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Abstract 
        Genetic and environmental factors interact during sensitive periods early in life to influence 

mental health and disease. These influences involve modulating the function of neurons and 

neuronal networks via epigenetic processes such as DNA methylation. However, it is not known 

if DNA methylation changes outside the brain provide an ‘epigenetic signature’ of early-life 

experiences in an individual child that may serve as a marker for vulnerability or resilience to 

mental illness. Here, to obviate the massive variance among individuals, we employed a novel 

intra-individual approach by testing DNA methylation from buccal cells of individual rats before 

and immediately after exposure to one week of typical or adverse life experience. We show that 

whereas inter-individual changes in DNA methylation reflect the effect of age, DNA methylation 

changes within paired DNA samples from the same individual reflect the impact of diverse 

neonatal experiences on the individual. The methylome signature of early-life experience is 

enriched in genes encoding transcription factors and key molecular cellular pathways. Specifically, 

genes involved in cell morphogenesis and differentiation were more methylated in pups exposed 

to the adverse environment whereas pathways of response to injury and stress were less 

methylated. Thus, intra-individual methylome signatures indicate large-scale transcription-driven 

alterations of cellular fate, growth and function. Our observations in rats--that distinct early-life 

experiences generate specific individual methylome signatures in accessible peripheral cells--

should be readily testable in humans. 
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Introduction 
        Experience, particularly during sensitive periods early in life, leaves indelible marks on an 

individual’s ability to cope with life’s challenges, influencing resilience or vulnerability to emotional 

disorders (Bale et al. 2010; Klengel and Binder 2015; Nestler et al. 2015; Chen and Baram 2016; 

Nelson et al. 2007). There is evidence that the mechanisms by which early-life experiences 

influence the function of neurons and neuronal networks involve modifying the repertoire and 

levels of gene expression via epigenetic processes (Bale et al. 2010; Klengel and Binder 2015; 

Nestler et al. 2015; Szyf 2015; Bedrosian et al. 2018; Chen and Baram 2016; Singh-Taylor et al. 

2017; Bale 2015; Bohacek and Mansuy 2015; Dias and Ressler 2013). Among epigenetic 

processes, changes in DNA methylation of individual genes and at the genomic scale have been 

reported, and these generally correlate with gene expression (Klengel and Binder 2015; Szyf 2015; 

Peter et al. 2016; Weaver et al. 2004; Nemoda et al. 2015). However, it is not known if DNA 

methylation changes might provide a useful ‘epigenetic signature’ of early-life experiences in an 

individual child. Such a readily-accessible measure might serve as a biomarker for vulnerability 

or resilience to mental illness. Obviously, it is not possible to repeatedly sample DNA from brain 

cells in humans in order to assess DNA methylation changes for predicting and preventing 

disease. Therefore, current approaches employ peripheral cells including white blood cells (WBC) 

or buccal swabs (mixed epithelial/WBC), which are available repeatedly and noninvasively. Here 

we tested the feasibility of using peripheral DNA samples to assess the impact of diverse neonatal 

experiences on an individual by directly comparing two samples collected at different time points 

from the same individual rat in groups exposed to distinct early-life experiences with defined onset 

and duration. We have previously established that these diverse experiences provoke specific 

phenotypic outcomes later in life (Chen and Baram 2016; Ivy et al. 2010; Bolton et al. 2018). 

Specifically, we imposed ’simulated poverty’ by raising pups for a week (from postnatal day P2  

to P10) in cages with limited bedding and nesting materials (LBN). This manipulation disrupts the 

care provided by the rat dam to her pups and results in profound yet transient stress in the pups, 

devoid of major weight-loss or physical changes. This transient experience provokes significant 

and life-long deficits in memory and generates increases in emotional measures of anhedonia 

and depression (Ivy et al. 2010; Bolton et al. 2018; Lister et al. 2013).  

