
Inferring demography and selection in organisms
characterized by skewed offspring distributions

Andrew M. Sackman1,*, Rebecca Harris1 Jeffrey D. Jensen1

1 Center for Evolution & Medicine, School of Life Sciences, Arizona State
University, Tempe, AZ 85287

*amsackma@asu.edu

Abstract

The recent increase in time-series population genomic data from experimental, natural,
and ancient populations has been accompanied by a promising growth in methodologies
for inferring demographic and selective parameters from such data. However, these
methods have largely presumed that the populations of interest are well-described by
the Kingman coalescent. In reality, many groups of organisms, including viruses, marine
organisms, and some plants, protists, and fungi, typified by high variance in progeny
number, may be best characterized by multiple-merger coalescent models. Estimation of
population genetic parameters under Wright-Fisher assumptions for these organisms
may thus be prone to serious mis-inference. We propose a novel method for the joint
inference of demography and selection under the Ψ-coalescent model, termed
Multiple-Merger Coalescent Approximate Bayesian Computation, or MMC-ABC. We
first quantify mis-inference under the Kingman and then demonstrate the superior
performance of MMC-ABC under conditions of skewed offspring distribution. In order
to highlight the utility of this approach, we re-analyzed previously published
drug-selection lines of influenza A virus. We jointly inferred the extent of progeny-skew
inherent to viral replication and identified putative drug-resistance mutations.

Introduction 1

Elucidation of the underlying processes of evolution through the measurement of 2

temporal changes in allele frequencies has remained a major focus of population genetics 3

since the founding of the field (Fisher, 1930; Wright, 1931). Advancements in 4

sequencing technologies over the last decade have dramatically increased the availability 5

of genome-wide time-sampled polymorphism data for a wide variety of organisms, and 6

several methods have been developed to analyze such data (Malaspinas et al., 2012; 7

Mathieson and McVean, 2013; Foll et al., 2014a; Lacerda and Seoighe, 2014; Steinrücken 8

et al., 2014; Ferrer-Admetlla et al., 2016; Schraiber et al., 2016; Shim et al., 2016; 9

Rousseau et al., 2017). Of primary interest is the estimation of site-specific selection 10

coefficients, and methods have been created that account for non-equilibrium 11

demography and environmental fluctuations by, for example, accounting for effective 12

population size, population structure, and changing selection intensities. 13

Time-series polymorphism data is generally available from three sources: 14

experimentally evolved populations, clinical patient samples, and ancient specimens. 15

Viruses are well-represented amongst such data, both owing to their obvious clinical 16
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relevance, as well as their short generation times, small genomes, and relatively high 17

mutation rates. However, aspects of viral biology render the application of standard 18

population genetic inference methods problematic. Namely, existing methodologies for 19

analyzing time-sampled polymorphism data are generally developed around the 20

Kingman coalescent framework and the Wright-Fisher (WF) model (Wright, 1931; 21

Kingman, 1982) and are of highly questionable applicability to organisms typified by 22

large variances in offspring distributions, or so-called ”sweepstakes reproduction,” 23

including not only viruses but many classes of prokaryotes, fungi, plants, and animals 24

(reviewed in Tellier and Lemaire, 2014; Irwin et al., 2016). 25

In particular, the WF model assumes constant population size, random mating, 26

non-overlapping generations, and Poisson offspring distributions with equal mean and 27

variance. The Kingman coalescent is derived in the limit of the WF model and shares 28

its assumptions. Reassuringly, population genetic statistics and methods developed 29

under the Kingman have been shown to be robust to violations of WF assumptions 30

(Möhle, 1998, 1999), and have been extended to incorporate selection, migration, and 31

population structure (Neuhauser and Krone, 1997; Nordborg, 1997; Wilkinson-Herbots, 32

1998). However, large variance in offspring number (Eldon and Wakeley, 2006; 33

Matuszewski et al., 2018), strong selection (Neher and Hallatschek, 2013; Schweinsberg, 34

