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ABSTRACT 

Multiple sclerosis (MS) is an inflammatory disorder of the central nervous system. By 

combining longitudinal MRI-based brain morphometry and brain age estimation using 

machine learning, we tested the hypothesis that MS patients have higher brain age relative to 

chronological age than healthy controls (HC) and that longitudinal rate of brain aging in MS 

patients is associated with clinical course. 

 Seventy-six MS patients, 71 % females and mean age 34.8 years (range 21-49) at 

inclusion, were examined with brain MRI at three time points with a mean total follow up 

period of 4.4 years. A machine learning model was applied on an independent training set of 

3208 HC, estimating individual brain age and calculating the difference between estimated 

brain age and chronological age, termed brain age gap (BAG). We also assessed the 

longitudinal change rate in BAG in MS individuals. We used additional cross-sectional MRI 

data from 235 HC for case-control comparison. 

  MS patients showed increased BAG (4.4 ±6.6 years) compared to HC (Cohen’s D = 

0.69, p = 4.0 x 10-6). Longitudinal estimates of BAG in MS patients suggested an accelerated 

rate of brain aging corresponding to an annual increase of 0.41 (±1.23) years compared to 

chronological aging for the MS patients (p = 0.008). 

 On average, patients with MS have significantly higher BAG compared to HC and 

accelerated rate of brain aging compared to chronological aging. Brain age estimation 

represents a promising method for evaluation of brain changes in MS, with potential for 

predicting future outcome and guide treatment. 

 

Key words: multiple sclerosis, brain age, magnetic resonance imaging, machine learning, 

longitudinal 

 

Abbreviations: 

BAG = Brain Age Gap 

CNS = Central Nervous System 

DMT = Disease-Modifying Treatment 

EDSS = Expanded Disability Status Scale 

FLAIR = Fluid Attenuation Inversion Recovery 

FOV = Field of View 

FSPGR = Fast Spoiled Gradient Echo 

HC = Healthy Controls 
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ICC = Intraclass Correlation Coefficient 

IQ = Intelligence Quotient 

LME = Linear Mixed Effects 

MP-RAGE = Magnetization Prepared Rapid Gradient Echo 

MS = Multiple Sclerosis 

MSSS = Multiple Sclerosis Severity Scale 

NEDA = No Evidence of Disease Activity 

TE = Echo Time 

TR = Repetition Time 

WMLL = White Matter Lesion Load 

 

INTRODUCTION 

Multiple sclerosis (MS) is an inflammatory, demyelinating disease of the central nervous 

system (CNS). The prevalence of MS varies across the world and has been reported above 

200/100.000 in some European countries 1. The disease affects women more frequently than 

men 2. The complex pathophysiology of MS can be divided into acute inflammation during a 

relapse and chronic inflammation thought to continuously disturb neuroaxonal homeostasis 

and drive neurodegeneration 3.  

After the initial diagnosis, which is usually established in early adulthood, patients 

experience different disease activity and longitudinal accumulation of neurological damage. 

Development of robust brain imaging markers that can parse this between-subject 

heterogeneity of the clinical trajectories, predict future progression of disability, and monitor 

the effects of treatment is a major aim with important clinical implications 4 5. Current 

imaging markers with relevance for MS are associated with disease activity and progression, 

and include, among other features, number or volume of hyperintense brain lesions visible on 

T2-weighted MRI images, contrast-enhancing T1 lesions, increased annual brain volume loss 

and T1-hypointense “black holes” 4 6 7. Increased rate of brain volume loss, which is best 

captured using longitudinal designs 8, reflects accelerated neurodegeneration 9. Tuning the 

analysis towards specific brain regions may boost the correlations between estimated brain 

atrophy and disability 4. However, identifying robust associations between clinical outcomes 

and MRI measures has been challenging 10. This clinico-radiological paradox in MS is likely 

explained by a combination of lack of sensitivity and specificity both in the clinical and 

imaging domain. Indeed, expanded disability status scale (EDSS) and relapse rate, which are 