 

        Here we tested if adversity during a defined sensitive developmental period in rats leads to 

a detectable epigenomic signature in DNA from buccal-swab cells. We obtained intra-individual 

epigenomic signatures of early-life adversity using reduced representation bisulfite sequencing 

(RRBS) (Meissner et al. 2005) to identify changes in DNA methylation profiles. Comparisons were 
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made both between two samples from an individual rat (P2 vs P10) and between samples from 

rats subjected to the two neonatal experiences. We found that assessing the overall methylation 

profile of samples enabled detection of age and development effects (Lister et al. 2013; Reizel et 

al. 2018), distinguishing P2 samples from those obtained on P10, but did not separate the two 

groups of pups based on their experience. In contrast, the changes in DNA methylation in two 

samples obtained from the same rat enabled clear differentiation of the control vs the adverse 

experience, likely by obviating large inter-individual variance. Thus, our findings establish the 

feasibility of identifying markers of adverse experiences that portend risk or resilience to mental 

illness, with major potential translational impact. 

 

Results 
Methylation changes reflect postnatal age rather than maternal experiences 
        We obtained a mix of epithelial & white blood cell DNA from rat pups, on P2 and on P10 from 

the same pup using buccal swabs (Methods). We obtained buccal swabs rather than peripheral 

white blood cells for three reasons. First, the swab, lasting seconds, is much less stressful than a 

painful needle prick to obtain peripheral blood, and this stress might influence methylation in itself. 

Second, this approach provides a more direct comparison with human studies where ethical 

reasons preclude needle pain whereas buccal swabs are routinely implemented (Said et al. 2014; 

Lowe et al. 2013). Finally, several studies found that DNA methylation profiles in buccal swab 

cells are more similar to patterns from several brain regions than methylation profiles in white 

blood cells (Lowe et al. 2013; Braun et al. 2017; Smith et al. 2015; Davies et al. 2012). Following 

the initial sample collected on P2, rats were exposed to either simulated poverty or to a typical 

environment for one week, followed by a second sample on P10. We examined for intra-individual 

epigenomic signatures of early-life adversity and compared both P10 samples from groups with 

two divergent neonatal experiences as well as the changes in methylation levels between 

matched samples from the same individual rat (P2 vs P10; Fig.1A).  
 

        DNA methylation status was assessed using RRBS, with libraries sequenced to an average 

of 20 Million mapped reads, and we reliably detected an average of 482 thousand CpGs in both 

time points of the same individual (Fig.S1; Methods). We performed differential methylation 

analysis between P2 and P10 for each individual and identified 3417 significantly differential 

methylation regions (DMRs) after coalescing CpGs within 100 basepairs that were shared in at 

least two individuals from each experience group (Figure 1B). These were further analyzed. 

Specifically, we analyzed the DNA methylation levels of these DMRs in P2 and in P10 for both 
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the control and adversity-experiencing (LBN) groups across individuals using k-means clustering 

and observed substantial changes in DNA methylation level during the one-week interval in both 

control and LBN (Figure 2A). The DNA methylation levels within a given individual clearly 

distinguished rats at different ages (Figure 2A). We further performed principal component 

analysis (PCA) on the percentage of DNA methylation of these DMRs and found that individual 

samples were clearly separated by age using the first three principal components (up to 62.1% 

variances explained), indicating the large change in DNA methylation associated with age (Figure 

2B). Note that this result held when cohort effects were considered (Figure S2B,F; S3A-C). These 

data demonstrate that development and age modify the buccal swab methylome (Reizel et al. 

2018; Smith et al. 2015; Eipel et al. 2016; Horvath and Raj 2018) in conjunction with experience. 

We then  examined the DMRs with the top weights in PC2, which explained 20.7% of the variance 

and was the dominant component distinguishing individuals of different ages (Figure 2B).  We 

found that DMRs with reduced  methylation level in P10 were associated with genes involved in 

cellular response to hormones, negative regulation of growth and regulation of kinase activity 

whereas DMRs with increased methylation level in P10 were enriched with genes in pattern 

specification processes such as nervous system and mesodermal development (Figure S4). 