2017), large sample sizes (Wakeley and Takahashi, 2003; Bhaskar et al., 2014), and 35

recurrent selective sweeps (Durrett and Schweinsberg, 2004, 2005) may violate the 36

critical assumption underlying the Kingman coalescent that only two lineages may 37

coalesce at a time. Such a violation may produce genealogies that are characterized by 38

multiple-lineage mergers. Thus, the analysis of genomic data from organisms 39

characterized by highly skewed offspring distributions—such as viruses—may be prone 40

to serious mis-inference if examined with traditional WF and Kingman based 41

approaches, even under neutrality. In particular, the neutral multiple merger events 42

induced by the reproductive biology of these organisms may be mistaken for multiple 43

merger events induced by positive selection. 44

Though not widely utilized for inference, an alternative class of multiple-merger 45

coalescent (MMC) models have been developed that are more general than the 46

Kingman (e.g. Bolthausen and Sznitman, 1998; Pitman, 1999; Sagitov, 1999; 47

Schweinsberg, 2000; Möhle and Sagitov, 2001), many being derived from Moran models 48

generalized to allow multiple offspring per individual. Many of the recently derived 49

MMC models form specific sub-classes of the Λ-coalescent, of which the Kingman is also 50

a specific case in which only two lineages are allowed to merge in a generation (Donnelly 51

and Kurtz, 1999; Pitman, 1999; Sagitov, 1999). It has been demonstrated that 52

expectations under MMC models differ from those of the Kingman coalescent in several 53

significant ways: effective population size (Ne) does not scale linearly with census size 54

(N) as it does under the Kingman (Huillet and Möhle, 2011); the site frequency 55

spectrum (SFS) is skewed toward an excess of low- and high-frequency variants relative 56

to the standard WF expectations, even under equilibrium neutrality (Eldon and 57

Wakeley, 2006; Blath et al., 2016); and the fixation probability of new beneficial 58

mutations approaches one as population size increases (Der et al., 2011). 59

Eldon and Wakeley (2006, 2008, 2009) introduced a specific case of the broader class 60

of Λ MMC models, the Ψ-coalescent, under which the parameter Ψ describes the 61

proportion of offspring in the population originating from a single parent in the previous 62

generation. The Ψ-coalescent has been used in several instances to infer the strength 63

and frequency of sweepstake events in marine organisms typified by Type-III 64

survivorship curves (Eldon and Wakeley, 2006; Birkner et al., 2013; Blath et al., 2016; 65

Matuszewski et al., 2018), and the expected SFS has been determined under both 66

standard and non-equilibrium demography (Matuszewski et al., 2018). 67

Thus, we here introduce a novel statistical inference approach, termed 68
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Multiple-Merger Coalescent Approximate Bayesian Computation (MMC-ABC), for 69

inferring population genetic parameters from time-sampled polymorphism data in 70

populations subject to sweepstakes reproduction. MMC-ABC first characterizes the 71

neutral demography of the population by generating genome-wide estimates of N and Ψ . 72

It then estimates site-specific selection coefficients under the inferred sweepstakes model. 73

We demonstrate that failing to account for skewed offspring distributions results in 74

strong mis-inference of both demography and selection, and that MMC-ABC is capable 75

of accurate joint estimation of offspring skew and selection coefficients even when the 76

population size is not precisely known. 77

Methods 78

Ne-based ABC method 79

The data X consist of allele frequency trajectories measured at L loci: xi (i = 1, ..., L).
The Ne-based ABC methodology (modified from the method of Foll et al. (2014a)) infers
genome-wide values of N and Ψ and L locus-specific selection coefficients si(i = 1, ..., L).
At a particular locus i, we can approximate the joint posterior distribution as:

P (N,Ψ, si|X)≈P (N,Ψ |T (X))P (si|N,Ψ,U(Xi))

where T (X) = T (X1, ..., XL) denotes summary statistics chosen to be informative about 80

N and Ψ that are a function of all loci, and U(Xi) denotes locus-specific summary 81

statistics chosen to be informative about si. A two-step ABC algorithm as proposed by 82

Bazin et al. (2010) is used to approximate this posterior: 83

Step 1. Obtain an approximation of the density

P (N,Ψ |T (X)) ≈ P (N,Ψ |X)

a) Simulate L trajectories for J populations Xi,j using the starting frequencies from 84

the first time point in each trajectory xi with N and Ψ for each trajectory 85

randomly sampled from their priors and J equal to the total number of simulation 86

replicates. 87

b) Compute T (Xi,j) for each simulated population. 88

c) Retain the simulations with the smallest Euclidian distance between T (X) and 89

T (x) to obtain a sample from an approximation to P (N,Ψ |T (X)) ≈ P (N,Ψ |X). 90

