of spikes, the distribution of mean firing rates, 
and the relative refractory period. These priors could be used by nonlinear inference methods to 
more accurately disambiguate pre-and post-synaptic activity (J. Yan, A. Kerlin, L. Aitchison, K. 
Svoboda, S. Turaga, Cosyne Abstr. 2018).  

Multi-branch Events are Coincident with the Majority of Calcium Transients 
in Dendritic Branches 
Although most calcium transients in dendritic branches are coincident with global events, 
branches in the L5 tuft showed some activity independent of other branches during behavior. 
Previous recordings from the tuft of L5 neurons in motor cortex in vivo (under anesthesia) found 
very small fluctuations in dendritic calcium that were consistent with the activity of single spines, 
but no evidence of bAP-independent regenerative events in specific branches (Hill et al., 2013). 
In contrast, another study reported that at least 95% of calcium spikes in the L5 tuft were not 
shared across sibling branches during a forced-running paradigm (Cichon and Gan, 2015). Global 
events (bAP or trunk spike) may not reliably invade all branches (Hill et al., 2013; Spruston et al., 
1995), so we used simultaneously recorded signals from the apical trunk as a reference for global 
events. At reasonable thresholds for detecting calcium transients, we found a low rate of 
independent activity (15% proportion independent; Figure 3C). Furthermore, much of this 
“independent” activity took the form of sustained activity (up to seconds) following global events 
(Figure S3). Our L5 tuft results are similar to a study of the distal dendritic branches of 
hippocampal neurons during navigation (Sheffield and Dombeck, 2014), which detected dendritic 
calcium transients independent of somatic transients only rarely. Additional work is needed to 
determine if differences between studies in the reported prevalence of independent branch-spikes 
in the tuft of L5 neurons reflects different learning demands placed upon cortical circuits or 
technical differences in the recording and analysis of dendritic events. 

Independent dendritic calcium transients were even less frequent in L2/3 dendrites than in the L5 
tuft. We did not detect a significant effect of distance from the soma on the rate of independent 
events in the dendrite of L2/3 neurons (data not shown), but the majority of our data were collected 
within 200 µm from the soma. It is possible that we underestimate the frequency of independent 
dendritic events if the calcium transients they generate during behavior are well below our 
measurement noise. In ex vivo (Golding et al., 2002b) and in vivo (Svoboda et al., 1999) 
experiments, however, the calcium influx generated by dendritic spikes is considerably larger than 
the influx generated by a bAP. Thus, local synaptic input may modulate the calcium influx into the 
dendritic shaft produced by bAPs, perhaps by facilitating the generation of coincident local 
regenerative events.  

Organization of Task-Related Signals in the Dendritic Tree 
Task-related calcium signals were clustered within the dendritic tree of neurons in motor cortex 
(Figures 5, 7). Functional similarity among spines and dendrite segments followed an exponential 
decay with a length constant of approximately 10 µm. Previous work in mouse visual cortex has 
also observed a distance dependence of retinotopic similarity among spines (Iacaruso et al., 
2017). In ferret visual cortex, this distance-dependence exhibited an even smaller length constant 
(5 um; Scholl et al., 2017). The short exponential decay of distance-dependent correlations we 
and others measured could reflect a clustering of pre-synaptic inputs with similar functional 
properties or input onto nearby spines from the same axon (Bloss et al., 2018; Kasthuri et al., 
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2015). The length constant (~10 µm) is similar to a number of spatially restricted plasticity 
mechanisms. When activated by stimulation of a single spine, small GTPases spread throughout 
~5-10 µm of the dendrite (Harvey et al., 2008; Murakoshi et al., 2011; Nishiyama and Yasuda, 
2015) and influence plasticity at nearby spines (Harvey and Svoboda, 2007). During development, 
ryanodine-sensitive calcium release (Lee et al., 2016) and BDNF-mediated synaptic depression 
(Winnubst et al., 2015) can produce selective stabilization of inputs with similar spontaneous 
activity over distances of 5-10 µm. This length scale is also consistent, however, with nonlinear 
NMDA receptor-mediated amplification of synaptic calcium signals by the activity of neighboring 
spines (Harnett et al., 2012; Weber et al., 2016). NMDA cooperativity and spikes could cluster 
inputs with similar task-related signals via calcium-dependent plasticity mechanisms. NMDA 
cooperativity may also spatially filter the calcium signals from otherwise randomly distributed pre-
synaptic input. 

Our analysis allowed us to measure pairwise correlations across branches and spanning large 
distances within the dendritic tree. We found that in addition to a short exponential decay, 
correlations exhibited a linear decay over longer distances (up to 180 µm). This was true of both 
signal and noise correlations. This decay may reflect a combination of multiple processes, 
including passive and active (via voltage-gated potassium channels) attenuation of both 
subthreshold potentials and locally initiated dendritic sodium spikes (Gasparini, 2004; Harnett et 
al., 2013). The branching structure of dendrites further compartmentalizes task-related signals 
within the dendrites. A number of mechanisms could confine excitability in branch-specific 
manner, including current sinks towards branch points (Branco et al., 2010; Marlin and Carter, 
2014; Müllner et al., 2015), the sub-branch organization of inhibitory input (Bloss et al., 2016), 
and the distribution of Kv4.2 potassium channels (Losonczy et al., 2008).   