Notably, the PCA analyses of the P2 and P10 methylome profiles did not separate the control 

group from the adversity-experiencing group (Figure 2C). Thus, whereas the level of DNA 

methylation in buccal swabs may denote an epigenetic signature of age, it provides little 

information about antecedent life experiences. 

 

Intra-individual changes in methylation can distinguish early-life experience 
        To probe the impact of the early-life adversity experienced by an individual on DNA 

methylation patterns of the same individual, we explored intra-individual fold changes in 

methylation (referred to as “delta methylation”) rather than the absolute value of methylation levels 

for each pup by taking advantage of the two samples collected immediately before and after a 

week of imposed adversity. We clustered and aligned these delta methylation profiles (differential 

methylation between P2 and P10 defined as log2(P10/P2)) in both early-life experiences (Figure 

3A). We then examined the intra-individual methylation changes in detail and found that the 

patterns of changes in methylation within an individual were distinct depending on group 

assignment (Figure 3A). We performed a PCA analysis on the individual delta methylation 

samples and the resulting principal components revealed that delta methylation within an 

individual clearly distinguished the control and LBN groups (Figure 3B). Specifically, the first three 

principal components accounted for 65.0% of the variance and the third principal component (PC3) 
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(4.9% of the variances) distinguished most LBNs from controls. Importantly, the adverse and 

control experiences differentially reduced or increased levels of methylation in an experience-

specific manner. These results indicate that intra-individual changes in methylation-level profiles 

before and after a defined experience provide a novel epigenetic signature that identifies the 

nature of the experience.  

 
Differential methylation regions are at the vicinity of multiple transcription factors 
        The paragraph above demonstrates that levels of DNA methylation in mixed epithelial / white 

blood cell samples from buccal swab can separate pups by age, whereas the nature of 

methylation changes in the same individual (delta methylation) distinguishes different early-life 

experiences. We examined the relative contribution of individual DMRs to the overall difference 

in PC3, and, guided by the slope of the weight distribution selected a cutoff threshold at +/- 2x10-

2 (Figure 4A) to identify the 346 largest positive weights that account 254 DMRs, which are 

associated with 246 genes (Figure 4A, Supplemental Figure S6,  Supplemental Table 1). The 

methylation regions with maximal positive weights are thus major contributors to the differential 

methylation profiles of early-life adversity (LBN) compared to typical development, and genes that 

have generally increased DNA methylation after the LBN experience typically denote reduced 

expression. Gene Ontology (GO) analysis of these “positive weight” genes identified enrichment 

in terms associated with cell and organ development and cell-morphogenesis (Figure 4B). 

Inspection of individual “positive weight” genes contributing to the adversity-provoked methylome 

signature uncovered a strong enrichment of genes involved in growth and response to growth 

factors (26/246 annotated genes; 10.6%), pathways of injury, inflammation, and death (25/246 

annotated genes; 10.2%), as well as transcription factors (15/246; 6.1%).  

 

        A strongly regulated program of gene expression was also suggested when the same 

approach was applied to the top 311 negative weights (241 DMRs) associated with 225 genes 

that contributed most to the methylome signature associated with a typical developmental epoch. 

First, GO analysis indicated enrichment in genes involved in cell morphogenesis and 

differentiation. Notably, inspection of the individual “negative weight” genes uncovered likely 

mechanisms for a regulated gene expression program: 17.8% of the genes in this group (40/225: 

17.8%) were transcription factors. Indeed, transcription factors accounted for 30% (7/23) of the 

top-contributing genes (genes associated with DMRs having weights more significant than -5x10-

2 in Figure 4A) to the typical methylation phenotype. Further, 53 of the 225 negative weight genes 
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(23.6%) were involved in cell morphogenesis, cytoskeleton stability and growth, and cell-cell 

communication.   