frequently used as clinical measures in MS phase III trials, are not sensitive to the full clinical 
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spectrum in MS 11 12. Ongoing efforts are made to develop and validate novel 

multidimensional measures to capture subtle changes in MS activity and progression 12. The 

concept of “No evidence of disease activity” (NEDA) has emerged in the last decade as one 

such promising multidimensional measure of MS disease activity 13. On the imaging side, 

recent technological advances for improved acquisition and analyses are likely to overcome 

some of the current challenges related to brain scan reproducibility and across-site 

harmonization and contribute towards a predictive MRI marker for disability and the effect of 

treatment in patients with MS in a clinical setting 4. 

 Essentially, brain age estimation uses machine learning on a large training set of MRI 

data from healthy controls (HC) to develop a model that can accurately predict the individual 

age from brain imaging data 14-16. Utilizing sensitive measures of MRI-based brain 

morphometry, brain age estimation provides a robust imaging-based biomarker with potential 

to yield novel insights into similarities and differences of disease pathophysiology across 

brain disorders 15 17. Such imaging-based brain age has been shown to be reliable both within 

and between MRI scanners, and is a candidate biomarker of an individual’s brain health and 

integrity 14 15 17. Different approaches to brain age estimation utilize information from a 

variety of brain regions (e.g. hippocampus, subcortical, grey matter and white matter 18) or 

MRI sequences (e.g. T1, T2, diffusion tensor imaging and functional MRI) to inform the 

estimation model 17. An older appearing brain, which is related to advanced physiological and 

cognitive ageing and mortality 17, has been found to be an imaging-based hallmark across 

several brain disorders. To our knowledge, only one preprint (n = 254 MS patients) and one 

abstract (n = 17 MS patients) have reported brain age estimations in MS 15 19, and both 

reported older appearing brains in patients with MS compared to HC.  

 Here, combining cross-sectional and sensitive measures of MRI-based regional and 

global brain morphometry in MS and HC (cross-sectional only), we tested the hypothesis that 

MS patients have higher estimates of brain age than HC in a cross-sectional design. Next, 

using longitudinal MRI data in MS patients we tested the hypothesis that brain aging 

accelerates in MS and that the rate of acceleration is associated with a more severe clinical 

outcome, investigating the associations between the rate of brain aging, disease-modifying 

treatment (DMT) and clinical trajectories. 
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MATERIALS AND METHODS 

Participants  

We included 76 MS patients recruited at Oslo University Hospital 20 21. All patients were 

diagnosed with MS between January 2009 and December 2012 according to the revised 

McDonald Criteria 22 and were enrolled in the study on average 14 months (±11.8) after the 

date of diagnosis (time point 1). Most patients also participated in two follow-up 

examinations on average 26 months (±11.7, time point 2, n = 60) and 66 months (±13.3, time 

point 3, n = 62) after the date of diagnosis. At each visit, all patients completed a neurological 

examination by a Neurostatus certified medical doctor (http://www.neurostatus.com) within 

the same week as their MRI scan. DMTs were categorized into the following groups; 0: no 

treatment; 1: glatiramer acetate, interferons, teriflunomide or dimetylfumarate; and 2: 

fingolimod, natalizumab or alemtuzumab.  

 The HC group was recruited through newspaper ads or after a stratified random 

selection drawn from the Norwegian National Population Registry to two parallel studies 18 23. 

Exclusion criteria included estimated intelligence quotient (IQ) <70, history of neurologic or 

psychiatric disease and current medication significantly affecting the nervous system 24.  

The project was approved by the local ethics committee and in line with the 

Declaration of Helsinki. All participants received oral and written information and gave their 

written informed consent. 

