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Abstract 15 
The mechanisms and consequences of defective interfering particle (DIP) formation 16 
during influenza virus infection remain poorly understood. The development of next 17 
generation sequencing (NGS) technologies has made it possible to identify large numbers 18 
of DIP-associated sequences, providing a powerful tool to better understand their 19 
biological relevance. However, NGS approaches pose numerous technical challenges 20 
including the precise identification and mapping of deletion junctions in the presence of 21 
frequent mutation and base-calling errors, and the potential for numerous experimental 22 
and computational artifacts. Here we detail an Illumina-based sequencing framework and 23 
bioinformatics pipeline capable of generating highly accurate and reproducible profiles of 24 
DIP-associated junction sequences. We use a combination of simulated and experimental 25 
control datasets to optimize pipeline performance and demonstrate the absence of 26 
significant artifacts. Finally, we use this optimized pipeline to generate a high-resolution 27 
profile of DIP-associated junctions produced during influenza virus infection and 28 
demonstrate how this data can provide insight into mechanisms of DIP formation. This 29 
work highlights the specific challenges associated with NGS-based detection of DIP-30 
associated sequences, and details the computational and experimental controls required 31 
for such studies.  32 
 33 
Importance 34 
Influenza virus defective interfering particles (DIPs) that harbor internal deletions within 35 
their genomes occur naturally during infection in humans and cell culture. They have been 36 
hypothesized to influence the pathogenicity of the virus; however, their specific function 37 
remains elusive. The accurate detection of DIP-associated deletion junctions is crucial for 38 
understanding DIP biology but is complicated by an array of technical issue that can bias 39 
or confound results. Here we demonstrate a combined experimental and computational 40 
framework for detecting DIP-associated deletion junctions using next generation 41 
sequencing (NGS). We detail how to validate pipeline performance and provide the 42 
bioinformatics pipeline for groups interested in using it. Using this optimized pipeline, we 43 
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detect hundreds of distinct deletion junctions generated during IAV infection, and use 44 
these data to test a long-standing hypothesis concerning the molecular details of DIP 45 
formation.  46 
 47 
INTRODUCTION  48 
Influenza A virus (IAV) DIPs were first described over 60 years ago, and are classically 49 
defined by their ability to interfere with the production of wild-type virus(1, 2). This ability 50 
has been linked to the ability of DI RNAs to both outcompete wild-type (WT) genomic 51 
RNAs for resources and packaging into virions, as well as to more potently stimulate the 52 
induction of anti-viral immunity through cytosolic RNA sensors (3–6). DIPs have also been 53 
implicated in influencing the outcome of influenza virus infection in humans(7). The 54 
specific mechanisms and broader functional consequences of DIP formation during IAV 55 
infection remain poorly understood.  56 
 57 
IAV DIPs are characterized by the presence of large internal deletions in one or more 58 
genome segments that disrupt essential open reading frames while retaining the 59 
sequences required for replication and packaging(5). As such, the mapping of DIP-60 
associated deletions has helped to define the minimum sequences required for genome 61 
replication and packaging (8, 9). These deletions are believed to result from a poorly 62 
defined process by which the viral RNA-dependent RNA polymerase (RdRp) ceases RNA 63 
polymerization at one site of the viral RNA template (donor site), only to resume at another 64 
site downstream (acceptor site), resulting in a failure to copy an internal stretch of the WT 65 
template (10). Until recently, the ability to characterize these DIP-associated deletion 66 
junction sites (breakpoints) has been limited based on the need to clone and Sanger 67 
sequence individual DIP-associated RNAs. As a result, the number of individual DIP-68 
associated RNA sequences that have been analyzed has been relatively small, hindering 69 
efforts to define the factors that govern DIP deletion formation.  70 
 71 
The advent of next generation sequencing (NGS) has increased the number of individual 72 
recombinant sequences that can be identified within a given sample by orders of 73 
magnitude. However, the identification and analysis of DIP-associated RNAs by NGS 74 
poses new challenges, including the successful alignment of junction-containing (or 75 
junction-spanning) reads to the viral reference sequence, the precise definition and 76 
localization of DIP-associated deletion breakpoints, and the differentiation of true DIP 77 
deletion sequences from the artifactual recombinants that can form during reverse 78 
transcription, PCR, and/or sequencing. Without careful optimization and validation, these 79 
issues can easily compromise efforts to define the genetic profile of DIP populations.  80 
 81 
Here, we describe the development and validation of an Illumina-based sequencing 82 
framework for the identification and analysis of influenza virus DIP-associated deletion 83 
junctions. The bioinformatics pipeline combines the Bowtie 2 alignment algorithm with the 84 
ViReMa (Virus Recombination Mapper) algorithm developed by Andrew Routh and a 85 
collection of additional scripts for data processing and analysis (11, 12). We used 86 
simulated NGS datasets and a panel of experimental control samples to optimize and 87 
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quantify the sensitivity, precision, and reproducibility of our pipeline. Subsequently, we 88 
used the optimized pipeline to fine-tune the experimental protocol from sample 89 
preparation to RNA sequencing to better detect and map DIP-associated deletions 90 
generated during experimental IAV infection. This work highlights the computational and 91 
experimental controls needed for Illumina-based NGS studies of viral recombination, and 92 
provides an optimized, user-friendly sequencing and bioinformatics pipeline for the 93 
identification and analysis of IAV DIP-associated sequences. Higher resolution analysis 94 
of these deletion sequences can shed light on both the specific molecular mechanisms 95 
of DIP formation, as well as how DIPs may affect the overall behavior of viral populations. 96 
 97 
RESULTS 98 
Overview of the pipeline 99 
The sequencing framework we describe here encompasses sample preparation, 100 
sequencing, and data analysis (Fig 1A). In brief, we generate 8-segment, full-length 101 
amplicons from viral samples and sequence these using the Illumina MiSeq sequencing 102 
platform. Datasets are quality-filtered and aligned to the viral reference genome using 103 
Bowtie 2 in a conservative manner that disallows soft clipping. Thus, reads containing 104 
deletion junctions fail to align, and are fed into the ViReMa algorithm to detect DIP-105 
associated deletion junctions. Finally, the identified junctions are mapped to the viral 106 
genome and output as a matrix containing the segment name, junction start and end sites, 107 
and NGS read support that can easily be analyzed using additional software tools. Below, 108 
we outline the approaches we have taken to optimize and validate the various steps in 109 
the process. 110 
 111 