 

Discussion 
        In summary, we find here that comparing cohort-wide DNA samples obtained at different 

developmental ages reveals the signature of age and development on the peripheral 

methylome, as widely reported. However, these inter-individual analyses do not distinguish the 

divergent impacts of diverse experiences that take place during the intervening developmental 

epoch. By contrast, here we demonstrate that paired samples from the same individual before 

and after an adverse or typical developmental experience enable clear distinction of each of 

these experiences: we identify epigenetic ‘scars’ and ‘kisses’ on developmentally important 

genes that, at least in the rodent model, precede and predict later-life emotional functions.  

 

        Although it is known that early life experiences drive gene expression changes and they 

further influence the maturation of brain and other organs in mammalian individuals, our 

knowledge about specific epigenetic regulations involved into these processes are limited. 

Among epigenetic regulations, DNA methylation is known to correlate with gene expression 

changes that can be used to predict aging and risk level of certain cancer types. However, it is 

not known if DNA methylation changes might provide a useful ‘epigenetic signature’ of early-life 

experiences in an individual child. Therefore, this study addresses two critical questions to 

understand the nature of DNA methylation changes in early life experiences: (1) does a short 

period of early postnatal life change methylation patterns in individuals? (2) can methylation 

changes be used to distinguish individuals with early-life adversity? Consistent with previous 

studies, these methylation changes cannot distinguish rats with different early life experiences 

but at different age as distinct groups. We further develop a novel approach and demonstrate 

for the first time that intra-individual changes in methylation patterns can robustly distinguish 

individuals with adverse experiences and that they serve as a predictive signature in individuals. 

Based on this, we expect that this identified DNA signature is commonly shared in rat 

individuals and should be predictive if it is robust. While it is interesting that rodents would be 

affected, it would be exciting if this DNA methylation signature of early life maternal also applied 

to human newborns. In order to allow the future extension of our methods to human infants, we 

examine methylation by using peripheral cell population from buccal swabs (mixed epithelial 

and white blood cells) rather than brain cells directly. Given the predictive power of methylation 
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signature in early life experiences and the accessibility of peripheral cell populations, we will 

apply in the future this technique to the study of human babies.  

 

        Taken together, these findings suggest that early-life experiences set in motion genome-

wide changes in methylation patterns of crucial gene-sets, including transcription factors. Early-

life adversity associates with altered methylation of gene-sets involved in growth and 

differentiation as well as response to injury and death. These changes are likely driven by 

molecular signals, including hormones and nutrients that modulate the complex enzymatic 

processes that govern DNA methylation status (Borrelli et al. 2008; Doherty and Roth 2018; 

Moore et al. 2013).  

 

Methods 
Animals 
Subjects were born to primiparous time-pregnant Sprague-Dawley rat dams (around P75) that 

were maintained in the quiet animal facility room on a 12 h light/dark cycle with ad libitum access 

to lab chow and water. Parturition was checked daily, and the day of birth was considered 

postnatal day 0 (P0). Litter size was adjusted 12 per dam on P1, if needed. On P2, pups from 

several litters were gathered, and 12 pups (6 males and 6 females) were assigned at random to 

each dam, to obviate the potential confounding effects of genetic variables and of litter size. Each 

pup was identified by a rapid (<2 minute) foot pad tattooing using animal tattoo ink (Ketchum). 

 
Early-life adversity paradigm  
The experimental paradigm involved rearing pups and dams in “impoverished” cages for a week 

(P2-P9) as described elsewhere (Molet et al. 2014; Ivy et al. 2008; Walker et al. 2017). Briefly, 

routine rat cages were fitted with a plastic-coated aluminum mesh platform sitting ~2.5 cm above 

the cage floor (allowing collection of droppings). Bedding was reduced to only cover cage floor 

sparsely, and one-half of a single paper towel was provided for nesting material, creating a limited 

bedding and nesting (LBN) cage. Control dams and their litters resided in standard bedded cages, 

containing 0.33 cubic feet of cob bedding, which was also used for nest building. Control and 

experimental cages were undisturbed during P2–P9, housed in a quiet room with constant 

temperature and a strong laminar airflow, preventing ammonia accumulation.  