Diverse behavior-related signals were distributed throughout the dendritic arbor, and were 
compartmentalized by dendritic distance and branching. This compartmentalization may reflect 
local dendritic operations that expand the processing and information storage capacity of 
individual neurons (Archie and Mel, 2000; Poirazi and Mel, 2001). Understanding how these 
operations transform pre-synaptic information may be critical to interpreting the structure and 
function of cortical circuits. These local operations may also play a critical role in learning and 
dendritic plasticity, and future work in the motor cortex could explore the relationship between 
compartmentalized anatomical changes (Chen et al., 2015; Fu et al., 2012; Yang et al., 2009) and 
clustered task-related activity during learning. 
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Figure Legends 

Figure 1. Targeted High-Speed Imaging in Behaving Mice. (A) Optical layout for high-speed, 
high-resolution imaging in three dimensions. An x-axis mirror galvanometer, remote focusing arm, 
and prism-based GDD compensation unit were added to a high resolution (NA = 1.0) resonant 
two photon microscope. EOM, electro-optic modulator; GDD, group delay dispersion; Res., 8 kHz 
resonant scanner; PR, pupil relay; Gal., galvanometer; PBS, polarizing beam splitter; QWP, 
quarter wave plate; RFO, remote focusing objective; VC, voice coil; DM, dichroic mirror; IO, 
imaging objective; PMT, photomultiplier tube. (B) Maximum intensity projections (MIP) of 
anatomical stack collected from Syt17-Cre x Ai93 (pia to 306 um depth) mice. Traced dendrite 
(purple lines) and example targets (red lines) for an example imaging session. (C) Spatial and 
temporal distribution of the frames that compose the example functional imaging sequences in 
(B). (D) Average MIP of 30 minutes of the functional imaging sequence shown in (B, C). (E) Close-
up of the dendritic branch outlined in (D) before and after motion correction. (F-I) same as (B-E) 
for a layer 5 cell (MIP in (F) is pia to 560 um depth). See also Figure S1 for characterization of 
the transgenic lines and Figure S2 for details on motion registration. 

Figure 2. Dendrite and Spine Calcium Activity. (A) Mice were trained to lick either a right or 
left target based on pole location. The pole was within reach of the whiskers during the sample 
epoch. Mice were trained to withhold licks until after a delay and auditory response cue.  (B) Top, 
example somatic (black), dendritic (magenta), and spine (green) calcium signals from a layer 2/3 
example session (as shown Figure 1B-E). Bottom, maximum intensity projections (au) and branch 
insets at selected times (dashed vertical lines in upper traces). Note independent spine activity at 
time i. (C) Same as (B) but for the layer 5 example session (as in Figure 1F-I). The apical trunk 
(black) was targeted as a reference for global activity. Note branch-specific sustained activity at 
time ii. 
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Figure 3. Coincidence of Dendritic Calcium Transients with Events in the Soma and Apical 
Trunk. (A) Estimation of isolated spine activity as a function of threshold. (i) Example spine DF/F 
(green), threshold (red - 100% ∆F/F) and estimated uncertainty in DF/F due to shot-noise (gray 
shading). (ii) Probabilities of the spine to be above threshold. (iii, iv) same as (i, ii), but for the 
soma (black) with a lower threshold (15% ∆F/F). (v) Probability of co-activity. (vi) Probability of 
independent activity. (B) The proportion of independent activity in spines and dendrites, example 
session. (C) Proportion independent as a function of threshold averaged across all spines (green) 
and dendrites (magenta). Left, L2/3 basal and apical dendrites with soma used as reference. 
Right, L5 tuft dendrites with apical trunk used as reference. Shaded region: SEM. Dotted lines: 
estimated false discovery rate (FDR). (D) Distribution of the mean proportion independent activity 
of spines (green) and dendrites (magenta) of layer 2/3 cells (left) and L5 tuft (right). Note, L5 
dendrites have a more rightward skewed distribution. See Figure S3 for the full distributions of 
co-active, independent and false discovery rate as a function of thresholds. 

Figure 4. Local Selectivity After Removing the bAP Component. (A) Subtraction of the bAP 
component from spine signals and estimation of trial average responses for two example spines. 
Image: MIP of an example L2/3 cell. Light lines: DF/F for all 110 correct right trials. Dark lines: 
trial-average DF/F. Black: Soma. Green: Spine before bAP subtraction. Brown: Spine after bAP 
subtraction. (B) Mean and standard error by trial epoch across all correct right trials of the spines 
in (A) with the same color-code. Note that most of the activity is being subtracted in spine i, but 
independent activity is not being subtracted in the response epoch of spine ii.  (C, D) Same as (A, 
B) for a different L2/3 cell. (E) Trial-average responses of right sensory (S) and early response 
(R1) epochs for all dendrite segments and spines in the session shown in (B). (F) Same as (C) 
after removal of the estimated bAP component. See also Figure S5 for an example subtraction of 
two spines. 

Figure 5. Dendrite and Spine Calcium Signals Exhibit Diverse Selectivity for Trial Epoch 
and Trial Type. (A) Location of simultaneously imaged dendrite (red lines) relative to the soma 
(black dot) and connecting dendrite (purple) that was not imaged for an example imaging session 
of a L2/3 cell. (B) Epoch selectivity for masks at two locations denoted by black boxes in (A). 
Mean sample, delay, and response epoch DF/F provided the magnitude for 3 vectors separated 
by 120°. The angle of the vector average in a polar RGB space determined the color of each 
mask. Only masks with significant epoch selectivity (permutation ANOVA, p < 0.01 and epoch 
angle SE < 30 degrees) are colored. (C) same as (B) but for trial-type selectivity. Masks 
significantly selective (permutation t-test, p < 0.05 with Bonferroni correction) for right are blue, 
selective for left are red, and selective for both right and left depending on epoch are purple. (D, 
E) Same as (B, C), but with bAP subtraction. (F-J) Same as (A-E), but for an example L5 tuft 
session. Black dot in (F) denotes apical truck. (K) Distribution for L2/3 neurons of differences in 
epoch selectivity between epoch selective spines (epoch angle CI < 30 degrees) on the same 
neuron for L2/3 neurons. Red: Significantly different (p < 0.05; bootstrap test on epoch angle). 
Black: Not significantly different. Dotted line: Mean angle across all pairs. (I) Same as (K), but for 
L5 tuft. (M) Of epoch or trial-type selective spines, proportion of spine pairs with significantly 
different epoch angle or trial-type selectivity, respectively. (N-P) Same as (K-M), but with bAP 
subtraction. 