 112 
 113 
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Optimization of analysis pipeline using simulated data  114 
All bioinformatic pipelines have the potential to introduce artifacts and biases during data 115 
analysis. Therefore, we first aimed to optimize the sensitivity and precision of our 116 
bioinformatics pipeline using simulated NGS datasets where we absolutely know the 117 
identity and frequency of all DIP-associated deletion sequences present. IAV DIP-118 
associated deletions can be found in nearly all (if not all) genome segments at a wide 119 
range of frequencies (13, 14). To mimic this natural variation, we used MetaSim to 120 
generate a panel of Illumina MiSeq-based NGS simulated datasets that contain DIP-121 
associated deletions in all genome segments at varying frequencies and locations (see 122 
Table 1, Fig S1). We used a simple Perl script to randomly generate deletion junctions 123 
within the terminal ~600nts of A/California/07/09 (Cal07), since these regions have been 124 
shown to be hotspots for DIP-associated deletions(9, 13, 15). We also generated a 125 
negative control dataset that lacks deletions to quantify the occurrence of false positives 126 
generated by the pipeline. Critically, we introduced a nucleotide substitution frequency of 127 
~1% into these datasets, based on the published Illumina MiSeq empirical error model(16, 128 
17). Each dataset comprised ~1million 2x250nts paired-end reads, mirroring the read 129 
depth that we expect per sample on a typical sequencing run.  130 
 131 

 132 
 133 
Optimization of alignment 134 
We first optimized the filtering of reads that contain deletion junctions (Fig 1B, R1), from 135 
those that don’t include junctions (Fig 1B, R2,R3). To do this, we aligned all reads to the 136 
WT reference genome using Bowtie 2. Reads that successfully align should not contain 137 
deletion junctions and are saved for further analysis, while reads that fail to align are fed 138 
through the ViReMa algorithm. The performance of this alignment step is highly 139 
dependent upon the mismatch penalty scores that are used during alignment. If mismatch 140 
penalties are too stringent, reads with random mutations or base calling errors will fail to 141 
align and be sent to ViReMa, increasing both the chances of false positives and the total 142 
computational time per sample; too lenient, and true junction-spanning reads will 143 
successfully align and be excluded from downstream analysis.  144 
 145 
We used a junction-rich simulated dataset (Cal07-400) to test the effects of varying the 146 
alignment penalty score on the output of ViReMa (Fig 2A). We observed that a penalty 147 
score of 0.3 minimized the number of unaligned reads (and thus potential for false 148 
positives) without diminishing the number junction-spanning reads detected. This value 149 
was used for all subsequent analysis. 150 
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 151 
Optimization of ViReMa operation  152 
We next optimized the sensitivity and precision with which the pipeline detects deletion 153 
junctions. The ability of ViReMa to accurately map true junction-containing reads is 154 
affected by three factors. The first is the method the algorithm uses to identify breakpoints. 155 
ViReMa extracts and aligns a seed sequence of 20-30nts (the default value of 25 was 156 
used in this study) from the beginning of each read and begins aligning the downstream 157 
nucleotides. If at any point the downstream alignment fails (as would be the case for a 158 
deletion breakpoint), ViReMa generates a new seed sequence starting from that location 159 
for realignment. Thus, breakpoints cannot be detected if they occur within the terminal 25 160 
nts of a read.  161 

 162 

The second factor is the presence of short direct repeats adjacent to the junction site. 163 
These repeats result in a situation where multiple potential breakpoints can give rise to 164 
the same final sequence, making precise definition of the true breakpoints impossible (Fig 165 
S2 and S3A). ViReMa deals with these ‘fuzzy’ regions through the parameter ‘Defuzz’, 166 
which can be set to report the junction either to the 5’ end, 3’ end, or the middle of the 167 
ambiguous region. For consistency’s sake, we pushed all fuzzy junctions towards the 3’ 168 
of the ambiguous region. The effects of direct repeats on breakpoint mapping are 169 
impossible to avoid and vary somewhat between IAV genome segments. Importantly, 170 
while this effect reduces the precision of breakpoint mapping, it does not affect the ability 171 
of the pipeline to determine the actual sequences of DIP-associated RNAs. 172 