 

MRI acquisition  

All MS patients were scanned at up to three time points between January 2012 and August 

2017, using the same 1.5 T scanner (Avanto, Siemens Medical Solutions; Erlangen, Germany) 

equipped with a 12-channel head coil. Structural MRI data were collected using a 3D T1-

weighted MPRAGE (Magnetization Prepared Rapid Gradient Echo) sequence, with the 

following parameters: repetition time (TR) / echo time (TE) / flip angle / voxel size / field of 

view (FOV) / slices / scan time / matrix / time to inversion = 2400 ms / 3.61 ms / 8° / 1.20 x 

1.25 x 1.25 mm / 240 / 160 sagittal slices / 7:42 minutes / 192 × 192 / 1000 ms. The MRI 

sequence was kept identical during the scanning period. FLAIR (Fluid attenuation inversion 

recovery), T2 and pre- and post-gadolinium 3D T1 sequences were attained and used for 

neuroradiological evaluation 20.  

 Fifty-eight of the MS patients were also scanned at Oslo University Hospital on a 3 T 

GE 750 Discovery MRI scanner with a 32-channel head coil at time point 3 between August 

2016 and June 2017 during the same week they were scanned at the 1.5 T scanner for time 
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point 3. HCs were scanned solely on the 3 T scanner. Structural MRI data were collected 

using a 3D high-resolution IR-prepared fast spoiled gradient echo (FSPGR) T1-weighted 

sequence (3D BRAVO) with the following parameters: TR / TE / flip angle / voxel size / 

FOV / slices / scan time = 8.16 ms / 3.18 ms / 12° / 1 x 1 x 1 mm / 256 x 256 mm / 188 

sagittal slices / 4:42 minutes. 

 

MRI pre- and postprocessing 

Using the T1-weighted scans we performed cortical reconstruction and volumetric 

segmentation with FreeSurfer 5.3 (http://surfer.nmr.mgh.harvard.edu/) 25. To extract reliable 

volume and thickness estimates, images included in the longitudinal 1.5 T MRI dataset were 

processed with the longitudinal stream in FreeSurfer 26. Specifically an unbiased within-

subject template space and image was created using robust, inverse consistent registration 27. 

Several processing steps, such as skull stripping, Talairach transforms, atlas registration as 

well as spherical surface maps and parcellations were then initialized with common 

information from the within-subject template, increasing reliability and power 26.  

Manual quality control of the MRI scans from patients was performed by trained 

research personnel to identify and edit segmentation errors where possible (n = 43 MRI scans) 

and exclude data of insufficient quality (n = 6 MRI scans). In addition, eight brain scans were 

removed due to missing sequences of the 263 MRI scans from MS patients. Lesion filling was 

performed utilizing automatically generated lesion masks from Cascade 28 with the lesion 

filling tool (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/lesion_filling) in FSL 29. The lesion masks 

were assessed by a trained neuroradiologist. For a probabilistic representation of the lesions, 

the lesion masks were normalized into MNI-standard space using FSL FLIRT 30, with the 

corresponding T1 image as an intermediate. A probabilistic representation of the lesions 

across all patients is shown in Supplementary Fig. 1. 

 

Brain age estimation model 

The training set for the brain age estimation included data from 3208 HC >12 years (54 % 

women, mean age 47.5 (±19.8), age range 12-95) obtained from several publicly available 

datasets (Supplementary Fig. 2). We trained one “xgboost” machine learning model for each 

sex to predict brain age derived from a total of 1118 cortical and subcortical brain imaging 

features 15 31 32.  

Based on a recent implementation 15, brain age estimations were performed both using 

global and regional features as input. The brain regions reported were based on lobe labels 
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from Freesurfer 25. The brain age estimation model was carefully evaluated using 10-fold 

cross-validation within the training set and showed good performance and generalizability 

(Supplementary Fig. 3, r = 0.91). For all patients and HC, we calculated the brain age gap 

(BAG, defined as the difference between chronological age and imaging-based brain age). 

Using linear regressions, we removed any common variance with age, age2 and sex to account 

for confounding factors before submitting the residualized version of BAG to further analyses 
33. When pooling estimates of BAG from the 1.5 T and 3 T scanners, we adjusted BAG for 

scanner effect on BAG estimates by extracting the scanner coefficient from a linear mixed 

effects (LME) model for global and all brain regions. When comparing BAG between patients 

and matched HCs we report the actual adjusted difference in BAG between these two groups. 