Figure 6. Interpretation of Dendritic Calcium Signals Before and After Removal of the 
Estimated Contribution from Back-Propagating Action Potentials (bAP). (A) Spine 
responses under different bAP subtraction regimes. Top, Cartoon of the soma and spatial 
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organization of five spines. Soma trial-average response (black curve) is centered between the 
sample and delay epochs. (i) True (perfect bAP-component removal) tuning curves for the spines 
exhibiting a distance-dependent similarity of selectivity. (ii) If the bAP-component is under 
subtracted, subtracted tuning curves will still be biased towards the somatic selectivity. (iii) If the 
bAP-component is over subtracted, subtracted tuning curves will be biased away from the somatic 
selectivity. (B) Input-output correlation under different bAP subtraction regimes. Top, polar RGB 
representation of spine selectivity as in Figure 5B. (i) With perfect subtraction, the inferred 
correlation of each spine tuning curve with the somatic tuning curve matches the true correlation 
(plot). In this cartoon, spine selectivity is biased towards the selectivity of the soma (redder), but 
there is still significant diversity (green and blue spines). (ii) Under-subtraction of the bAP-
component leads to less diverse spine selectivity and higher correlations with the somatic output. 
(iii) Over-subtraction of the bAP-component leads to more diverse spine selectivity and less 
correlation with the somatic output than truth. (C) Distance-dependent correlation between pairs 
of spines can be fit with a three-parameter exponential function. A: magnitude of distance-
dependent correlations, l: length constant, B: magnitude of distance-independent correlations. (i-
iii) Different levels of subtraction dramatically shift the inferred values of A and B, but l is robustly 
estimated.  See also Figure S6 for performance of input-ouput simulation and Figure S7 for length 
constant simulations.  

Figure 7. Behavior-related Calcium Signals are Organized in a Distance-Dependent Manner 
Within the Dendritic Tree. (A) Estimation of pairwise signal correlation for two example spines 
(denoted in (B)). Trial average responses for each epoch and trial type are calculated for each 
mask from non-overlapping trials (to exclude noise correlations). Signal correlation is the Pearson 
correlation coefficient between these sets of responses. (B) Pairwise signal correlation of three 
spines (green dots) with all other masks in an example session. (C) Pairwise signal correlation as 
a function of traversal distance through the dendrite. Shaded regions are ± SEM (see Methods). 
Magenta point is the mean pairwise correlation of masks with Euclidean distance < 15 μm and 
traversal distance > 30 μm. Only masks with significant (p < 0.01) task-associated selectivity were 
included. p-values from nonparametric comparison to shuffle. l is the mean length constant ± 
SEM (D) Estimation of pairwise noise correlation for two example spines (denoted in (B)). Each 
panel is an example epoch denoted by the colored text in the upper left. Each black point is a 
trial. Noise correlation for a pair is the mean of the correlations calculated across all epochs. (E) 
Same as (B), but for noise correlation. (F) Same as (C), but for noise correlation.  

Figure 8. Dendritic Branching Compartmentalizes Behavior-related Calcium Signals. (A) 
Example of clustering of epoch selectivity for a L2/3 session. Hue and saturation were determined 
for each mask as in Figure 5B. Markers (gray: individual masks, black: mean) in the polar plot 
denote the selectivity of all significantly selective (p < 0.01) masks within the branches adjacent 
to the same marker in the colored MIP. (B) Pairwise signal correlations within versus across 
branches. (C) Short distance (< 10 um) pairwise signal correlations within versus across a branch 
point. “Both” includes dendrite-dendrite, spine-spine, and spine-dendrite pairs. All plots are mean 
and SE, p-values from nonparametric permutation test comparison to shuffle. 
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STAR Methods 

Contact for Reagent and Resource Sharing 
Further information and requests for resources, reagents and data should be directed to and will 
be fulfilled by the Lead Contact, Karel Svoboda (svobodak@janelia.hhmi.org) 

Experimental Model and Subject Details 
Animals 
All procedures were in accordance with protocols approved by the Janelia Institutional Animal 
Care and Use Committee. Triple transgenic mice (both male and female) sparsely expressing 
GCaMP6f in a subset of layer 2/3 (Syt17 NO14 x CamK2a-tTA x Ai93; MGI:4940641 x 
JAX:007004 x JAX:024103) and layer 5 (Chrna2 OE25 x ACTB-tTa x Ai93; MGI:5311721 x 
JAX:012266 x JAX:024103), were housed in a 12 hour:12 hour reverse light:dark cycle. We never 
observed seizures in these mice, as has been reported for Emx1-Cre x Camk2a-tTa x Ai93 
crosses (Steinmetz et al., 2017). Surgical procedures were performed under isoflurane 
anesthesia (5% for induction, 1.5%–1% during surgery). A circular (∼2.5 mm diameter) 
craniotomy was made above left ALM (centered at 2.5 mm anterior and 1.5 mm lateral to bregma). 
A window (triple #1 coverglass 2.5/2.5/3.5 mm diameter; Potomac Photonics, Baltimore, MD) was 
fixed to the skull using dental adhesive (C&B Metabond; Parkell, Edgewood, NY). A metal bar for 
head fixation was implanted posterior to the window with a metal loop surrounding the window 
using dental acrylic. After the surgery, mice recovered for 3-7 days with free access to water. 
Then, mice were water restricted to 1 mL daily. Training started 3-5 days after the start of water 
restriction. On days of behavioral training, mice were tested in experimental sessions lasting 1 to 
2 hours where they received all their water.  

Tactile Decision Task 
Mice solved an object localization task with their whiskers (modified from Guo et al., 2014a, 
2014b). The stimulus was a metal pin (0.9 mm in diameter) mounted on a galvo motor to reduce 
vibrations. The pole swung into one of two possible positions (Figure 2A). The posterior pole 
position was approximately 5 mm from the center of the whisker pad. The anterior pole position 
was 4 mm anterior to the posterior position. A two-spout lickport (4.5 mm between spouts) 
delivered water reward and recorded the timing of licks. 