The third factor is the potential for base calling errors or mutations to result in erroneous 173 
junction mapping (Fig S3B). Even though reported junctions in this category are derived 174 
from real junctions, they can be viewed as false positives in that they are reported as 175 
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distinct junctions that do not actually exist in the viral population. Altogether, these three 176 
factors set a ceiling on the maximum number of deletion junctions that can be accurately 177 
detected and mapped. Using our simulated datasets, we knew how many deletion 178 
junctions actually existed, exactly where they were located, and whether or not they were 179 
adjacent to direct repeats (see Materials and Method) that could result in incorrect 180 
mapping. This allowed us to systematically optimize the sensitivity and precision of the 181 
software pipeline. 182 
 183 
We tested how varying the ViReMa operating parameters affected both junction-spanning 184 
read detection and actual junction reporting. We used the Cal07-200 dataset to challenge 185 
ViReMa across a range of --N parameter (number of mismatches allowed) and --X 186 
parameter (mismatch distance from the putative junction location) values. We first asked 187 
how varying the --N and --X parameters influenced the total number of junction-spanning 188 
reads detected (Fig 2B). We found that using N=0 (--X is irrelevant at this condition) 189 
significantly decreased the number of junction-spanning reads detected compared with 190 
non-zero --N and --X values. We next asked how increasing the --N and --X values 191 
affected the number of accurately and inaccurately mapped junctions reported (Fig 2C). 192 
We observed a clear correlation between the --X parameter and junction-mapping 193 
precision, as increasing the --X value decreased the number of inaccurately mapped 194 
junctions. Overall, we found that using N=1 and X=8 reduced inaccurate junction mapping 195 
to the minimum amount possible, given the occurrence of direct repeats adjacent to 196 
23.5% (47 of 200) of junctions in the dataset. 197 
 198 
We next asked whether setting a minimum read support cutoff (RSC) to report a junction 199 
affected the numbers of both accurate and inaccurate junctions that the pipeline identified. 200 
Requiring that a given junction be represented within a minimum number of reads can 201 
decrease the number of erroneously mapped junctions arising from base calling errors 202 
but could also result in some true junctions being lost due to insufficient read coverage. 203 
We aligned our simulated Cal07-200 dataset with Bowtie 2 and used the resulting 204 
unaligned reads to challenge ViReMa using different RSC values (Fig 2D). We found that 205 
the number of true junctions reported by the pipeline was very close to the theoretical 206 
maximum, with minimal drop-off across the range of RSCs tested. In contrast, we 207 
observed that the number of inaccurately reported junctions was highly sensitive to the 208 
RSC value used. An RSC of >30 was needed to lower the number of inaccurately reported 209 
junctions to the minimal limit (determined by the number of ‘fuzzy’ junctions with adjacent 210 
direct repeats in the dataset).  211 
 212 
Altogether, these data highlight the importance of optimizing RSC values and the ViReMa 213 
--N and --X parameters for maximizing the sensitivity of junction detection while 214 
minimizing the number of false positives. We set our default values at RSC>30, --N=1, 215 
and --X=8 for subsequent analysis.     216 
    217 
Validation of sequencing pipeline  218 
After optimizing the bioinformatics component of our pipeline using simulated datasets, 219 
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we examined the ability of the pipeline to detect DIP-associated deletions within complex 220 
viral populations from experimental samples. Our overall strategy was based on the 221 
universal, eight segment RT-PCR approach pioneered by Zhou et al. (18). Critically, there 222 
are a number of steps within the library preparation and sequencing steps that have the 223 
potential to introduce artifacts that can compromise junction detection and analysis. In 224 
particular, we were concerned about the potential for recombination during reverse 225 
transcription, PCR, and/or sequencing to generate junctions that will be called by the 226 
pipeline (19, 20). To address this, we prepared several control sample libraries, 227 
sequenced them on the MiSeq, and ran the results through our optimized pipeline. 228 
 229 
To quantify false positive generation during the PCR and/or sequencing steps, we 230 
constructed libraries without using actual viral RNA or reverse transcriptase. To do this, 231 
we generated an equimolar ratio mixture of full length PCR amplicons from each of the 232 
eight IAV genome segments, using reverse genetics plasmids encoding the gene 233 
segments from A/Puerto Rico/8/1934 (PR8) as templates. These amplicons were gel 234 
purified to ensure correct, full-length size, and then used as template for the universal 235 
amplification PCR and subsequent library preparation. Our analysis pipeline detected no 236 
breakpoints in this control, indicating that none of the steps in our pipeline from PCR 237 
onwards were significant sources of false positive signals.  238 
 239 
We next sequenced a recombinant Cal07 stock that was grown under low MOI conditions 240 
to minimize the frequency of DIPs (21). We performed two independent RNA extractions 241 
and reverse transcription reactions on this stock to serve as technical replicates (named 242 
Par1 and Par2). ViReMa detected 6 and 7 DIP-associated deletion junctions from Par1 243 
and Par2, respectively, with junction-spanning reads representing ~0.1-0.2% of the total 244 
reads (Fig 3A). The majority of these reads were derived from a single shared deletion 245 
junction in HA (indicated by the following nomenclature: 615_1132_HA). 4 other DIP 246 
junctions were shared between replicates, each with low NGS read depth (ranging 247 
between 19 and 94). Two unshared junctions in Par1 and one in Par2 were actually 248 
reported in both replicates but failed to reach the level of detection in one replicate.  249 
 250 
The significant overlap in the specific junctions that were reported from the two replicates 251 
suggested that these junctions were produced by the viral polymerase (and were thus 252 
bona fide DIP-associated sequences) rather than by the reverse transcriptase. However, 253 
the generation of the same junction in independent RT reactions could also indicate the 254 
existence of strong hotspots for RT recombination. To more directly address the potential 255 
contribution of RT-derived recombinants, we performed two independent experiments. 256 
First, we compared the junctions detected in HA segment libraries generated from Par 1 257 
using two different RT enzymes, Invitrogen Superscript III and Agilent AccuScript. 258 
Second, we performed in vitro transcription of a plasmid-derived Cal07 HA segment using 259 
T7 RNA polymerase, which then was used as a template for RT-PCR to produce the 260 
amplicon library for sequencing. The IAV polymerase was not involved in this control; thus 261 
any deletions detected will have been generated by T7 polymerase or the RT enzyme.  262 
 263 
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The junctions reported from libraries generated by the two RT enzymes had significant 264 
overlap and were both dominated by 615_1132_HA (Fig 3B). In contrast, we detected 265 
none of the Par1-derived junctions in the library generated from T7-transcribed HA (Fig 266 
3B). Although the read depth coverage was comparable to Par1, 615_1132_HA was 267 
completely absent, and the three junctions that were detected had minimal read support 268 
and were not seen in virus-derived libraries. Altogether, these results suggest that the 269 
formation of deletion junctions during the reverse transcription reaction is rare, and that 270 
the Par1-derived junctions we observed are most likely derived from true DIPs present 271 
within our viral stock, despite the stock having been prepared at low MOI. This highlights 272 
the difficulty in producing a completely DIP-free virus preparation.  273 
 274 