 

Statistical analyses 

We used R (R Core Team, Vienna, 2018) for statistical analyses. All LME models accounted 

for age, age2, sex and scanner 34.  

We estimated an annualized rate of change in BAG by dividing the total change in 

BAG by the time interval between the time points. We utilized the longest time interval 

between time points and excluded MS patients lacking longitudinal data (n = 8). The unit used 

for brain aging is “change in BAG per year”. Here, 0 would indicate that the rate of brain 

aging corresponds to chronological aging, and positive and negative values correspond to 

accelerated and decelerated brain aging compared to chronological aging, respectively. For all 

brain regions we tested for significant change in the rate of brain aging by performing a one-

sample t-test on BAG with 0 set as test value. To assess brain aging within groups stratified 

by DMT, we used the coefficients from linear models with the individual slope in BAG as 

dependent variable and age, age2, sex and DMT group as independent variables. We estimated 

the annual global brain atrophy by comparing estimated total brain volume from the 

Freesurfer output (BrainSegVolNotVent) between time points. 

To assess reliability of brain age across time we computed the intraclass correlation 

coefficient (ICC) using the R package “irr” (https://CRAN.R-project.org/package=irr). 

Figures were made using “ggplot2” 35 and “cowplot” (https://CRAN.R-

project.org/package=cowplot) in R. To control for multiple testing we adjusted the p-values 

using false discovery rate (FDR) 36 procedures implemented in the R package “p.adjust” 

(http://stat.ethz.ch/R-manual/R-devel/library/stats/html/p.adjust.html). The linear mixed effect 

models were performed using the R package “nlme” (https://CRAN.R-

project.org/package=nlme). 
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Data availability 
The data are not publicly available due to local restrictions, since they contain information 

that may compromise the privacy of research participants. The code needed to reproduce our 

results is available from the authors upon request. 

RESULTS 
Participant demographics and characteristics 

Table 1 summarizes the demographic and clinical characteristics of all MS patients. Key 

demographic variables regarding HC are summarized in Supplementary Table 1. The majority 

of the MS patients were women (71%) and mean age at inclusion was 34.8 years (±7.2). On 

average they were examined 1.2, 2.2 and 5.5 years after diagnosis. Most patients used first 

line treatment; 65%, 48% and 37% at time point 1, 2 and 3, respectively. Second line 

treatments were used by 13%, 23% and 32% of the MS patients at time point 1, 2 and 3, 

respectively. At time point 2 and 3, 53% and 44% of the patients were categorized as NEDA-

3 (no clinical progression, no new lesions observable in MRI and no new attacks). 
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Table 1. Demographic and clinical characteristics of the multiple sclerosis patients. 

 
  Time point 1 Time point 2 Time point 3 

(a) Demographic characteristics n = 76 n = 75 n = 62 

Female (%) 54 (71) 54 (72) 44 (71) 

Age, mean years (SD) 34.8 (7.2) 35.8 (7.2) 40.0 (7.3) 

≥ 15 years education (%) 53 (70) NA 50 (81) 

Disease duration, mean months (SD) 71.7 (63.0) 79.7 (57.1) 125.1 (60.2) 

Age at first symptom, mean years (SD) 29.3 (6.7)   

Months since MS diagnosis, mean (SD) 14.0 (11.8) 26.3 (11.7) 66.2 (13.3) 

Positive OCB status (%) 69 (91)   

Disease modifying treatment    

None (%) 17 (22) 22 (29) 19 (31) 

First line (%) 49 (65) 36 (48) 23 (37) 

Second line (%) 10 (13) 17 (23) 20 (32) 

(b) Clinical evaluation    

Multiple sclerosis classification    

RRMS (%) 73 (96) 72 (96) 60 (96) 

PPMS (%) 2 (3) 2 (3) 1 (2) 

SPMS (%) 1 (1) 1 (1) 1 (2) 

Neurological disability    

EDSS, mean (SD) 2.0 (0.9) 2.0 (0.9) 2.0 (1.3) 