The sample epoch is defined as the time between the pole movement onset to pole retraction 
onset (sample epoch, 1.2 s total). The delay epoch lasted for another 2 s after the beginning of 
pole retraction (delay epoch, 2 s total). An auditory “response” cue indicated the end of the delay 
epoch (pure tone, 3.4 kHz, 0.1 s duration). Licking early during the delay period resets the delay-
period timer (2 s). Licking the correct lickport after the auditory “response” cue led to a small drop 
of water reward. Licking the incorrect lickport was not rewarded nor punished. Trials in which mice 
did not lick after the “response” cue were rare and typically occurred only at the end of a session. 
Animals were trained daily until they reached ∼70% correct. Thereafter behavior was combined 
with imaging (typically 20-40 days after surgery).  
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Method Details 
Microscope design 
Ultrafast pulses (< 100 fs, center wavelength: 960 nm) from a Ti:Sapphire laser (Mai Tai HP; 
Spectra Physics, Santa Clara, CA) passed through a Pockels Cell (302RM controller with a  350-
80 cell; Conoptics, Danbury, CT) to control power. Group delay dispersion (GDD) was pre-
compensated by a custom single-prism pulse compressor (Akturk et al., 2006; Kong and Cui, 
2013). Steering and expansion optics directed the beam to an 8kHz resonant mirror (x-axis, 
CRS8KHz; Cambridge Technology, Bedford, MA) conjugated to additional x-axis and y-axis 
galvanometer scanners (5mm model 6215HSM40, Cambridge Technology). Following the 
scanning optics, the horizontally-polarized beam entered a remote focus (RF) unit (Botcherby et 
al., 2008, 2012). Within this unit, the beam passed through a polarizing beam splitter (PBS, 
PBS251; Thorlabs, Newton, NJ), quarter wave plate (AQWP10M-980, Thorlabs) and tube lens to 
an objective (CFI Plan Apochromat Lambda 20x Objective Lens NA 0.75 WD 1.00MM; Nikon, 
Japan). This objective focused the beam onto a mirror (PF03-03-P01, Thorlabs) mounted on an 
actuator (LFA1007 voice coil; Equipment Solutions, Sunnyvale, CA). The mirror reflected the 
beam back through the unit and the polarizing beam splitter redirected the vertically polarized 
beam towards the imaging objective (25x, 1.05NA, 2mm working distance; Olympus). A primary 
dichroic (FF705-Di01-25x36; Semrock, Rochester, NY) reflected fluorescence to a second 
dichroic (565DCXR-cust. Size; 35.5 x 50.2 x 2.5, r-410-550, t-580-1000nm, laser grade with ar-
coating; Semrock) that separated emission light into green (BG39 and 525/70nm filters with a 
H10770PB-40 PMT; Hamamatsu, Japan) and red (not used) channels. The signal was digitized 
(NI 5734; National Instruments, Austin, TX) and an image was formed on a FPGA (PXIe-7961R 
on a PXIe-1073 chassis; National Instruments) controlled by ScanImage 2017 (Vidrio 
Technologies, Ashburn, VA). Further details of the microscopes core components are available 
online (RRID: SCR_016511; https://www.flintbox.com/public/offering/4374/). A custom Tip-Tilt-Z 
Sample Positioner (RRID: SCR_016528; https://www.flintbox.com/public/project/31339/) was 
used to position the mouse such that the cranial window was perpendicular to the imaging axis. 

Reference Volume Imaging 
Before imaging during behavior, a reference volume for the field-of-view (FOV) was acquired. 
Dendrite tracing required a reference volume with high SNR and minimal brain motion artefact. 
To achieve this, we repeatedly imaged the FOV when the mouse was not behaving. We collected 
100 image stacks (12 to 20 seconds / volume) at 1x zoom (frames: 525 µm x 525 µm, 1024 pixel 
x 1024 pixel) from the pia and down to the cell body of interest in 1.6um steps (~320um for Syt17 
NO14 mice and up to 500um for Chrna2 OE25 mice). Cross-correlation based registration of 
stacks to the mean of the most correlated stacks (iteratively: top 30%, then top 70%) removed 
motion artefacts. All stacks were then averaged to generate the final reference volume.  

Cell Selection 
Soma locations within the reference volume were manually identified and those coordinates were 
provided to the imaging software. One to 31 somas or layer 5 apical trunks were imaged during 
task performance. A 40 µm x 20 µm imaging frame was centered on each soma or trunk. 
Registration was done by iterative cross-correlation. Trial-averaged fluorescence was computed 
for each soma. Cells were selected for functional imaging of the dendrite based on two qualitative 
criteria: modulation of the signal by the task and sufficient baseline fluorescence to trace 
dendrites. 
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Targeted Imaging of Dendrites 
Tracing of dendrites was done using Neuromantic (Myatt et al., 2012) in Semi-Auto mode. Tracing 
data was loaded to a custom Matlab GUI that enabled selection of different combinations of 
dendrite branches for targeted imaging. All frames in an imaging sequence were 24 µm x 12 µm 
(72 pixels x 36 pixels) and had a duration of approximately 2 ms. Average power post-objective 
varied with imaging depth and ranged from 22 mW to 82 mW. The amount of dendrite selected 
for each session was limited to maintain a sequence rate of approximately 14Hz (see Figure 
1B,C,D and Figure 1F,G,H for example sessions). Frame positions were calculated to completely 
cover the volume of the selected dendrite (treating each frame as a 24 µm x 12 µm x 3 µm volume) 
while minimizing both the total number of frames in the sequence and the predicted acceleration 
along the z-axis (our slowest axis). Additionally, before each imagining session a closed loop 
iterative optimization of the z actuator (voice coil) control signal was performed (similar to 
Botcherby et al., 2012). The z trajectory and field placements were then transferred to ScanImage 
using the MROI API.  

Dendrite Image Registration and Time Course Extraction 
We developed a new process to obtain non-rigid registration of a sequence of small imaging 
frames irregularly distributed throughout space. SNR and amount of dendrite in frames varied 
widely and, thus, independent frame-by-fame registration did not achieve good results. One 
registration target image per frame was also not suitable, as even small axial motion could be 
confused with a lateral translation of a thin 3D structures such as dendrites. To address these 
issues, we developed a multi-step registration and time course extraction procedure in python 
leveraging open source parallel computing tools (Thunder, RRID: SCR_016556; Apache Spark, 
RRID: SCR_016557).  