Step 2. For loci i = 1 to i = L: 91

a) Simulate K trajectories Xi,k from a Ψ-coalescent model with si randomly 92

sampled from its prior and N and Ψ from the joint density obtained in step 1. 93

b) Compute U(Xi,k) for each simulated trajectory. 94

c) Retain the simulations with the smallest Euclidian distance between U(Xi) and 95

U(xi) to obtain a sample from an approximation to 96

P (si|N,Ψ,Xi)P (N,Ψ |X) = P (N,Ψ, si|X). 97

As in the WF-ABC methodology of Foll et al. (2014b), we define T (X) as a single
statistic, Fs′, an unbiased estimator of Ne, given by Jorde and Ryman (2007):

Fs′ =
1

t

Fs[1− 1/(2ñ)]− 2/ñ

(1 + Fs/4)[1− 1/(ny)]
with Fs =

(x− y)2

z(1− z)
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where x and y are the minor allele frequencies at the two time points separated by t 98

generations, z = (x+ y)/2, and ñ is the harmonic mean of the sample sizes nx and ny 99

at the two time points expressed in the number of chromosomes (twice the number of 100

individuals for diploids). We averaged Fs′ values over sites and times to obtain a 101

genome-wide estimator of Ne = 1/Fs′ for haploids and Ne = 1/2Fs′ for diploids (Jorde 102

and Ryman, 2007). Note that we use the common notation where Ne corresponds to 103

the effective number of individuals, and the corresponding number of chromosomes for 104

diploids is 2Ne. 105

In the second step of MMC-ABC, simulations are performed under a Ψ-coalescent 106

model in SLiM version 3 (Haller and Messer, 2018, discussed in further detail in the 107

next section) with an initial allele frequency and sample size matching those observed 108

and with N and Ψ drawn from a joint posterior derived during Step 1. At each site we 109

utilize two summary statistics derived from Fs′: U(Xi) = (Fsd′i, Fsi
′
i) with Fsd′ and 110

Fsi′ calculated, respectively, between pairs of time points where the allele considered is 111

decreasing and increasing in frequency, such that at a given site Fs′ = Fsd′ + Fsi′. For 112

the diploid model, we define the relative fitness as wAA = 1 + s, wAa = 1 + sh and 113

waa = 1 where h denotes the dominance ratio (1 = dominant, 0.5 = codominance, 0 = 114

recessive), and as wA = 1 + s and wa = 1 for the haploid model (Ewens, 2004). 115

Forward simulation of populations under the Ψ-coalescent 116

Eldon and Wakeley (2006) described a model, the Ψ-coalescent, where each
reproductive event in a population of size N is either, with probability 1− ε, a standard
WF event yielding a single offspring, or, with probability ε, a multiple-merger event
yielding ΨN offspring. The probability ε = 1/Nγ such that the coalescent history of a
sample is dominated by multiple-merger events when 0 < γ < 2, and γ ≥ 2 produces a
coalescent history typical of the Kingman. The rate at which k out of n lineages merge
under the Ψ-coalescent is therefore (Tellier and Lemaire, 2014):

λn,k =

(
n

k

)
Ψk(1− Ψ)n−k, with 0 < Ψ < 1

Under this model, Ψ has a straightforward biological interpretation. Namely, it is 117

equal to the proportion of individuals in generation ti who are the offspring of a single 118

individual in ti−1 (Eldon and Wakeley, 2006). We simulated populations evolving under 119

a Ψ-coalescent model with SLiM. To circumvent the WF framework of SLiM, we 120

utilized a system of subpopulations with migration to achieve the same effect as 121

sweepstakes reproduction events. Each generation consists of three steps: 122

1. One individual is chosen from the population (A) and placed in a separate 123

subpopulation (B) of size N = 1. The unidirectional migration rate from B to A is 124

set to Ψ . 125

2. One WF generation occurs, with migration from subpopulation B resulting in a 126

the chosen individual contributing NΨ of the individuals of the next generation of 127

A. A series of mate choice callbacks within SLiM force the migration rate to be 128

exact, rather than stochastic (see source code in the Supplementary Materials). 129

3. Subpopulation B is removed, and the next generation begins. 130

In Step 1 of MMC-ABC, a population of size N and skew Ψ(chosen from their prior 131

distributions) is evolved with mutations reflecting the empirical data. The starting 132

frequencies xi,1(i = 1, ..., L) are identical to those observed during the first sampled 133

time point. The frequency of each allele under consideration is output at each 134
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generation of the trajectories in X. In Step 2 of MMC-ABC, a population of size N and 135