 275 
 276 
Generation of DIP-enriched populations through high MOI passage 277 
To test the ability of the pipeline to detect real DIP-associated RNAs, we enriched for 278 
DIPs through serial undiluted passage of Cal07 in MDCK cells. We confirmed the 279 
presence of DIPs by amplifying full-length genomic cDNA at each passage and examining 280 
the size distribution of PCR products by gel electrophoresis (Fig 4A), as previously 281 
described (21). The gradual disappearance of the polymerase segments, which form the 282 
majority of DIPs, and the appearance of a smear below the shortest IAV segment (NS 283 
~0.9kb) were consistent with the accumulation of DIPs over passage. Based on these 284 
results, we picked P1, P3, and P6 as representative samples for sequencing.  285 
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 286 
We further confirmed the presence of DIPs by plotting the read coverage of the aligned 287 
reads from passages 1, 3, and 6 (Fig 4B). These coverage plots clearly reveal the 288 
characteristic pattern of DIP-rich populations, with much lower depth of read alignment in 289 
the middle portion of the segment compared with the termini. As expected, the number of 290 
DIP-associated deletion junctions detected by the pipeline also increased across 291 
passages, reaching the highest level at passage 6 (Fig 4C). To confirm that these 292 
junction-containing sequences were derived from virion rather than cellular RNA, we 293 
measured the number of reads that aligned to the host (canine) genome in our samples. 294 
We found very few reads derived from the canine genome in all the passages, compared 295 
with about 40% of the reads from RNA extracted from infected cells (Fig S4).   296 
 297 

 298 
 299 
Reproducibility of pipeline performance  300 
Multiple steps in the combined experimental/computational pipeline could introduce 301 
stochasticity into the pipeline performance, thus diminishing overall consistency and 302 
reproducibility of output. To examine the reproducibility of our pipeline’s performance, we 303 
sequenced two separate extractions of a single P6 population (Hereafter known as L1-304 
P6-Rep1 and L1-P6-Rep2, where L refers to lineage) and compared the pipeline outputs 305 
between the two replicates (Fig S5). We found that the normalized read support values 306 
of individual junctions were highly correlated between the two replicate samples, whether 307 
the replicates were sequenced on the same MiSeq flowcell (Spearman R = 0.92) or 308 
separate ones (Spearman R = 0.91). Thus, the combined steps from RNA extraction to 309 
sequence analysis introduce minimal noise into the pipeline output, and pipeline 310 
performance is highly reproducible between experiments.  311 
 312 
Optimization of minimum read support cutoffs 313 
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Our experiments using simulated datasets revealed the importance of setting minimal 314 
RSCs for maximizing the accuracy of pipeline performance, and suggested that the 315 
optimal RSC may differ between datasets. We next attempted to optimize RSC values for 316 
our experimental dataset where we did not actually know the precise location and number 317 
of junctions present in the population (as we did with our simulated datasets). To quantify 318 
precision in junction detection for our experimental dataset, we assumed that base calling 319 
errors and mutations that result in inaccurate junction reporting would be stochastic and 320 
thus read support for these inaccurate junctions would be highly variable between 321 
technical replicates. In contrast, read support for real junctions should be consistent 322 
between replicates.    323 
 324 
We assessed the effects of varying the RSC on the degree of correlation between 325 
junctions identified in L1-P6-Rep1 and L1-P6-Rep2. We varied the RSC values from 1 to 326 
50 for each individual genome segment, and examined the effect on the number of 327 
reported junctions (Fig 5). We observed a similar pattern to that observed for our 328 
simulated data, where raising the RSC to 10 or higher resulted in a large drop-off in the 329 
number of reported junctions. We next determined the RSC value that yielded the highest 330 
degree of correlation between the two replicates. We identified distinct optimal RSC cutoff 331 
values for each segment: 20, 20, 30, 30, and 15 for PB2, PB1, PA, HA, and NA, 332 
respectively. The average of these values was used as an RSC for the remaining 333 
segments where no enough junctions were detected to perform the correlation test (see 334 
below).  335 
 336 
We do not expect these values to be universal, as they likely are influenced by a number 337 
of factors that will vary between individual sequencing runs. Also, for different 338 
applications, it may be beneficial to lower the RSC to improve detection sensitivity at the 339 
cost of precision. Thus, we suggest running two technical replicates with each NGS run 340 
to be used as reference to establish optimal per-segment RSC values for that run.   341 
 342 
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 343 
 344 
Analysis of DIP-associated deletion profiles 345 
We next examined the overall diversity of DIP-associated deletion junctions within the P6 346 
populations from the two independent lineages (L1-P6-Rep1 and L2-P6), and found 347 
dozens of distinct deletion junctions scattered across the viral genome in both lineages 348 
(Fig 6A). Junctions were not evenly distributed across the genome segments, as few to 349 
no junctions were detected in the NP, M, or NS segments. Within each segment, the read 350 
support for individual junctions varied significantly (Fig 6B). When we compared the 351 
deletion junction repertoires between the two passage lineages, we observed that a 352 
significant fraction of the detected junctions was shared between the two, and that these 353 
shared junctions exhibited a high degree of correlation in terms of read support (Fig 6C). 354 
These data suggest that specific DIP-associated deletions may be consistently formed by 355 
Cal07. While there was substantial diversity in terms of the number of distinct deletion 356 
junctions present, when we plotted the locations of those these junctions within the 357 
genome segments, we observed that they were largely confined within clear hotspots 358 
towards the termini of the segments with few exceptions (Fig 6D).  359 
 360 
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 361 
 362 
Effect of varying template input on pipeline performance 363 
We next asked whether the amount of cDNA template that goes into the library 364 
preparation affects the sensitivity and stochasticity of junction detection by the pipeline. 365 
We serially diluted both the amount of viral RNA template used in the RT reaction and the 366 
amount of cDNA template used in the PCR and compared pipeline outputs from the DIP-367 
rich L1-P6-Rep1 population. We first tested the correlation of detected DIP-associated 368 
junctions between a limited number of dilutions ranging from 1:3 to 1:15. We observed 369 
that the correlation of read support values between specific junctions across dilutions was 370 
more consistent when cDNA was diluted, rather than RNA, suggesting that RNA dilution 371 
may increase the stochasticity of downstream PCR amplification (Fig S6A).  372 
 373 
Based on this, we performed whole genome PCR using a dilution series of L1-P6-Rep1-374 
derived cDNA (spanning roughly 4*108 to 4*106 NP genome equivalents per PCR) as 375 
template (Fig 7A). We observed that there is an optimal amount of input cDNA template 376 
for maximizing junction detection. Diluting the input cDNA 1:120 (corresponding to ~4*106 377 
NP genome equivalents) increased the number of detected junctions over 4-fold 378 
compared with undiluted input. Although the number of DIP-associated junctions was 379 
increased, the distribution of junctions across segments and their mapped locations were 380 
consistent with our earlier results (Fig S6B and Fig 6).     381 
 382 
Further dilution of input template beyond 1:120 resulted in a decrease in sensitivity. 383 
Importantly, dilution across the range tested did not result in a failure to detect any of the 384 
junctions reported in the undiluted sample. We also observed that the correlation of read 385 
support values between specific junctions across dilutions tracked closely with the 386 
sensitivity (Fig 7B). Altogether, these observations indicate that optimization of the cDNA 387 
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template input amount can significantly improve the sensitivity of DIP-associated junction 388 
detection.  389 
 390 