MSSS (SD) 4.9 (1.9) 4.5 (2.0) 2.6 (1.8) 

Number of total attacks, mean (SD) 1.8 (1.0) 2.0 (1.0) 2.6 (1.3) 

Nine hole peg test    

Dominant hand, mean seconds (SD) 20.0 (3.1) NA 20.6 (8.4) 

Non-dominant hand, mean seconds (SD) 20.8 (2.8) NA 21.1 (5.9) 

Timed 25 feet walk test, mean seconds (SD) 4.0 (0.7) 3.9 (0.8) 4.0 (1.1) 

(c) NEDA assessment    

NEDA-3 (%)  40 (53) 27 (44) 

NEDA-4 (%)  17 (30) 18 (32) 

        

OCB = oligoclonal bands; RRMS = relapsing-remitting multiple sclerosis; PPMS = primary progressive 

multiple sclerosis; SPMS = secondary progressive multiple sclerosis; EDSS = expanded disability status scale; 

MSSS = multiple sclerosis severity scale; NEDA = no evidence of disease activity. 
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Cross-sectional case-control analyses (3 T) 

At time point 3 we found significantly higher BAG for the MS cohort compared to matched 

HC for all brain regions except the temporal region (Fig. 1; Table 2). The most prominent 

differences in BAG were 4.4 years for global BAG (Cohen’s D = 0.69) and 6.2 years for 

subcortical and cerebellar brain regions (Cohen’s D = 0.72).  

At time point 3, 58 MS patients underwent one MRI scanning in the 1.5 T and one in 

the 3 T scanner with two days apart. Whereas absolute estimates of brain age varied between 

scanners for all brain regions except insula (BAG scanner difference -6.08 to 10.60 years, see 

Supplementary Table 2; Supplementary Fig. 4), brain age estimates from the two scanners 

were highly correlated for global BAG and all brain regions (r = 0.67-0.86, p<0.001).  

 

 
Figure 1. Cross-sectional comparison of brain age gap between MS patients and healthy 

controls. The distribution of brain age gaps across brain regions based on the cross-sectional 

3 T MRI data from matched HC and MS patients at time point 3. We found increased brain 

age gaps for all brain regions except from the temporal brain region. Brain age gaps are 

residualized for age, age2 and sex. Cohen’s D effect sizes for the brain age gap between HC 

and MS patients are depicted using the colour bar.  
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Longitudinal MS sample (1.5 T) 

Fig. 2 shows the estimated brain age and rate of brain aging within the longitudinal MS 

cohort. The correlations between chronological age and global brain age were r = 0.71 for 

time point 1, r = 0.70 for time point 2 and r = 0.69 for time point 3. After adjusting for 

scanner effects mean global BAG was 2.8 (±9.0) for time point 1, 3.3 (±9.4) for time point 2 

and 4.6 (±9.8) for time point 3 in the longitudinal MS sample (Fig. 2B, Table 2 and 

Supplementary table 3). 

 We found a significant annual increase in global BAG of 0.41 (±1.23) years (p = 

0.008) in patients with MS (Fig. 3; Supplementary Table 4 and 5). None of the regional 

measures showed significantly increased annual change in BAG (Supplementary Table 5).  

We found no significant difference in BAG between the raw and the lesion filled MRI 

scans, and the two versions yielded high correlation in BAG (r = 0.98). Data processed with 

the longitudinal stream in FreeSurfer had significantly lower BAG than the cross-sectionally 

processed MRI scans (difference in BAG 4.9 years, p<0.001) and lesion filled MRI scans 

(difference in BAG 5.1 years, p = <0.001) (Supplementary Fig. 5 and 6; Supplementary Table 

6 and 7).  

ICCs for all brain regions across all time points varied from 0.79-0.94 for residualized 

brain age gap and 0.78-0.95 for raw predicted age. The regional feature of cerebellar and 

subcortical brain regions showed highest reliability with an ICC of 0.94 for BAG and 0.95 for 

predicted age (Supplementary Table 8). 