Ψ chosen from the joint posterior generated in part one is simulated with a single 136

mutation of selection coefficient s chosen from its prior and starting at its observed 137

initial frequency. The allele frequency is output each generation. 138

Simulated data sets for testing performance of MMC-ABC 139

The data used for testing the performance of MMC-ABC were generated in one of two 140

ways: 141

(1) A diploid population of size N was first evolved under standard, neutral WF 142

conditions for a burn-in period of 50,000 generations, and then evolved for a period of 143

time under sweepstakes conditions. The frequencies of every segregating allele were 144

output at the onset of sweepstakes conditions and at predetermined intervals for a set 145

number of generations, including mutations present at the start of output as well as 146

mutations that arose or fixed during the output period. Trajectories meeting minimum 147

criteria (at least three informative time points, at least two consecutive time points with 148

frequency greater than 0.01, and at least one time point with frequency higher than 149

0.025) were retained. Data were generated in this manner for testing the performance of 150

Step 1 of MMC-ABC (joint estimation of N and Ψ). Unfiltered single-time point 151

population data were used to generate the observed SFS data in Fig. 1. 152

(2) Individual trajectories of mutations of a given starting frequency with selection 153

coefficient s were modeled in a diploid population of size N with free recombination so 154

that all sites were unlinked, with allele frequency trajectories and sweepstakes dynamics 155

beginning in generation one. Trajectories generated in this manner were pooled into 156

larger data sets for use in testing the performance of Step 2 of MMC-ABC (estimation 157

of site-specific selection coefficients), with all allele trajectories beginning at a minor 158

allele frequency of 10%—a low enough frequency that most neutral mutations should 159

not fix, but high enough to ensure the availability of multiple informative time points 160

for most trajectories. 161

We used a Ψ = 0.1 throughout our study, as this is close to the value estimated for 162

experimentally evolved lines of influenza analyzed below. Additionally, at this level of 163

skew, multiple mergers should dominate the coalescent history of a population without 164

entirely eliminating all segregating variation. 165

Analysis of drug-resistance in influenza A virus 166

We applied MMC-ABC to time-series polymorphism data from experimentally evolved 167

populations of influenza A virus, originally described by Foll et al. (2014a). The data 168

consist of population genomic sequencing from two control lineages and two lineages 169

exposed to exponentially increasing concentrations of the influenza drug oseltamivir, 170

reared on Madin-Darby canine kidney (MDCK) cells and sampled every thirteen 171

generations. The data were previously analyzed with WF-ABC and putative 172

drug-resistance mutations were identified. We reanalyzed the data with MMC-ABC for 173

comparison. 174

Data Availability 175

The source code and manual for MMC-ABC, along with the SLiM and python scripts 176

used to generate our simulated data, will be made freely available upon acceptance from 177

the ”software” page of the Jensen Lab website: http://jjensenlab.org/software/. The 178

raw data from the experimentally evolved influenza virus populations can be found at 179

the ALiVE repository at http://bib.umassmed.edu/influenza/. 180
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Results and Discussion 181

Effects of skewed offspring distributions on variation within 182

populations 183

To underscore the importance of properly accounting for skewed offspring distributions 184

when inferring selection from population genetic data, we briefly illlustrate the effects of 185

sweepstakes reproduction on two population genetic summary statistics. Under a model 186

of sweepstakes reproduction where the variable Ψ describes the proportion of individuals 187

in a generation that are the offspring of a single individual in the previous generation, 188

we summarize in Fig. 1 the SFS and Tajima’s D, averaged over 100 replicate 189

populations of size N = 1000 under a broad range of Ψ . 190

The primary points of note are that under equilibrium neutrality non-zero values of 191

Ψ skew the SFS toward an excess of singletons and high-frequency variants, and that 192

Tajima’s D is negatively correlated with Ψ . The reader may note that Tajima’s D is 193

slightly negative for Ψ = 0, as should be expected given that Tajima’s D is a biased 194

summary of the SFS dependent upon the recombination rate (Thornton, 2005). 195

Hence, it is clear that failure to account for offspring skew may result in 196

mis-inference, as null model expectations strongly differ from those of the WF model. 197

In the following sections, we will demonstrate that accounting for sweepstakes 198

reproduction simply as a decrease in Ne (as in WF-ABC) results in highly biased 199

estimates of selection. However, explicitly incorporating the underlying processes of 200