 
Collection of buccal swab from each pup  
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The first buccal swab was collected from both cheeks of each pup prior to randomization on P2, 

using Hydraflock swab (Puritan diagnostics, LLC). After an hour’s rest with their mother, a  second 

buccal swab was collected, enabling sufficient DNA from each pup. Pups were then randomized 

to controls or LBN cages. During P3-P9,  behaviors of dams in both control and adversity/LBN 

cages was observed daily, to ascertain the generation of fragmented unpredictable caring 

patterns by the adverse environment (Molet et al. 2016; Davis et al. 2017). On P10, buccal swabs 

were collected as described for P2, then all litters were transferred to normal bedded cages.  

 
Isolation and quantification of DNA for making RRBS libraries from Rat Buccal swab 
The Buccal swab was placed into the DNA shields™ (Zymo research) immediately after swabbing. 

DNA was prepared from the DNA shields solution using the Quick-gDNA™ MiniPrep kit (Zymo 

Research) following  the manufacturer’s protocol. The quantity of double stranded DNA was 

analyzed using Qubit, and RRBS Libraries were prepared from 40 ng of genomic DNA digested 

with Msp I and then extracted with DNA Clean & Concentrator™-5 kit (Zymo Research). 

Fragments were ligated to pre-annealed adapters containing 5’-methyl-cytosine instead of 

cytosine according to Illumina’s specified guidelines (www.illumina.com). Adaptor-ligated 

fragments were then bisulfite-treated using the EZ DNA Methylation-Lightning™ Kit (Zymo 

Research). Preparative-scale PCR was performed and the resulting products were purified with 

DNA Clean & Concentrator for sequencing. Amplified RRBS libraries were quantified and qualified 

by Qubit, Bioanalyzer (Agilent), and Kapa library quant (Kapa systems), and then sequenced on 

the Illumina NextSeq 500 platform. 

 
RRBS data processing and detection of differentially methylated regions (DMRs) 
Adaptor and low quality reads were trimmed and filtered using Trim Galore! 0.4.3 (Krueger F) with 

parameter ‘--fastqc --stringency 5 --rrbs --length 30 --non_directional’. Reads were aligned to the 

rat genome (RGSC 6.0/rn6) by using Bismark 0.16.3 (Krueger and Andrews 2011) with ‘--

non_directional’ mode. CpG sites were called by “bismark_methylation_extractor” function from 

Bismark.  

 
Single CpG sites with more than ten reads coverage were kept for DMR calling. Differential 

methylation sites (DMSs) were first called using MethyKit (R 3.3.2) (Akalin et al. 2012) with a false 

discovery rate (FDR) lower than 0.05; DMRs falling within 100 base pairs were then merged. 

 
Calculation of DNA methylation level/percentage and Delta methylation 
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The methylation percentage/level was calculated as the ratio of the methylated read counts over 

the sum of both methylated and unmethylated read counts for a single CpG site or across CpGs 

for a region. 

 
The delta methylation was calculated using the log2 transformation of the ratio of methylation 

level in the P10 sample and the methylation level in the P2 sample. Increased methylation in P10 

is shown as a positive value while decreased methylation in P10 is shown as a negative value. 

 

Principal component analysis (PCA) and K-Means clustering 
PCA analysis was performed by using IncrementalPCA function from scikit-learn (Pedregosa et 

al. 2011) using python 2 for both Figure 2 and 3. The value of k was set to 10 for the k-means 

clustering based on a preliminary hierarchical clustering analysis. A DNA methylation heatmap 

was generated with heatmap.2 function in R 3.5.0 and a delta methylation heatmap was 

generated using Java TreeView (Saldanha 2004).  