 391 
 392 
Lack of association between direct repeats and junction formation 393 
Direct repeat sequences (detailed in Fig S2 and S3A) are common across the IAV 394 
genome and have previously been hypothesized to contribute to DIP-associated deletion 395 
formation by promoting viral polymerase slippage (10, 15). We leveraged the large 396 
number of DIP-associated deletion junctions that we identified in this study to test this 397 
hypothesis. We asked whether the deletion junctions in the DIP-enriched sample L1-P6-398 
Rep1 were found more frequently adjacent to direct repeats than would be expected if 399 
the junctions were located randomly in the viral genome. We compared the frequency of 400 
deletion junctions associated with direct repeats between the L1-P6-Rep1 and L2-P6 401 
populations (where all deletions are formed by the viral RdRp) and the Cal07-200 402 
simulated dataset, where all deletions are randomly localized (Fig 8). The frequency of 403 
direct repeats of varying lengths at junction sites in the real viral populations was not 404 
significantly different than that seen in the simulated data, indicating that direct repeat 405 
sequences are not enriched at DIP-associated junctions and arguing against a significant 406 
role for direct repeats in DIP formation. 407 
 408 
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 409 
 410 
DISCUSSION 411 
Sensitive and accurate detection of DIP-associated sequences within viral populations is 412 
critical for defining how DIPs form and function during IAV infection. Here we outline a 413 
pipeline to detect DIP-associated junctions within viral populations using Illumina-based 414 
short read sequencing, and validate its performance using a combination of simulated 415 
and experimental control datasets.  416 
 417 
Our primary goal was to develop and optimize a reasonably simple and straightforward 418 
sequencing framework that accounts for the potential artifacts that can potentially 419 
confound NGS-based DIP detection efforts. We chose the Illumina sequencing platform 420 
because it is widely available, easy to use, conducive to sample multiplexing, and 421 
because it has a relatively low rate of base-calling errors. One concern that we had initially 422 
was that recombination during reverse transcription, PCR, or sequencing might make 423 
identification of bona fide DIP-associated junctions a challenge. Two recently developed 424 
technologies, CirSeq and ClickSeq, largely eliminate this issue, but also significantly 425 
increase the amount of labor involved in library preparation (22, 23). We observed that 426 
the occurrence of non-viral recombination that occurs during our library preparation and 427 
sequencing procedures was vanishingly small, and can effectively be ignored. Thus, while 428 
both Cirseq and ClickSeq are enormously useful in certain circumstances, our data 429 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 11, 2018. ; https://doi.org/10.1101/440651doi: bioRxiv preprint 

https://doi.org/10.1101/440651


indicates that such methods are not required to generate highly accurate and sensitive 430 
profiles of IAV DIPs.     431 
 432 
A significant shortcoming of the method we detail here is that the measured read support 433 
for individual deletion junctions does not necessarily reflect the actual frequencies of 434 
these deletions within the viral population. This is due to both biasing of PCR amplification 435 
towards shorter products, as well as the uneven distribution of read coverage across the 436 
viral genome. For situations where the accurate measurement of individual DIP genotype 437 
frequencies is critical, we recommend pairing a cDNA barcoding method such as primer 438 
ID (24, 25) with a platform capable of long-read sequencing, such as PacBio or Oxford 439 
Nanopore (26). Alternatively, direct sequencing of viral RNA using the Oxford Nanopore 440 
platform may also prove to be useful for accurate measurement of junction frequencies 441 
(27).     442 
 443 
When we used our pipeline to examine DIP-enriched viral populations generated through 444 
serial high-MOI passage, we detected dozens of distinct DIP-associated deletion 445 
junctions, revealing a high degree of diversity within the DIP population. Although the 446 
majority of these DIP-associated junctions were derived from the polymerase segments 447 
as expected, we also detected a substantial proportion of deletions within the HA and NA 448 
segments, but not the NP, M, and NS segments. The non-random distribution of junctions 449 
across the genome segments mirrors what has been reported elsewhere, and highlights 450 
how little we know about the specific molecular mechanisms that regulate DIP formation.  451 
 452 
We hope that the approach detailed here, and the associated bioinformatics pipeline 453 
prove useful to other groups interested in defective interfering particle biology. Our 454 
approach is optimized for influenza virus sequences; however, the approaches and 455 
controls detailed here can easily be adapted to other RNA virus systems. 456 
 457 
MATERIALS AND METHODS 458 
Viruses and Cells 459 
Madin-Darby canine kidney cells (MDCK; obtained from Dr. Jonathan Yewdell) and 460 
human embroyonic kidney 293 cells (293T; obtained from Dr. Joanna Shisler) were grown 461 
in Minimal Essential Medium (MEM) + GlutaMAX (Gibco), supplemented with 8.3% fetal 462 
bovine serum (Seradigm), at 37°C and 5% CO2. Recombinant A/California/07/09 (Cal07) 463 
virus was rescued via the standard 8-plasmid reverse genetics approach. Briefly, 60-90% 464 
confluent 293T cells were transfected with 500ng of the following plasmids (pDZ::PB2, 465 
pDZ::PB1, pDZ::PA, pDZ::HA, pDZ::NP, pDZ::NA, pDZ::M, pDZ::NS) using JetPRIME 466 
(Polyplus) according to the manufacturer’s instructions. Cal07 reverse genetics plasmids 467 
were originally obtained as A/California/04/2009-encoding plasmids from Dr. Jonathan 468 
Yewdell. We introduced A660G and A335G substitutions into the HA and NP plasmids, 469 
respectively, to convert them to match the amino acid sequence of A/California/07/2009 470 
HA and NP (NCBI accession# CY121680, CY121683). A seed stock was prepared by 471 
amplifying a plaque isolate from the rescue supernatants. Virus working stocks were 472 
generated by infecting MDCK cells with seed stock at an MOI of 0.001 TCID50/cell and 473 
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collecting and clarifying supernatants at 48 hpi.   474 