MMC events can correctly adjust for their effects and yield accurate and precise 201

estimates of s from time-series data. 202

Estimation of Ψ with MMC-ABC 203

In Step 1 of MMC-ABC, the trajectories of all sites included in the data are used to 204

estimate Ne using the unbiased estimator of Jorde and Ryman (2007). In the case 205

where the census size or harmonic mean of the population size across all time points is 206

known, as is often the case in experimental lineages, populations of census size N with 207

sweepstakes parameter Ψ drawn from its prior and mutational frequencies matching 208

those at the first time point of the data are simulated for the same number of 209

generations as the original data. The best 1% of simulations are retained to generate a 210

posterior for Ψ . 211

MMC-ABC is able to accurately infer Ψ over a broad parameter space. Fig. 2 shows 212

the mean of the posterior distribution of Ψ averaged over 1000 replicate populations 213

each at Ψ ∈ {0, 0.01, ...0.25} in the case where the correct value of N is specified. These 214

illustrative parameter values were chosen to match general features of common viral 215

experimental evolution studies (e.g., Foll et al., 2014a; Bank et al., 2016; Ormond et al., 216

2017) 217

Although in cases of experimental evolution precise measurements of N may be 218

available to inform the prior used in Step 1 of MMC-ABC, knowledge of the size of the 219

population in question may not be available. Therefore, we determined the power of 220

MMC-ABC to accurately estimate Ψ in the absence of knowledge about the true value 221

of N . In this case, both N and Ψ are drawn from priors, and MMC-ABC generates a 222

joint posterior for the two parameters. We found that MMC-ABC is a good estimator 223

of Ψ even when a large, uniform prior is used (Fig. 3). MMC-ABC likewise performs 224

well in the case where a single, incorrect value of N is specified, particularly for high 225

values of Ψ , at which Ψ̂ converges at the true value due to the non-linear relationship 226

between Ψ and Ne (Fig. 3). 227

We assessed the performance of MMC-ABC over a range of data types, including 228

cases with 5, 11, or 21 time points over a span of 100 generations, as well as for sample 229

6/20

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 11, 2018. ; https://doi.org/10.1101/440404doi: bioRxiv preprint 

https://doi.org/10.1101/440404
http://creativecommons.org/licenses/by-nc-nd/4.0/


sizes of 25, 100, and 250 for populations of N = 1000 at Ψ ∈ {0, 0.05, 0.1, 0.15, 0.2} 230

(Figs. S1; S2). As expected, the estimation of Ψ improves with larger sample sizes and 231

more densely sampled time points. However, MMC-ABC remains a good estimator of Ψ 232

even with as few as five time points or a sample size of 25. 233

Estimation of site-specific selection coefficients 234

In the second step of MMC-ABC, the posterior distributions of N and Ψ obtained in 235

Step 1 are used to simulate 10,000 trajectories at each site xi (i = 1, ..., L) with the 236

alleles introduced in the population at the initial frequency xi,1 provided in the data. 237

The best 1% of simulations are retained to generate a posterior for s. Foll et al. (2014b) 238

previously demonstrated WF-ABC to be a good estimator of genome-wide Ne and 239

site-specific selection coefficients in populations well-described by the Kingman 240

coalescent. The performance of WF-ABC matched or exceeded that of other similar 241

methods. Therefore, we restrict our comparison of the performance of MMC-ABC to 242

that of WF-ABC. For a detailed comparison of the performance of WF-ABC with that 243

of other methods, including those of Bollback et al. (2008), Malaspinas et al. (2012), 244

and Mathieson and McVean (2013), see the results of Foll et al. (2014b). 245

To compare the ability of MMC-ABC and WF-ABC to infer site-specific selection 246

coefficients, we estimated s for 1000 trajectories simulated under the Ψ-coalescent with 247

N = 1000 and Ψ = 0.1 for s ∈ {0, 0.1, 0.2, 0.3, 0.4}. All allele trajectories began from a 248

minor allele frequency of 10%. Because the summary statistics used by MMC-ABC and 249

WF-ABC assume that the majority of sites are neutral, we provided true values of N 250

and Ψ to MMC-ABC and of N to WF-ABC in this initial comparison. As shown in Fig. 251