 

Gene analysis 
Genes associated with DMRs were identified using Homer 4.7 (Heinz et al. 2010). For subsequent 

analyses, genes were kept if (1) CpGs were located within 20kb of TSS in intergenic, promoter-

TSS and TTS positions; (2) CpGs were located within gene exons or introns. Gene ontology 

analysis was performed using Metascape (Tripathi et al. 2015) using the hypergeometric test with 

corrected P-value lower than 0.05.  

 

Data Access 
Reads and processed data from RRBS assays have been submitted to the GEO data repository 

(http://www.ncbi.nlm.nih.gov/geo/) under accession number XXX. 
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Figures 
 

 
Figure 1. (A) Experimental design and analysis pipeline. (B) Histogram of  the number of 
significant differentially methylated regions (DMRs) based on the number of individuals 
sharing the same experience. RRBS = reduced representation bisulfite sequencing; LBN- 
limited nesting and bedding cages, a paradigm of adversity. P2,P10 = postnatal days 2,10. 
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Figure 2. (A) Heatmap of CpG methylation percentage on 3,417 DMRs across individuals. 
The profile is presented into 10 clusters that are clustered using K-means clustering. Blue, 
low methylation percentage; orange, high methylation percentage. (B) Principal 
component analysis (PCA) of individuals on 3,417 DMRs. Individuals are labeled by age, 
P2, blue; P10, red. (C) Principal component analysis (PCA) of individuals on 3,417 DMRs. 
Individuals are labeled by experience, Control, cyan; LBN, green. 
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Figure 3. (A) Heatmap of delta methylation between P10 and P2  (log2(P10/P2)) of 3,417 
DMRs. DMRs are in the same order as in Figure2A. (B) Principal component analysis (PCA) 
of the DMRs of individuals labeled by experience, Control, cyan; LBN, green.  
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Figure 4. Analysis of PC3 weights (A) Most significant positive (orange) and negative (blue) 
weights are enriched in transcription factors. (B) GO terms of genes associated with 346 
most positively weighted DMRs (orange) in 4A. (C) GO terms of genes associated with 311 
most negatively weighted DMRs (blue) in 4A. 
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Supplementary figures 
 

 
Figure S1. RRBS QC matrix for cohort1 (A) and cohort2 (B), including the number of uniquely 
mapped reads, mapping efficiency and significant DMRs calling for each individual. 
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P2C4 9 36.1% P10C4 19 55.1%
P2C6 12 51.30% P10C6 17 44.40%
P2C7 22 59.50% P10C7 26 52.00%
P2C9 18 41.10% P10C9 26 53.70%
P2C12 20 49.20% P10C12 24 52.20%
P2LBN2 15 39.90% P10LBN2 11 45.90%
P2LBN3 18 43.20% P10LBN3 30 58.90%
P2LBN4 23 48.80% P10LBN4 28 51.00%
P2LBN9 12 46.40% P10LBN9 24 50.40%
P2LBN12 15 45.40% P10LBN12 26 56.40%

Individual Detected CpGs in both P2 and 
P10 Significant DMRs

C3 418860 870
C4 358726 4664
C6 404260 4384
C7 521418 1959
C9 514738 2679
C12 496953 2318
LBN2 415216 5540
LBN3 482076 6345
LBN4 539139 629
LBN9 418466 1851
LBN12 443196 1963

Cohort1 Cohort2
A. B.