Generation of DIP stocks through high MOI passage  475 
Confluent MDCK cells in 96-well plates were infected with IAV Cal07 at an MOI of 5 476 
TCID50/cell. Supernatants (200µl total per well) were harvested at 24 hpi (passage 1) 477 
and pooled. 100µl/well of this pooled supernatant was used to infect a 96 well plate of 478 
fresh MDCK cells to generate the next passage. This process was repeated 6 times to 479 
produce passages 1-6 in two independent lineages (1 96-well plate per lineage).  480 

IAV Genome amplification  481 
Viral RNA was extracted from 140µl of cell culture supernatant using the QIAamp viral 482 
RNA kit (Qiagen) and eluted in 60μl distilled H2O (dH2O). For cDNA reactions, 3µL of 483 
RNA was mixed with 1µL (2µM) MBTUni-12 primer (5’-484 
ACGCGTGATCAGCRAAAGCAGG-3’) + 1µL (10µM) dNTPs + 8µL dH2O. The mixture 485 
was incubated for 5 minutes at 65°C and then placed on ice for 2 min. Subsequently, the 486 
mixture was removed from ice and the following was added: 1µL SuperScript III RT 487 
(Invitrogen), 4µL of 5X First-Strand Buffer (Comes with SSIII kit), 1µL of DTT, 1µL RNase-488 
in (Invitrogen). The reaction was incubated at 45°C for 50 min, followed by a 15 min 489 
incubation at 70°C for inactivation. 5µL of cDNA product was mixed with the following for 490 
PCR amplification:   2.5µL (10µM) MBTUni-12_4R primer (5’-491 
ACGCGTGATCAGCRAAAGCAGG-3’), 2.5µL (10µM) MBTUni-13 primer (5’-492 
ACGCGTGATCAGTAGAAACAAGG-3’), 0.5µL Phusion polymerase (NEB), 10µL - 5x HF 493 
buffer, 1µL (10mM dNTPs mix), and 28.5µL dH2O. The PCR reaction conditions used:  494 
98°C (30 s) followed by 25 cycles of 98°C (10 s), 57°C (30 s) and 72°C (1:30 min), a 495 
terminal extension of 72°C (5 min), and a final 10°C hold. PCR products were purified 496 
using the PureLink PCR purification kit (Invitrogen) with the <300nt cutoff option and 497 
eluted in 30µL dH2O. There was no difference in deletion junction detection when we 498 
purified the PCR products with the lower cutoff option (data not shown).  499 
 500 
NGS library preparation   501 
We started with ~20ng of the PCR products in a volume of 50µl. The Covaris M220 502 
sonicator (Covaris) was used to fragment the DNA. Three different conditions were used 503 
to generate different average fragment lengths of 300, 500, 700 base pairs (bp): (I) 300 504 
bp = Peak Power 50, Duty Factor 20 and Cycles/Burst 200 for 2:40 min, (II) 500 bp = 505 
Peak Power 50, Duty Factor 10 and Cycles/Burst 200 for 1:30 min, and (III) ~600 bp = 506 
fragment length Peak Power 50, Duty Factor 10 and Cycles/Burst 200 for 1 min. In our 507 
hands, the fragmentation length did not have any effect on our sequencing results (data 508 
not shown). For the sake of consistency, we used the 300 bp fragmentation length. To 509 
confirm the PCR products, we visualized the amplicons on a Fragment Analyzer (AATI) 510 
with the DNF-486 high sensitivity NGS kit before and after fragmentation. Next, we used 511 
KAPA Hyper Prep kit (Roche) to construct the libraries according to the manual. To 512 
eliminate the possibility of index hopping (or index switching), we used the TruSeq Unique 513 
Dual Indexes (UDI) from Illumina. The Adapter ligation step was carried out with 5µl of 514 
Truseq UDIs diluted 1:10 with 10nM Tris. For maximum efficiency we increased the 515 
ligation time to 30mins. We then performed 3 cycles of PCR with the Kapa library 516 
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amplification primers diluted 1:5 in water followed by a cleanup step with 40µl of AxyPrep 517 
Mag PCR beads (Thermofisher). We then mixed the libraries at an equimolar ratio and 518 
carried out a qPCR to accurately quantitate the library pool and maximize the number of 519 
clusters in the sequencing flowcell. A size selection step was not needed. Finally, the 520 
pooled libraries were sequenced with paired-ends 2x250nt reads on an Illumina MiSeq 521 
using V2 chemistry. The fastq files were generated and demultiplexed with the bcl2fastq 522 
v2.20 Conversion Software (Illumina).  523 
 524 
Simulated Datasets 525 
All the simulated datasets used in this study were generated by MetaSim  (v0.9.1) (28), 526 
a genomic and metagenomics simulator. Several reference library sequences composed 527 
of WT reference sequences of IAV Cal07 or PR8 (see Table S1 for NCBI accession 528 
numbers), mixed with a defined DIP sequence population - generated randomly within 529 
the first and last 600 nts of all the segments - were used in Metasim for data simulation. 530 
The configurations were fixed across all datasets to maintain the preferable conditions. 531 
The reference sequences were fragmented into 350 nts fragments length with a standard 532 
deviation of +/- 50 and were simulated into ~1 million 2x250nts paired-end reads per 533 
sample, with a total mutation rate of ~1% based on the published Illumina empirical error 534 
model, and corresponds to substitutions as the indel error rate is negligible within Illumina 535 
MiSeq. One dataset was simulated with no DIP sequences as a control sample for any 536 
computational artifacts. Metasim generated two FASTA files of 1 million reads per file per 537 
sample (~2 million single-end reads = 1 million paired-end reads), which subsequently 538 
were used for the optimization process.  539 