4, MMC-ABC is very accurate at estimating s under recurrent and strong sweepstakes 252

reproduction, while WF-ABC consistently overestimates selection coefficients for 253

positively selected sites and underestimates s for neutral sites. The same is true for 254

small values of s ∈ {0, 0.005, 0.01, 0.015, 0.02}. 255

Estimating s for single trajectories of mutations covering a wider range of true 256

selection coefficients from −0.1 to 0.4, it is evident that MMC-ABC is not only a good 257

estimator under sweepstakes reproduction of selection for sites under positive selection 258

and neutrality, but is also accurate for sites under negative selection. WF-ABC, 259

however, in addition to having a strong bias toward overestimation of s for sites under 260

positive selection, is negatively biased for neutral and negatively selected sites (Fig. 5). 261

Inference under the Kingman for organisms that violate the assumption of small 262

variance in progeny distributions is thus prone to serious over- or under-estimation of 263

selection coefficients, while correctly accounting for reproductive skew produces 264

accurate estimates of selective strength. This mis-inference under the WF model results 265

from the acceleration of transit times under sweepstakes reproduction, which are 266

interpreted by WF-ABC as an amplification of positive or negative selection. 267

As with the estimation of Ψ , we assessed the performance of Part 2 of MMC-ABC 268

over a range of data types, including cases with 5, 11, or 21 time points over a span of 269

100 generations, as well as for sample sizes of 25, 100, and 250 for populations of 270

N = 1000 at s ∈ {0, 0.1, 0.2, 0.3, 0.4} (Figs. S3; S4). Again, as expected, the estimation 271

of s improves with larger sample sizes and more densely sampled time points. However, 272

MMC-ABC is a reasonably good estimator of s even with as few as five time points or a 273

sample size of 25. 274

Joint estimation of N , Ψ, and s 275

We simulated trajectories for 9500 neutral loci and 500 selected loci for which s = 0.1, 276

under conditions in which N = 1000 and Ψ = 0.1. MMC-ABC estimated firstly N and 277

Ψ over priors of ∼U [250, 2000] and ∼U [0, 0.3], respectively, and then estimated s for 278
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each site with values of N and Ψ drawn from the joint posterior (Fig. 6). The estimated 279

value of Ψ̂ = 0.101, the mean estimated value of s for neutral sites was −0.008 and for 280

positively selected sites was 0.924, highlighting the ability of MMC-ABC to jointly 281

estimate the magnitude of skewed offspring distributions and site-specific selection 282

coefficients with accuracy, even when a relatively large proportion (5% in this case) of 283

sites are under strong positive selection. 284

This result is notable, given that both recurrent positive selection and skewed 285

progeny distributions can result in coalescent trees dominated by multiple-mergers 286

(Durrett and Schweinsberg, 2004, 2005). Different features of the data—resulting from 287

the localized effects of selection and the genome-wide effects of sweepstakes 288

reproduction—allow us to disentangle the MMC behavior of neutral offspring skew from 289

that of non-neutral offspring skew generated by positive selection. 290

Application to data from influenza A 291

We applied MMC-ABC to time-series data from the experimental evolution of influenza 292

A. These data were collected under standard culture conditions and during a period of 293

exposure to exponentially increasing concentrations of the drug oseltamivir (Foll et al., 294

2014a). 295

The data consist of time-sampled minor allele frequencies for two control lineages 296

and two drug-selected lineages. Using WF-ABC, Foll et al. (2014a) previously estimated 297

the effective population sizes of the control and selected populations to be 176 and 226, 298

respectively, with values of Ne derived from the harmonic means of the population sizes 299

during passaging being 737 and 696, respectively. They hypothesized that the 300

discrepancies in measurements of Ne were likely due to the large variance in viral burst 301

sizes, yielding skewed offspring distributions. These experimentally evolved populations 302

therefore are well-suited to the application of MMC-ABC. 303

We first obtained estimates of Ψ for each population, using the harmonic population 304

size means as a prior for N . We then obtained posterior distributions of s for all 305

mutations segregating in at least two time points and with a minimum frequency of 306