Registration included the following steps: initial registration target selection, frame by frame 
clustering and registration (rigid lateral registration), re-clustering of this laterally aligned data and 
estimation axial positions to obtain multiple registration targets, and registration of frames to the 
appropriate axial target (see Figure S2 and Video S1). The initial target for registration was 
selected by k-means clustering (30 clusters) on the first 40 PCA components of the complete 
imaging sequence. Averages of the four largest groups were visually inspected to select the 
registration target (Figure S2C). K-means clustering was then used to independently group 
samples of each frame from the sequence (first 50 components, 200-800 clusters per frame; 
Figure S2D) to increase the SNR prior to registration. For each group of samples of each frame, 
the complete imaging sequence at those samples was averaged and registered to the initial target 
using cross-correlation (Figure S2E). Shifts calculated from this registration were then used to 
constrain (by minimizing brain velocity) the registration of each frame group average to the initial 
target. Hyper-parameters controlling the balance between cross-correlation peaks and brain 
velocity constraints in determining shift were optimized (via differential evolution) to maximize the 
sharpness of the average registered sequence. Lateral shifts calculated for each frame group 
average were then applied to all individual samples in the group. This laterally-registered data 
was again clustered (45-90 clusters based on 80 PCA components). These clusters reflected 
different axial positions as well as activity. A Traveling Salesman Problem solver 
(https://github.com/dmishin/tsp-solver) ordered these clusters, minimizing the total distance 
(dissimilarity) between adjacent groups. Adjacent groups were collapsed down to between 4 and 
8 (median 5) final groups representing different axial positions (Figure S2F). The mean of each 
group served as the registration target for a final registration of all samples, frame-by-frame, 
belonging to the group. Registration was constrained again by brain velocity parameters, as 
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described above. Thus, for every sample and every frame we determined x and y shifts for lateral 
motion and z group for axial motion (Figure S2G).  

For high-resolution dendrite and dendritic spine tracing, all frames from a session were projected 
into 3D space and averaged, taking into account the estimated axial position of each sample and 
the PSF of the microscope. Dendrite centerline was traced using Neuromantic. This centerline 
was then dilated in 3D (2.5 µm in z; lateral dilation was based on the estimated radius from the 
tracing) and divided into 30 µm (Figure 2,3,S3,S4) or approximately 3 µm (Figure 4,5,7,8) 
segments (dendritic masks). Spines were segmented in 3D using a custom-built, semi-automated 
Matlab GUI (spine masks). The inverse transform of the frames to 3D space was used to extract 
the fluorescence (F) time course for each mask (dendritic segment or spine). Putative axonal 
boutons (identified by a “bead on a string” appearance in the mean volume or during activity) 
adjacent to the dendrite were segmented but excluded from further analysis.     

Baseline was estimated as the mode of a Gaussian kernel density estimator fit to the distribution 
of F values for a segment in a 2000 sample (~ 2 minute) sliding window. Estimated axial position 
of each sample was used to correct this baseline estimate for axial motion. Because time courses 
of individual pixels have Poisson statistics (photon shot noise is the main source of noise), the 

noise floor (expressed in  ∆$
$%

 ) follows &
&

 where N is the number of photons collected in one 

sample. We calculated N as m x F, where F is the total fluorescence collected (arbitrary digital 
units) and m is the slope of a linear fit to the variance versus the mean of all pixels in the imaging 
sequence. This noise estimate was also adjusted sample-by-sample for the effects of changes in 
axial position. 

Quantification and Statistical Analysis 
Independent Activity Estimation 
The signal used to estimate the independent activity was the ∆𝑓/𝑓)	without bAP subtraction. For 
layer 2/3 sessions (n=23) the reference signal was the soma and for layer 5 (n=16) the apical 
trunk. Sessions in layer 2/3 where the soma was not imaged were excluded (n=29). Given a 
threshold value for a signal we calculate the probability that the signal is above that threshold: 

𝑃 𝑥 =
1
2
1 + 𝑒𝑟𝑓

𝑥 − 𝑢
𝜎 2

 

𝑒𝑟𝑓 𝑥 = 	
2
𝜋

𝑒789𝑑𝑡
<

)
 

where 𝑥 is the ∆𝑓/𝑓), 𝑢 is the threshold, 𝜎 is the shot-noise estimate. 

A false positive probability (𝑃$=>) was computed using the same function but 𝑥 is fixed at threshold 
and 𝑢 = 0. Given these measures are sample by sample we defined the independent activity rate 
as the average (over time) probability that the reference is below the threshold and the dendrite 
or spine is above: 

𝑃@ABCDCABCAE = 	𝑃FGHI ∗ (1 − 𝑃LMN). 

And the co-activity rate would be:  

𝑃PQ7RPE@SC = 	𝑃FGHI ∗ 𝑃LMN. 
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False discovery rates for independent (𝑃$=>,UVWMXMVWMV8) and co-active (𝑃YZ[,PQ7RPE@SC) probabilities 
were calculated in the same manner, but using the 𝑃$=> for mask and reference. Finally: 

𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛	𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 = 	
𝑃@ABCDCABCAE	

𝑃@ABCDCABCAE + 𝑃PQ7RPE@SC
 

To estimate the false discovery (due to shot noise) proportion independent:  

𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛	𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡	𝐹𝐷𝑅 = 	
(𝑃$=>,UVWMXMVWMV8 − 𝑃$=>,cd7Gc8UeM)
(𝑃cd7Gc8UeM + 𝑃$=>,UVWMXMVWMV8)

 