P2
Mapped 

reads 
(million)

Efficiency P10
Mapped 

reads 
(million)

Efficiency

P2C1 21 46.0% P10C1 22 42.5%
P2C5 20 47.4% P10C5 20 45.6%
P2C8 17 60.4% P10C8 22 49.2%
P2C11 19 55.7% P10C11 27 58.1%
P2LBN2 28 57.8% P10LBN2 30 61.9%
P2LBN4 21 49.2% P10LBN4 20 42.0%
P2LBN9 21 45.8% P10LBN9 22 54.2%
P2LBN11 23 47.2% P10LBN11 20 50.8%

Individual Detected CpGs in both P2 and 
P10 Significant DMRs

C1 510525 3073
C5 505100 1879
C8 508787 1278
C11 525733 7040
LBN2 584480 1064
LBN4 498882 2566
LBN9 521111 1190
LBN11 504507 2745



 
 
 
Figure S2. (A) Histogram of DNA methylation level on 3,417 DMRs across 19 individuals from 
two cohorts before batch correction by cohorts. For each DMR, each individual has one 
methylation level for P2 and one for P10. 11 individuals are in cohort1 and 8 individuals are in 
cohort2.  
(B) Histogram of DNA methylation level on 3,417 DMRs for two cohorts separately (before 
correction by cohorts).  
(C) Histogram of DNA methylation level on 3,417 DMRs on cohort1 for P2 and P10 separately 
(before correction by cohorts).  
(D) Histogram of DNA methylation level on 3,417 DMRs on cohort2 for P2 and P10 separately 
(before correction by cohorts).  
(E) Histogram of DNA methylation level on 3,417 DMRs across 19 individuals from two cohorts 
after correction by cohorts. For each DMR, each individual has one methylation level for P2 and 
one for P10. 11 individuals are in cohort1 and 8 individuals are in cohort2.  
(F) Histogram of DNA methylation level on 3,417 DMRs for two cohorts separately (after 
correction by cohorts).  
(G) Histogram of DNA methylation level on 3,417 DMRs on cohort1 for P2 and P10 separately 
(after correction by cohorts).  
(H) Histogram of DNA methylation level on 3,417 DMRs on cohort2 for P2 and P10 separately 
(after correction by cohorts).  
u represents mean value; s.d represent standard deviation. 
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Figure S3. PCA analysis on 3,417 DMRs before batch correction by cohort and labeled by (A) 
age, (B) experience and (C) cohort. (D) PCA on 3,417 DMRs after batch correction by cohort. 
Figure S3D is  the same PCA as shown in Figure 2B and C now labeled by cohort. 
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Figure S4. (A) DNA methylation level of top-positive DMRs (from PC2 in Figure2B) and density 
distributions are plotted by age separately.   
(B) DNA methylation level of bottom-negative DMRs (from PC2 in Figure2B) and density 
distributions are plotted by age separately.   
(C) Gene ontology terms enriched in genes associated with top-positive DMRs. 
(D) Gene ontology terms enriched in genes associated with bottom-negative DMRs. 
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Figure S5. (A) Histogram of delta DNA methylation on 3,417 DMRs across 19 individuals from 
two cohorts. 
(B) Histogram of delta DNA methylation on 3,417 DMRs for control and LBN separately. 
(C) Histogram of delta DNA methylation on 3,417 DMRs for two cohorts separately. 
u represents mean value; s.d represent standard deviation. 
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Figure S6. Heatmap of delta methylation changing profiles between P10 and P2  on 657 DMRs 
(top weights were collected from PC3 in Figure 3B, which can separate control and LBN). (A) 
346 “top-positive” weights predict LBN, showing increased methylation in P10 LBN while (B) 
311 “bottom-negative” weights predict control, showing increased methylation in P10 Control. 
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Supplemental Table 1. Annotation and classification of genes associated with “positive” and 
“negative” weights (0.02 cutoff)  of PC3 in Figure 4A. (A) genes associated with “positive” 
weights (B) genes associated with “negative” weights. 
 