2.5% for at least one time point. We define Bayseian ’p-values’ for s as P (s < 0|x) and 307

consider a trajectory to be ’significant at level p’ if its equal-tailed 100(1− p)% posterior 308

interval excludes zero (Beaumont and Balding, 2004). 309

The mean posterior estimate of Ψ for the two control lines was 0.067, and the mean 310

value of Ψ across both drug-treatment lines was 0.084. MMC-ABC recovered two of the 311

same six control line mutations and seven of the 15 mutations from the drug selection 312

lines identified by (Foll et al., 2014a) as being beneficial at the level p = 0.01 (Table 1, 313

summarizing all eight mutations significant under MMC-ABC and eight of the 20 314

significant under WF-ABC, sites of known drug-resistance mutations shown in bold 315

font). The mutations of significant beneficial effect under WF-ABC had an average 316

effect of s = 0.1 for control line mutations and s = 0.13 for drug-selection mutations. 317

The same sets of mutations (including those that did not achieve significance under 318

MMC-ABC) had average effects of s = 0.11 and s = 0.17 as estimated by MMC-ABC. 319

The beneficial mutations identified in the control lines are likely adaptations to the 320

MDCK cells used in serial passaging. One mutation, which rose to high frequency in the 321

first control and drug lines at nucleotide position 1395 of the hemagglutinin segment, 322

has been widely observed across influenza strains and is a common adaptation to tissue 323

culture (Daniels et al., 1985; Reed et al., 2009; Foll et al., 2014a). Another mutation, 324

which reached high frequency in the second control line, has likewise been associated 325

with adaptation to culture conditions (Lin et al., 1997; Ilyushina et al., 2007). Notably, 326

the mutation at position 823 of the neuraminidase segment (identified as H275Y under 327

the N2 numbering system) achieved high frequency in both drug lineages and is a 328
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well-documented resistance mutation for oseltamivir (Sha and Luo, 1997; Arzt et al., 329

2001; Collins et al., 2008). 330

Six of the eight synonymous mutations found to be significantly beneficial by 331

WF-ABC were not significantly beneficial under MMC-ABC. By estimating an 332

appropriate neutral null model under the Ψ-coalescent, we reduced the list of candidate 333

resistance mutations, thus likely minimizing the rate of false positives and excluding 334

many hitchhiking mutations (as the synonymous sites are likely to be). Several 335

experimentally validated mutations known to improve either infectivity in tissue culture 336

or resistance to oseltamivir were retained under MMC-ABC, as were a handful of other 337

potential candidate resistance mutations. 338

Conclusions 339

The revolution in sequencing technology has increased the availability of time-series 340

polymorphism data by orders of magnitude, but the utility of such data relies upon the 341

derivation and development of appropriate inference methodologies. The neutral biology 342

of large swaths of the tree of life renders the most common class of inference based on 343

the Kingman coalescent of questionable use. We have demonstrated here that 344

performing inference under the assumptions of the Wright-Fisher model and the 345

Kingman coalescent leads to an incorrect understanding of both population size and 346

selection coefficients in such organisms. Matuszewski et al. (2018) have also shown the 347

same to be true for the demographic history of the population. Fortunately, the 348

theoretical details are in place to develop similar inference of demography and selection 349

under biologically appropriate alternative coalescent models (Wakeley, 2013). 350

We have shown that MMC-ABC is able to jointly estimate N , Ψ , and site-specific 351

selection coefficients accurately, even under high levels of reproductive skew and with an 352

unknown population size. Notably, we are able to distinguish selection-induced offspring 353

skew from skew originating from the neutral reproductive biology of populations, largely 354

due to the genome-wide scale of MMC events relative to the localized effects of selection. 355

We are also able to differentiate drift-induced effects imposed by small population sizes 356

from those induced by sweepstakes reproduction events. 357

Very little is known regarding the extent of progeny skew across groups of viruses, 358

bacteria, and plants, or the extent of skew artificially induced by domestication and 359

cultivation. However, this work demonstrates that, at least with time-sampled allele 360

frequency data, such inference is now possible, and moreover will allow for the 361

construction of much more accurate neutral null models in these organisms, which will 362

greatly reduce false-positive rates in scans for selection, provide a more accurate picture 363

of demographic history, and reveal previously hidden details regarding variance in 364