Mean annualized estimated change in global brain volume from all three time points. 

from Freesurfer was -0.30 % (±0.53 %). ICC for global brain volume was 0.97-0.99. Mean 

annualized change in WMLL was 504 mm3 (±1299 mm3). ICC for WMLL was 0.93-0.99. 
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Figure 2. Visualization of brain age in the longitudinal MS cohort. A, MS subjects are 

depicted with linear brain age slopes using linear regression models to visualize 

individualised estimations of brain aging. Only participants with more than one MRI scan are 

included (n = 68). Mean annual increase in global BAG was 0.41(±1.23) years (p = 0.008) in 

patients with MS. B, Difference between chronological and predicted age (brain age gap) are 

shown for all three time points separately. After adjusting for scanner effects mean brain age 

gap was 2.8 (±9.0) for time point 1, 3.3 (±9.4) for time point 2 and 4.6 (±9.8) for time point 3 

in the longitudinal sample. The distributions of the brain age estimates are visualized using 

box and violin plots. 
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Figure 3. Longitudinal changes in brain age gap across brain regions. The distribution of 

brain age gaps across brain regions based on the longitudinal 1.5 T MRI sample. Brain age 

gaps from the MS sample are compared with the cross-sectional 3 T HC sample and 

residualized for age, age2, sex and scanner. The full brain estimates showed a significant 

accelerated rate of brain aging compared to chronological aging (annual increase in brain age 

gap 0.41 (p = 0.008)). Cohen’s D effect sizes for the brain age gap between MS and HC are 

depicted using the colour bar. 

 

Table 2. Differences in brain age gap between the multiple sclerosis patients and healthy 

controls (n = 235). 

  1.5 T MRI 3 T MRI 

  Time point 1 (n=73) Time point 3 (n=60) Time point 3 (n=58) 

Brain regions BAG p Cohen´s D BAG p Cohen´s D BAG p Cohen´s D 

Full brain 2.8 1.8 x 10-3 0.40 4.6 1.1 x 10-5 0.64 4.4 4.0 x 10-6 0.69 

Occipital 4.3 6.0 x 10-4 0.47 4.7 5.9 x 10-4 0.51 4.3 1.4 x 10-3 0.48 

Temporal -0.32 0.99 -0.04 0.63 0.62 0.07 0.15 0.90 0.02 

Frontal 1.7 0.09 0.21 3.3 7.5 x 10-3 0.39 2.9 0.019 0.35 

Parietal 0.4 0.45 0.06 3.0 3.5 x 10-3 0.42 2.4 9.8 x 10-3 0.38 

Cingulate 4.5 8.2 x 10-4 0.43 5.5 3.9 x 10-4 0.52 5.1 1.3 x 10-3 0.48 

Insula 4.0 2.2 x 10-3 0.42 4.8 6.1 x 10-4 0.51 4.3 2.6 x 10-3 0.45 

Subcort. / Cereb. 5.7 4.8 x 10-6 0.63 6.0 6.5 x 10-6 0.66 6.2 1.6 x 10-6 0.72 
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Brain age gap (BAG) estimations are residualized for age, age2, sex and scanner. Effect sizes were calculated using Cohen’s D estimates. 

Significant differences in brain age gap are highlighted with bold (p<0.05). The two groups are matched according to age and sex. 

  

Associations between global brain age and clinical outcomes 

Table 3 (BAG) and Table 4 (annual rate of brain aging) show summary statistics from the 

multiple regressions testing for associations with demographic, clinical and MRI variables in 

the longitudinal MS cohort. After accounting for multiple testing, significant associations 

were found between BAG and brain atrophy (Cohen’s D = -0.07, p = 0.01) and WMLL 

(Cohen’s D = -1.23, p = 3.0 x 10-4), indicating higher BAG at baseline with higher WMLL 

and increased brain atrophy. For longitudinal estimates of brain aging we found significant 

associations with brain atrophy (Cohen’s D = 0.86, p = 4.3 x 10-15) and change in WMLL 

(Cohen’s D = 0.55, p = 0.015), indicating higher rates of brain aging in patients with higher 

levels of brain atrophy and more progressive changes in WMLL. WMLL also showed a 

significant correlation with BAG for cerebellar and subcortical regions (Cohen’s D = -1.23, p 

= 3.2 x 10-3). 