Sequencing analysis of DIP-associated junctions 540 
The raw sequencing reads were quality-filtered by Trimmomatic (v0.36) (Parameters: 541 
ILLUMINACLIP:TruSeq3-PE-2.fa:2:15:10 SLIDINGWINDOW:3:20 542 
LEADING:28 TRAILING:28) (29) and any reads shorter than 75nts were removed from 543 
the datasets. The paired reads were concatenated into one file and treated as single-end 544 
when aligned end-to-end to the WT reference sequences using Bowtie2 (v2.3.1) 545 
(Parameters: --score-min L,0,-0.3).  Subsequently, the algorithm ViReMa (v0.10) was 546 
used to analyze the remaining un-aligned reads (putative junction-spanning reads) 547 
(Parameters -DeDup --MicroInDel_Length 20 --Defuzz 3 --N 1 --X 8). 548 
Next, the DIP-associated deletion junctions and their read support were extracted from 549 
ViReMa output files and sorted per segment, using an in-house Perl scrip, for data 550 
analysis and visualization. To detect any MDCK genome leakage, the datasets were 551 
aligned against the dog genome (assembly CanFam3.1). All scripts are available at 552 
https://github.com/BROOKELAB/Influenza-virus-DI-identification-pipeline.  553 
 554 
Quantification of sensitivity and precision  555 
To calculate the actual number of junction-spanning reads in Fig 2A, reads that derived 556 
from DIP-associated sequences were counted by their FASTA headers, which contain 557 
the source of each read, produced by MetaSim.  To calculate the maximum theoretical 558 
sensitivity of ViReMa (Fig 2B) based on seed length of 25nts and two allowed mutations 559 
(--N = 2), the number of mutations was subtracted from the seed length, which on its turn 560 
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was multiplied by 2 to account for both termini ((25-2)*2=46). Subsequently, this number 561 
was subtracted from the possible cutting site of a 250nts read and divided by the total 562 
number of cutting sites and multiplied by 100 ((249-46)/249*100)=81.5%). To calculate 563 
the number of accurately and inaccurately mapped junctions in Fig 2C,D, the seed 564 
sequences of the Cal07-200 dataset were used against ViReMa with --N set to 0, and the 565 
remaining parameters were kept the same. These sequences were generated initially to 566 
establish the seed for MetaSim to simulate sequencing, therefore their lengths are varied 567 
between ~350-1800. The long ones were trimmed to <1000nts, so ViReMa would take 568 
them as reads (the maximum default read length that ViReMa could take is ~1024nts) 569 
and, critically, the junction locations were maintained. The junctions that occurred within 570 
the first or last 25nts were removed (4 junction sequences). Finally, the junctions that 571 
accurately mapped were counted, which found to be 149 versus 47 inaccurately mapped 572 
junctions. 573 
 574 
Correlation analysis 575 
For the correlation tests, the NGS read support count for each DIP-associated junction 576 
was normalized to the total detected junction-spanning reads of every sample. Next, the 577 
correlation was calculated based on Spearman rank correlation using either R (cor 578 
function) or an online tool at:  579 
http://www.biostathandbook.com/spearman.html  580 
 581 
ACKNOWLEDGMENTS 582 
We are grateful to other members of the lab for helpful comments and critical reading of 583 
the manuscript, as well as to Dr. Alvaro Hernandez and the staff at the high-through 584 
sequencing and genotyping unit within the Roy J. Carver Biotechnology Center for 585 
excellent advice and technical assistance. This work was generously funded by the 586 
Defense Advanced Research Projects Agency under contract DARPA-16-35-587 
INTERCEPT-FP-018. 588 
 589 
REFERENCES 590 
1.  Von Magnus P. 1954. Incomplete forms of influenza virus. Adv Virus Res 2:59–79. 591 

2.  von MAGNUS P. 1951. Propagation of the PR8 strain of influenza A virus in chick 592 
embryos. II. The formation of incomplete virus following inoculation of large doses of 593 
seed virus. Acta Pathol Microbiol Scand 28:278–293. 594 

3.  Rezelj VV, Levi LI, Vignuzzi M. 2018. The defective component of viral populations. 595 
Curr Opin Virol 33:74–80. 596 

4.  Baum A, Sachidanandam R, García-Sastre A. 2010. Preference of RIG-I for short 597 
viral RNA molecules in infected cells revealed by next-generation sequencing. Proc 598 
Natl Acad Sci U S A 107:16303–16308. 599 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 11, 2018. ; https://doi.org/10.1101/440651doi: bioRxiv preprint 

https://doi.org/10.1101/440651


5.  Nayak DP, Chambers TM, Akkina RK. 1985. Defective-interfering (DI) RNAs of 600 
influenza viruses: origin, structure, expression, and interference. Curr Top Microbiol 601 
Immunol 114:103–151. 602 

6.  Brooke CB. 2017. Population Diversity and Collective Interactions during Influenza 603 
Virus Infection. J Virol 91. 604 