 
 
 
 
 
 

Categories Gene symbol Number of genes

Transcription factor Sim2, Meis1,Ppard, Runx1, Zfpm1, Rxra, Etv4, Thra, Zfp12, Mitf, Runx3, Irf1, Runx2,Pou2f2, Vdr 15

Growth and Growth factos Tgfbr3,Sipa1,Map3k8,Rai1,Net1,Mark2,Prkd2,Paqr6,Ltbp1,Heg1,Rxra,Parp16,Cdk6,Map3k5,Map3
k13,Srcin1,Fitm1,Akap2,Pik3cd,Prkar1b,Ros1, Kidins220,Mark3,Egfl7,Mast3,Stk36 26

Inflammation/ Injury/ Death Pdcd6ip,Tnfrsf1b,Card10,Lsp1,Cd83,Traf3,Ppard,Gadd45b,Ercc1,Tbxas1,Cxcr1,Sipa1l3,Bmf,Klk9,Tnfr
sf19,Dnajb12,Traf1,Irf2bpl, Glipr2, Azi2,Rxra,Nfkbil1,Irf1,Hspbap1,C1qtnf5 25

Solute and other transport
Sys1,Gpr39,Slc44a3,Ffar4,Slc26a9,RGD1307315,Apba2,Cacng4,Kcnk5,Slc7a1,Ros1,Mcart1,Cnnm2,
Slc25a33,Ric1 15

Neuron projection/guidance/ cell 
morphogenesis, differentiation

Mark2,Cxcr4,Nrp2,Sema5b,Ptpro,Fam129b,Sema4a,Efnb2,Sec24b,Srcin1,Llgl1,Srcin1,Pik3cd,Sema
3g,Kidins220,Fbxw8,Clic5,Ank3 18

Steroid hormone mediated signaling 
pathway Paqr6,Ffar4,Bcan,Ppard,Rxra,Vdr,Abhd2,Thra,Cdh13 9

Categories Gene symbol Number of genes

Transcription factor

Nkx2-3,Six2,Tfap2c,Tbx4,Hoxb5,Satb2,Gata3,Six1,
Dlx1,Tbx3,Otx1,Egr3,Ebf3,Irx4,Cux1,Hlx,Hoxd4,Satb1,Hmga1,Nkx2-2,
Zfp853,Foxc1,Foxo6,Tbx2,Zbtb46,Tcf4,Lhx6,Klf3,Dlx4,Stat1,Dlx6,Zfp831,Smarce1,Runx1,Camta1,Np
as4,Gli3, LOC100910577,Ppard,Bcl11a

40

Kinase Akap6,Dapk1,Limk2,Kalrn,Sgk1,Kit,Mos,Taok3,Prkca,Map2k6,Ak7 11
Inflammation/ Injury/ Death Tnfaip2,Dapk1,Cd37,Bmf,Slc44a2,Hsp90b1,Dedd2,Il20rb,Ptpn13,Slc25a37,Ppard 11

Solute and other transport Osbpl1a,Atp8b1,Kif5c,Slc44a2,Ddx20,Cct8,Abcc12,Gltp,Slc3a1,Slc4a4,Slc43a3,Abcg4,Slc25a37,Slc3
5g1,Kcnn4,Slc38a1, Kcng1,Atp8a2,Kif26b,Tspo,Slc36a1 21

cytoskeleton / cell morphogenesis 
/projection/synapse

Sema4d,Gdnf,Six2,Strip1,Fzd2,Atp8b1,Atp8b1,Akap6,Crmp1,Tbx3,Myl2,Rims2,Dnmbp,Egr3,Tbx3,F
zd7,Atxn2,Nrp1,Syngap1,Fgf4,Tbx3,Hlx,Kalrn,Syt7,Ankrd55,Sema6c,Agap3,Ppp1r16b,Dedd2,Hmga
1,Arhgef4,Sema3b,Itga10,Sgk1,Zbtb46,Bmp7,Kit,Mfap2,Rheb,B3gnt2,Smg6,Mos,Slit3,Dock5,Rab3
gap2,LOC102552318,Nrxn2,Kif26b,Arrdc3,Icam1,Tspo, Celsr1,Nkx2-2

53

A.

B.