In the longitudinal data, One Sample t-test revealed a significant increase in BAG in 

DMT group 0 (0.92 (±0.82), p = 5.4x10-4), and no significant changes in DMT groups 1 (0.13 

(±1.3), p = 0.63) and 2 (0.35 (±1.3), p = 0.26). However, linear models and a LME analysis 

revealed no significant group differences in the rate of brain aging (f-value = 2.47, p = 0.09) 

(Supplementary Fig. 7).  

 

Table 3. Pearson’s correlations between brain age gap and relevant clinical and MRI 

variables. 
  

  Fullbrain Frontal Parietal  Subcort / Cereb. 

Clinical variables cor. p cor. p cor. p cor. p 

9HPT Non-dominant 0.36 5.8 x 10-3 0.03 0.80 0.16 0.22 0.28 0.030 

Change in 9HPT Non-dominant 0.28 0.035 0.05 0.68 0.14 0.31 0.21 0.12 

DMT Level 0.01 0.93 0.03 0.80 -0.05 0.70 0.26 0.046 

Gender -0.28 0.031 0.05 0.68 -0.18 0.17 -0.04 0.78 

MRI variables cor. p cor. p cor. p cor. p 

WMLL 0.46 3.0 x 10-4 0.19 0.16 0.24 0.07 0.38 3.2 x 10-3 

Change in WMLL 0.30 0.022 0.12 0.34 0.20 0.13 0.34 9.6 x 10-3 

Brain volume -0.25 0.06 -0.43 8.8 x 10-4 -0.35 7.3 x 10-3 -0.24 0.07 

Brain atrophy -0.33 0.011 -0.31 0.017 -0.37 4.7 x 10-3 -0.13 0.32 

ICV -0.01 0.94 -0.29 0.027 -0.20 0.13 -0.02 0.87 
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Significant associations are highlighted with bold (p<0.05). Associations which were still significant after adjusting for false discovery 

rate are underlined. 9HPT = nine hole peg test; Cor. = correlation; DMT = disease-modifying therapies; WMLL = white matter lesion 

load; ICV = intracranial volume. 

 

Table 4. Pearson’s correlations between annual rate of brain aging and relevant clinical and 

MRI variables on time point 3. 

 Fullbrain Frontal Parietal Subcort. / Cereb. 

Clinical variables cor. p cor. p cor. p cor. p 

EDSS 0.09 0.49 -0.01 0.95 -0.15 0.25 0.22 0.08 

Change in EDSS 0.16 0.23 0.09 0.50 -0.03 0.83 0.29 0.026 

MSSS -0.03 0.84 -0.09 0.47 -0.21 0.11 0.17 0.20 

Change in MSSS 0.17 0.21 0.10 0.46 0.05 0.68 0.36 5.1 x 10-3 

9HPT Non-dominant 0.29 0.028 0.15 0.27 0.01 0.92 0.30 0.021 

Change in 9HPT Non-dominant 0.31 0.017 0.20 0.14 0.08 0.53 0.32 0.014 

DMT Level -0.28 0.031 -0.22 0.09 -0.17 0.21 -0.08 0.54 

MRI variables cor. p cor. p cor. p cor. p 

WMLL 0.29 0.026 0.21 0.11 0.19 0.16 0.01 0.96 

Change in WMLL 0.30 0.015 0.19 0.12 0.35 4.3 x 10-3 0.00 0.98 

Brain volume -0.01 0.93 -0.08 0.54 -0.03 0.83 0.10 0.44 

Brain atrophy -0.79 4.3 x 10-15 -0.79 1.6 x 10-15 -0.72 1.1 x 10-11 -0.07 0.57 

         

Significant associations are highlighted with bold (p<0.05). Associations which were still significant after adjusting for false discovery 

rate are underlined. Cor. = correlation; EDSS = expanded disability status scale; MSSS = multiple sclerosis severity score; 9HPT = nine 

hole peg test; DMT = disease-modifying therapies; WMLL = white matter lesion load. 