Back-Propagating Action Potential Subtraction 
We used the soma (n=23, L2/3 sessions), proximal dendrite (n=29, L2/3 sessions, 15% most 
proximal of total dendrite), or apical trunk (n=16, L5 tuft sessions) as a reference for global activity 
(putatively dominated by bAPs). This reference signal was then processed with a constrained 
deconvolution spike inference algorithm (Pnevmatikakis et al., 2016; Vogelstein et al., 2010; 
https://github.com/epnev/constrained_foopsi_python) with autoregressive order of 1 and “fudge 
factor” of 0.5 (Figure S5A). The time course for each spine and dendrite mask was fit (by 
differential evolution minimization of the L2-norm) to the model: 

𝑚𝑜𝑑𝑒𝑙 𝑡 = 	𝑎	×	𝑟𝑒𝑓 𝑡 ∗ 𝑒78 j 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑎, 𝜏	 	 (𝑚𝑜𝑑𝑒𝑙 𝑡 − 	𝑚𝑎𝑠𝑘(𝑡))p9

&

8qr

 

where 𝑎 is an amplitude constant, 𝑟𝑒𝑓(𝑡) is the deconvolved reference signal as function of time 
and 𝜏	is the time constant of a single-exponential decay kernel (Figure S5B,C). The residual of 
this fit was the bAP subtracted signal (Figure S5D). 

Alternative bAP subtraction methods were evaluated in the simulations shown in Figures S6 and 
S7 (see below for simulation details). Rapid, negative fluorescence transients are inconsistent 
with the dynamics of GCaMP6, and thus likely represent bAP subtraction errors. “Alternative 1: 
Non-negative fit” was the same as the method described above, but instead of minimizing the L2-
norm we developed an objective function that penalized negative residuals beyond those 
expected from photon shot-noise:  

𝑟 𝑡 = 	𝑚𝑜𝑑𝑒𝑙 𝑡 − 	𝑚𝑎𝑠𝑘(𝑡) 

𝑦(𝑡) =
−𝑙𝑜𝑔(𝑐𝑑𝑓VMv(𝑟 𝑡 ), 𝑟 𝑡 < 0
−𝑙𝑜𝑔(𝑐𝑑𝑓XdH(𝑟 𝑡 ), 𝑟 𝑡 ≥ 0 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑎, 𝜏	 	 𝑦(𝑡)

&

8qr

 

where 𝑟 𝑡  is the residual at time 𝑡 of mask signal 𝑚𝑎𝑠𝑘 𝑡 , 𝑐𝑑𝑓VMv is a cumulative distribution 
function estimated from the negative values of the ∆𝑓/𝑓) trace for each spine without subtraction 
and 𝑐𝑑𝑓XdH is a cumulative distribution function estimated from the positive values of the ∆𝑓/𝑓) 
trace for each spine with subtraction computed by using the “Alternative 2: Regression – Soma 
Referenced” subtraction method (see below). Although this approach generated bAP-subtracted 
traces with “cleaner” appearance (less negative deflections; data not shown), it still produced 
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inaccurate input-output correlations in our simulations (Figure 6S). For “Alternative 2: Regression 
– Soma Referenced” we used the residuals of a robust regression of the spine ∆𝑓/𝑓)  versus 
soma ∆𝑓/𝑓). For “Alternative 3: Regression – Dendrite Referenced”  we used the residuals of a 
robust regression of the spine ∆𝑓/𝑓)  versus the  ∆𝑓/𝑓) of the closest 30 µm dendrite segment 
(Chen et al., 2013; Scholl et al., 2017; Wilson et al., 2016). 

Task-associated Selectivity 
Trials were divided into five epochs (Figure 4): sample (pole within reach of whiskers, 1.25 
seconds), early and late delay (1 second increments from end of sample to response cue), and 
early and late response (1 second increments from response cue). Only correct trials were 
included. Incorrect trials and trials during which the mouse licked before the go cue were 
excluded. To test for any task-associated selectivity, we averaged the signal (∆$

$%
) during each 

epoch, separating correct left and correct right trials, and performed a nonparametric ANOVA (10 
groups total: 5 epochs x 2 trial-types; p is the proportion of F-statistics from 1000 shuffles of epoch 
greater than the observed F-statistic). For all significance testing, the number of samples 
averaged from each epoch was equal (approximately 1 second worth of samples were randomly 
drawn from the sample epoch).  

To visualize and quantify epoch selectivity, we averaged the mean responses during sample, 
delay (early and late) and response (early and late) epochs across both left and right trials. These 
mean responses were treated as the magnitudes of three vectors separated by 120° in a polar 
space (see Figures 5B,6B and 8A). The angle of the vector average provided a one-dimensional 
representation of the epoch selectivity. Standard error in this angle for each segment was the 
circular standard deviation of 1000 bootstrap iterations (resampling trials). The significance of 
differences in epoch angle (D angle) between segments was determined by permutation test 
(1000 shuffles of trial identity, p is the proportion of D angles greater than the observed D angle). 
For the circular mean epoch angle across segments, the 95% confidence interval was calculated 
from 1000 bootstrap iterations (resampling segments).   

To visualize and quantify trial-type selectivity, we tested each epoch for significant differences in 
response during left versus right trials by permutation test (p < 0.05, with Bonferroni correction for 
5 null hypotheses). We divided segments into three categories: significantly larger responses 
during right trials only, left trials only, or both left and right trials depending on epoch. 

Spatial Structure of Pairwise Correlations 
Signal correlation between pairs of segments was the Pearson correlation between the mean 
responses to all 10 conditions (5 epochs x 2 trial-types) for each segment. To isolate signal 
correlations from noise correlations, we randomly selected and averaged a non-overlapping 50% 
of trials for each segment. This was repeated 100 times and the resulting correlation coefficients 
were averaged. Noise correlation between pairs of segments was the mean noise correlation 
(Pearson correlation between responses across trials within one condition) across all conditions.  

For spines or dendrite segments that were connected by the dendrite imaged within a session, 
traversal distance was directly calculated from the high-resolution session-based reconstruction. 
However, for spines and dendrite that connected via dendrite that was not imaged as part of that 
session’s imaging sequence, calculating traversal distance required precise alignment of the 
imaging session (with segmentation of dendrite and spines) back to the reference space 
(containing the complete reconstruction of the dendritic tree). A multi-resolution approach from 
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SITK (Lowekamp et al., 2013; Yaniv et al., 2018) was used to fit a 3d affine transformation from 
the session space to the FOV space. Center points of spines and dendrite segments were 
transformed to the reference space and the closest point along the tracing of dendrite within 
reference space was determined. Traversal distance (distance of the shortest connecting path 
through the dendritic tree) could then be calculated from the reference reconstruction.   