offspring number. 365
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Figure 1. A: The site frequency spectrum (SFS) for Ψ ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5},
derived from values averaged over 100 replicate simulations at N = 1000 with sample
size n = 250. B: The value of Tajima’s D for 0 ≤ Ψ ≤ 0.25 averaged across 100 replicate
simulated populations with sample size n = 30. As shown, offspring skew strongly biases
commonly used summary statistics, even under equilibrium neutrality.
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Figure 2. Estimation of Ψ by MMC-ABC, with estimates averaged over 1000 replicate
populations of size N = 1000, with an average of 300 polymorphic sites per population
tracked at 20 time points over 200 generations with a minimum of 8 informative time
points, with the correct value of N specified. True values of Ψ are indicated by the
dashed line. Thus, MMC-ABC accurately estimates the value of Ψ from time-series data
when the true value of N is known.
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Figure 3. A: Estimation of Ψ by MMC-ABC, with estimates averaged over 100 replicate
populations of size N = 1000 with values of Ψ and N drawn from priors ∼U [0, 0.3]
and ∼U [250, 4000], demonstrating the robustness of MMC-ABC to mis-specification of
census size. True values of Ψ are indicated by the dashed line. B: Estimation of Ψ by
MMC-ABC, with estimates averaged over 100 replicate populations of size N = 1000 with
either the correct value of N or an incorrect value of N (N ∈ {250, 500, 1000, 2000, 4000})
specified, demonstrating the non-linear relationship between N and Ne under the Ψ-
coalescent, with mis-specification of N having little effect on the accurate estimation of
Ψ when Ψ is large.
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Figure 4. A: Estimation of s by MMC-ABC and WF-ABC for 1000 sites under selection
for s ∈ {0, 0.1, 0.2, 0.3, 0.4} with the true values of N = 1000 and Ψ = 0.1 provided
to MMC-ABC and the true value of N provided to WF-ABC. Results presented in a
standard box plot with the box as the first, second and the third quartiles, and the
whiskers as the lowest and highest datum within the 1.5 interquartile range of the lower
and upper quartiles, respectively. Red circles indicate the true value of s, and blue
triangles indicate the sample mean. B: Estimation for s ∈ {0, 0.005, 0.01, 0.015, 0.02}
with the same conditions as above. WF-ABC tends to underestimate s for neutral alleles
and overestimate s under strong positive selection under sweepstakes reproduction.
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Figure 5. Estimation of s by MMC-ABC (A) and WF-ABC (B) for 1000 sites under selection with s ranging
from −0.1 to 0.4, estimated over 10,000 simulated values of s for each site, and with the correct values of Ψ = 0.1
and N provided to MMC-ABC. MMC-ABC is a relatively unbiased estimator of s under offspring skew, while
WF-ABC strongly overestimates s for positively selected sites and underestimates s for neutral and negatively
selected sites.
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Figure 6. Estimation of s by MMC-ABC for 9500 hundred neutral sites and 500 sites
for which s = 0.1 with N = 1000 and Ψ = 0.1 with N estimated over a uniform prior
∼U [250, 2000], Ψ estimated from the prior ∼U [0, 0.3] and s estimated over ∼U [−0.2, 0.6].
Note that we display the relative frequencies for estimated values of s for each class of
mutation, for which there were unequal numbers of total sites. These results demonstrate
the ability of MMC-ABC to jointly and accurately estimate N , Ψ , and s from genomic
data, even when a large number of sites are under positive selection.
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Table 1. Mutations significantly beneficial under MMC-ABC from experimentally evolved populations of influenza A virus

Initial Final WF-ABC MMC-ABC

Segment Position Substitution type frequency frequency s estimates (99% HPDIs) s estimates (99% HPDIs)

Control 1 HA 1395 Non-synonymous 0.03% 92.5% 0.12 (0.05, 0.19) 0.14 (0.06, 0.21)

Control 2 HA 1211 Non-synonymous 0.04% 100.0% 0.20 (0.08, 0.35) 0.23 (0.15, 0.32)

Drug 1 PA 2194 Synonymous 1.4% 36.7% 0.09 (0.02, 0.17) 0.11 (0.05, 0.18)

HA 48 Synonymous 0.1% 92.3% 0.14 (0.06, 0.27) 0.16 (0.05, 0.24)

HA 1395 Non-synonymous 0.06% 99.9% 0.22 (0.08, 0.34) 0.27 (0.13, 0.42)

NA 582 Synonymous 0.02% 98.3% 0.29 (0.15, 0.45) 0.43 (0.28, 0.56)

NA 823 Non-synonymous 0.04% 99.5% 0.15 (0.06, 0.24) 0.18 (0.08, 0.28)

Drug 2 NA 823 Non-synonymous 0.04% 90.3% 0.27 (0.12, 0.48) 0.26 (0.13, 0.42)
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