 

DISCUSSION 

Here, by using advanced cross-sectional and longitudinal MRI-based neuroimaging data as 

basis for brain age estimation based on machine learning, we tested the hypotheses that 

patients with MS on average show higher brain age than HC, and that the rate of brain aging 

is affected by treatment. We found an accelerated brain aging in MS patients compared to 

controls by cross-sectional and longitudinal brain scans and suggested that increased rates of 

longitudinal brain aging are associated with higher rates of brain atrophy and increasing 

WMLL. 

 We report that MS patients on average had 4.4 years higher BAG compared to HC 

(Cohen’s D = 0.68). The present findings are in line with preliminary findings from 

Kaufmann and colleagues 15. Other studies on this topic are warranted. To our knowledge, 

results of other comparable studies are not yet available. 
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  For subcortical and cerebellar brain regions we found a higher BAG in MS compared 

with HC (BAG 6.2 years, Cohen’s D = 0.72), which was already evident at time point 1 

(BAG 5.7 years, Cohen’s D = 0.63). The regional variation observed in the BAG estimates in 

our study may reflect different affinity of MS pathology in different brain regions and aligns 

with previously shown lesion probability maps in MS 4 37.  

 In our longitudinal patient sample, the annual rate of brain aging for global BAG 

exceeded that of chronological aging by 0.41 years per year (p = 0.008), which may partly be 

explained by chronic inflammatory processes that drive neurodegeneration in MS 3. The 

association between BAG and brain aging, brain volume and brain atrophy were expected 

since our estimation model was based on regional and global structural MRI features.  

Of notice, brain age estimation takes into account subtle and regional changes that are 

not included in the global brain atrophy measure. The associations between BAG and brain 

aging, brain atrophy, brain volume, WMLL and change in WMLL showed significant and 

regional differences. The associations between change in WMLLs and brain aging were 

significant for occipital, temporal and parietal brain regions in addition to global BAG 

(Supplementary Table 9). This shows that regional brain age estimation can capture regional 

specificity of MS pathology, which is in line with the observations that MS lesions show 

regional affinity 14 15 17 37.  

 The significant increase in BAG in the patients receiving no treatment warrants further 

investigations but is of clinical interest. However, the lack of randomization and group 

differences in the subgroups calls for caution in the interpretations of this relative small 

dataset.  

 The preliminary findings reported by Kaufmann et al. revealed a significant 

association between BAG and EDSS (Fisher z = 0.23) 15, i.e. that patients with older 

appearing brains have a higher clinical disease burden. In the current study, multiple 

regression analyses revealed nominally significant (p<0.05, uncorrected) associations between 

some clinical, cognitive and imaging variables and BAG as well as brain aging for specific 

brain regions (Supplementary Table 9 and 10). However, these associations did not survive 

correction for multiple testing, and further studies are needed to assess the robustness of these 

observations. 

 Some limitations should be considered when interpreting the results. First, although 

the cross-sectional case-control comparison and the within-patient longitudinal analysis 

jointly suggest accelerated brain aging in patients with MS, a longitudinal sample of HCs 

would have enabled us to directly compare the rate of brain aging between patients and 
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controls. Next, the current brain age model was exclusively based on gross morphometric 

features. The MS patients were naturalistic, hence any results based on DMT status must be 

interpreted with care.  

 In conclusion, using advanced cross-sectional imaging data and machine learning 

methods we report that patients with MS show evidence of increased brain aging compared to 

healthy controls. In the longitudinal data we found that MS patients have accelerated brain 

aging. Higher rates of longitudinally measured brain aging were associated with higher levels 

of brain atrophy and longitudinal progression of changes in WMLL. These results show that 

brain age estimation is a promising and intuitive tool for monitoring of the individual disease 

course in MS and may guide a personalized treatment approach. 
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