To quantify mean pairwise correlation as a function of traversal distance, pairs were divided into 
11 exponentially spaced distance bins (edges: 0, 2.7, 4.5, 7.4, 12, 20, 33, 55, 90, 148, 245 µm). 
To calculate the standard error of the mean (SEM), we randomly drew pairs without replacement 
of the pair members, then the SEM was determined from the standard deviation of pair 
correlations and the number of pairs drawn for each bin. To average out variation across draws, 
the reported SEM is the mean of 100 repetitions of this process. Mean within-bin correlation was 
fit (by differential evolution minimization of the L2-norm) to a 4-parameter model: 

𝑦 = 	𝐴×𝑒7</z + 𝑥×𝐿 + 𝐵 

where 𝑥 is the traversal distance between a pair, 𝐴 is the amplitude of distance dependent 
correlation, 𝜆 is the length constant of exponential decay, 𝐿 is slope of the linear component, and 
𝐵 is the baseline correlation. Error in 𝜆 was estimated as the standard deviation of 300 bootstrap 
iterations (resampling across sessions).   

Simulations 
Simulations were designed to analyze the robustness of various measures of dendritic calcium 
signals to subtraction approaches and variations in simple spike-to-calcium transformations. 
Simulations were not intended to be biophysically realistic. For each simulation, the geometry of 
spines and soma, sample rate, and total duration were derived from an actual imaging session. 
We ran three models of spike-to-calcium transformations with increasing complexity: “Linear”, 
“Indicator Nonlinear”, and “Full Nonlinear”. The following describes the “Full Nonlinear” model as 
the other models were simplifications thereof. We generated Poisson input (spine) and output 
(soma) spike trains with a wide distribution pairwise correlations (range of r: ~ 0 – 0.8, mean rate: 
1.5 Hz) that were also traversal-distance dependent. This was accomplished by generating a 
random positive-semidefinite covariance matrix 𝑞, then adjusting it to be traversal-distance 
dependent according to:  

𝑙 = 𝑞 1 − 𝑎XLM + 𝑈𝑎XLM 

𝑈U,� = 𝑒𝑥𝑝(
7<�,�

z���) 

where 𝑎XLM is the amplitude of traversal-distance dependent correlations and 𝑈 is a weight matrix 
in which  𝑥U,� is the traversal distance between spines 𝑖 and 𝑗, and 𝜆XLM is the length constant of 
pre-synaptic correlations.  

We then calculated the positive-semidefinite matrix with unit diagonal that is closest to 𝑙 (Higham, 
2002) and used this covariance matrix to specify correlated Poisson spike trains (Macke et al., 
2009). To implement input lags (Figure S6), spine spike trains were temporally shifted with respect 
to the soma spike train. From these spike trains, we calculated a linear component of 
depolarization at spine 𝑖: 

𝑝U 𝑡 = 	 𝑎H𝑒UH 𝑡 + 	𝑎c𝑒c 𝑡 + 	𝑎cddX 𝑤U,�𝑎H𝑒UH(𝑡)
�∈&(U)
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𝑤U,� = 𝑒𝑥𝑝(
7<�,�

z����) 

where 𝑎H is the depolarization produced by one pre-synaptic spike, 𝑒UH 𝑡  are the events (spikes) 
at spine 𝑖, 𝑎c is the depolarization produced by the bAP, 𝑒c 𝑡 	are the events (spikes) at the cell 
body (soma), 𝑎cddX controls the overall cooperativity between spines, and 𝑤U,� is the distance-
dependent cooperativity between spines 𝑖 and 𝑗 given in which 𝑥U,� is the traversal distance 
between spines 𝑖 and 𝑗, and 𝜆cddX is the length constant of cooperativity.  

We then calculated a nonlinear component at spine 𝑖: 

𝑞U 𝑡 = 	𝑚U(𝑡) ℎ(𝑡�)𝑒UH(𝑡 − 𝑡�)
j��

8�q)

 

𝑚U 𝑡 = 	 𝑎H(
𝑝U 𝑡 V��

𝑝U 𝑡 V�� + (𝐾V�)V��
) 

ℎ 𝑡� = 𝑒𝑥𝑝7(
���

���
), 

where 𝑚U 𝑡  represents nonlinear voltage-dependent unblocking of channels given in which 𝑛V� 
is a cooperativity coefficient and 𝐾V� is the depolarization of 50% unblock. ℎ 𝑡�  represents the 
dynamics of this component given in which 𝜏V� is the time constant of decay for the nonlinear 
component.  

Calcium in the spine was modeled according to: 

𝐶𝑎 U(𝑡) = 𝑝U 𝑡 + 𝑟𝑞U 𝑡  

where 𝑟 is the relative strength of the nonlinear component. Calcium was transformed to 
fluorescence, 𝑓, by the indictor by convolution linear exponential filter followed by a stationary 
nonlinearity:  

𝑓U 𝑡 =
𝑔U(𝑡)V

�

𝑔U(𝑡)V
� + (𝐾v)V�

 

𝑔U 𝑡 = 𝐶𝑎 U 𝑡 ∗ 𝑘U(𝑡) 

𝑘U 𝑡 = exp
7(8 j�

�), 

where 𝑛v is an indicator cooperativity coefficient, 𝐾v represents half-saturation of the indicator, 
𝑘U 𝑡  is the convolution kernel in which 𝜏UH is the time constant of decay for spine 𝑖.  

To simulate the potential for localized differences in spine dynamics (for example, on thick versus 
thin branches) 𝜏UH was traversal distance dependent, drawn from a random multivariate normal 

distribution with covariance specified by 𝑒𝑥𝑝(
7<�,�

z�����). The soma time constant of decay was 
set by 𝜏c. 𝑓 was then linearly scaled such that the 99.5 percentile of 𝑓 (across all spines and 
samples) matched the 99.5 percentile typically observed in high SNR real data (𝐹FG<). Finally, 
Gaussian noise was added to spine (𝜎H) and soma (𝜎c) fluorescence.  
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For Figure S6, the following parameters were used for “Full Nonlinear”: 𝑎XLM = 0.5; 	𝜆XLM =
10	µm;	𝑎H = 1;	𝑎c = 3;	𝑎cddX = 0.5; 	𝜆cddX = 10	µm;	𝑛V� = 2;	𝐾V� = 5;	𝜏V� = 100	𝑚𝑠; 	𝑟 = 3;	𝑛v =
2; 	𝐾v = 12;	𝜆WMcG¤ = 32	µm; 𝜏H = 	0.24 sec 	(𝑚𝑒𝑎𝑛	𝑎𝑐𝑟𝑜𝑠𝑠	𝑠𝑝𝑖𝑛𝑒𝑠) ; 	𝜏c = 	0.4	𝑠𝑒𝑐; 	𝐹FG< = 16	∆𝑓/
𝑓). Parameters for “Indicator Nonlinear” were the same as “Full Nonlinear” except: 𝑎cddX = 0; 	𝑟 =
0, which effectively removed cooperativity between spines and all nonlinearities except the 
indicator nonlinearity. Parameters for “Linear” were the same as “Indicator Nonlinear”, except for 
omission of the stationary nonlinearity step such that 𝑓U 𝑡 = 𝐶𝑎 U 𝑡 ∗ 𝑘U(𝑡). One session (derived 
from one real L2/3 session with soma imaging) was simulated for each combination of 
transformation and lag in Figure 6S. 

For Figure S7, all parameters were the same as for simulations for Figure S6, with the following 
exceptions. For all “Presynaptic Clustering” simulations 𝑎XLM = 0.5, 	𝑎cddX = 0, and 𝜆XLM was 
varied as indicated. For all “Postsynaptic Cooperativity” simulations 𝑎cddX = 0.5, 	𝑎XLM = 0, and 
𝜆cddX was varied as indicated. For all simulations in Figure S7 where 𝜆 = 0 is indicated, we set 
both 𝑎XLM = 0 and 𝑎cddX = 0. For each combination of distance-dependent process, 𝜆, and 
transformation we simulated 23 sessions (derived from the real L2/3 sessions with soma imaging).  

The cartoon tuning curves, input-output correlations, and the pairwise correlations between 
spines in Figure 6 are shown for didactic purposes. They are simplifications of our conclusions 
from simulation results in Figures S6 and S7.  

 

Data and Software Availability 

The data that support the findings of this study will be uploaded to the CRCNS database. It is also 
available immediately upon request.  

Additional Resources 
SpineVis website: spinevis.janelia.org, see also Table S1 and Video S4. 

Key Resources Table 
REAGENT or RESOURCE SOURCE IDENTIFIER 
Experimental Models: Organisms/Strains 
Mouse: Syt17 NO14 GENSAT MMRRC Cat# 034355-UCD, RRID: 

MMRRC_034355-UCD 
Mouse: CamK2a-tTA JAX IMSR Cat# JAX:007004, RRID: 

IMSR_JAX:007004 
Mouse: Ai93 JAX IMSR Cat# JAX:024103, RRID: 

IMSR_JAX:024103 
Mouse: Chrna2 OE25 GENSAT MMRRC Cat# 036502-UCD, RRID: 

MMRRC_036502-UCD 
Mouse: ACTB-tTa JAX IMSR Cat# JAX: 012266, RRID: 

IMSR_JAX:012266 
Software and Algorithms 
Matlab Mathworks RRID:SCR_001622 
ScanImage Vidrio RRID:SCR_014307 
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Neuromantic University of 
Reading 

RRID:SCR_013597 

Thunder Janelia RRID: SCR_016556 
Spark Apache RRID: SCR_016557 
Other 
MIMMS microscope 1.0 (2016) Janelia RRID:SCR_016511	

 
Tip-Tilt-Z Sample Positioner Janelia RRID:SCR_016528	

 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 10, 2018. ; https://doi.org/10.1101/440396doi: bioRxiv preprint 

https://doi.org/10.1101/440396
http://creativecommons.org/licenses/by-nc-nd/4.0/


 31 

Videos 

Video S1, related to Figure 1: Registration Example. Top, target for registration is in yellow, 
single timepoints are in blue. Red arrows indicate the calculated shifts per imaging field. Arrows 
are 3x real size to emphasize the pixel sized shifts. Bottom, traces of the activity of the soma 
(blue) and detected licks (green stars). 

Video S2, related to Figure 2: Layer 2/3 Example Calcium Activity. Top, post-registration 
activity (AU) for the soma (white), an example spine (green circle), and a segment of dendrite 
(magenta arrow). Bottom, ΔF/F of the soma (white), spine (green), and dendrite (magenta). This 
is the same segment of activity as in figure 2B. 

Video S3, related to Figure 2: Layer 5 Example Calcium Activity. Top, post-registration activity 
(AU) for the trunk (white), an example spine (green circle), and a segment of dendrite (magenta 
arrow). Bottom, ΔF/F of the soma (white), spine (green), and dendrite (magenta). This is the same 
segment of activity as in figure 2C. 

Video S4: Exploring the Data Online with SpineVis. In this screencast we show how to use the 
SpineVis website to look at the data in Figure 2B. On top center is the main viewing area where 
dragging will change the view in 3D. Clicking on a mask in that window will pull up the fluorescence 
trace for it in the lower window. The lower window has zoom and pan abilities that are linked to 
the upper window displaying the timepoint indicated by the black line in the center. To the left are 
display controls for changing lookup table values and opacity, followed by a timepoint selection 
window. To the right is the mask lookup window. Below the florescence trace are markers 
indicating behavioral events (e.g., blue triangle is a lick right event). 
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Figure 5
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Figure 6
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Fig. 7
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