7.  Vasilijevic J, Zamarreño N, Oliveros JC, Rodriguez-Frandsen A, Gómez G, 605 
Rodriguez G, Pérez-Ruiz M, Rey S, Barba I, Pozo F, Casas I, Nieto A, Falcón A. 606 
2017. Reduced accumulation of defective viral genomes contributes to severe 607 
outcome in influenza virus infected patients. PLOS Pathog 13:e1006650. 608 

8.  Sherry L, Punovuori K, Wallace LE, Prangley E, DeFries S, Jackson D. 2016. 609 
Identification of cis-acting packaging signals in the coding regions of the influenza B 610 
virus HA gene segment. J Gen Virol 97:306–315. 611 

9.  Hutchinson EC, von Kirchbach JC, Gog JR, Digard P. 2010. Genome packaging in 612 
influenza A virus. J Gen Virol 91:313–328. 613 

10.  Jennings PA, Finch JT, Winter G, Robertson JS. 1983. Does the higher order 614 
structure of the influenza virus ribonucleoprotein guide sequence rearrangements in 615 
influenza viral RNA? Cell 34:619–627. 616 

11.  Routh A, Johnson JE. 2014. Discovery of functional genomic motifs in viruses 617 
with ViReMa-a Virus Recombination Mapper-for analysis of next-generation 618 
sequencing data. Nucleic Acids Res 42:e11. 619 

12.  Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat 620 
Methods 9:357–359. 621 

13.  Jennings PA, Finch JT, Winter G, Robertson JS. 1983. Does the higher order 622 
structure of the influenza virus ribonucleoprotein guide sequence rearrangements in 623 
influenza viral RNA? Cell 34:619–627. 624 

14.  Janda JM, Davis AR, Nayak DP, De BK. 1979. Diversity and generation of 625 
defective interfering influenza virus particles. Virology 95:48–58. 626 

15.  Saira K, Lin X, DePasse JV, Halpin R, Twaddle A, Stockwell T, Angus B, Cozzi-627 
Lepri A, Delfino M, Dugan V, Dwyer DE, Freiberg M, Horban A, Losso M, Lynfield R, 628 
Wentworth DN, Holmes EC, Davey R, Wentworth DE, Ghedin E, INSIGHT FLU002 629 
Study Group, INSIGHT FLU003 Study Group. 2013. Sequence analysis of in vivo 630 
defective interfering-like RNA of influenza A H1N1 pandemic virus. J Virol 87:8064–631 
8074. 632 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 11, 2018. ; https://doi.org/10.1101/440651doi: bioRxiv preprint 

https://doi.org/10.1101/440651


16.  Loman NJ, Misra RV, Dallman TJ, Constantinidou C, Gharbia SE, Wain J, Pallen 633 
MJ. 2012. Performance comparison of benchtop high-throughput sequencing 634 
platforms. Nat Biotechnol 30:434–439. 635 

17.  Schirmer M, Ijaz UZ, D’Amore R, Hall N, Sloan WT, Quince C. 2015. Insight into 636 
biases and sequencing errors for amplicon sequencing with the Illumina MiSeq 637 
platform. Nucleic Acids Res 43:e37. 638 

18.  Zhou B, Donnelly ME, Scholes DT, St George K, Hatta M, Kawaoka Y, 639 
Wentworth DE. 2009. Single-reaction genomic amplification accelerates sequencing 640 
and vaccine production for classical and Swine origin human influenza a viruses. J 641 
Virol 83:10309–10313. 642 

19.  Görzer I, Guelly C, Trajanoski S, Puchhammer-Stöckl E. 2010. The impact of 643 
PCR-generated recombination on diversity estimation of mixed viral populations by 644 
deep sequencing. J Virol Methods 169:248–252. 645 

20.  Lahr DJG, Katz LA. 2009. Reducing the impact of PCR-mediated recombination 646 
in molecular evolution and environmental studies using a new-generation high-647 
fidelity DNA polymerase. BioTechniques 47:857–866. 648 

21.  Xue J, Chambers BS, Hensley SE, López CB. 2016. Propagation and 649 
Characterization of Influenza Virus Stocks That Lack High Levels of Defective Viral 650 
Genomes and Hemagglutinin Mutations. Front Microbiol 7:326. 651 

22.  Routh A, Head SR, Ordoukhanian P, Johnson JE. 2015. ClickSeq: 652 
Fragmentation-Free Next-Generation Sequencing via Click Ligation of Adaptors to 653 
Stochastically Terminated 3’-Azido cDNAs. J Mol Biol 427:2610–2616. 654 

23.  Acevedo A, Andino R. 2014. Library preparation for highly accurate population 655 
sequencing of RNA viruses. Nat Protoc 9:1760–1769. 656 

24.  Kosik I, Ince WL, Gentles LE, Oler AJ, Kosikova M, Angel M, Magadán JG, Xie 657 
H, Brooke CB, Yewdell JW. 2018. Influenza A virus hemagglutinin glycosylation 658 
compensates for antibody escape fitness costs. PLOS Pathog 14:e1006796. 659 

25.  Jabara CB, Jones CD, Roach J, Anderson JA, Swanstrom R. 2011. Accurate 660 
sampling and deep sequencing of the HIV-1 protease gene using a Primer ID. Proc 661 
Natl Acad Sci U S A 108:20166–20171. 662 

26.  Jaworski E, Routh A. 2017. Parallel ClickSeq and Nanopore sequencing 663 
elucidates the rapid evolution of defective-interfering RNAs in Flock House virus. 664 
PLOS Pathog 13:e1006365. 665 

27.  Garalde DR, Snell EA, Jachimowicz D, Sipos B, Lloyd JH, Bruce M, Pantic N, 666 
Admassu T, James P, Warland A, Jordan M, Ciccone J, Serra S, Keenan J, Martin 667 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 11, 2018. ; https://doi.org/10.1101/440651doi: bioRxiv preprint 

https://doi.org/10.1101/440651


S, McNeill L, Wallace EJ, Jayasinghe L, Wright C, Blasco J, Young S, Brocklebank 668 
D, Juul S, Clarke J, Heron AJ, Turner DJ. 2018. Highly parallel direct RNA 669 
sequencing on an array of nanopores. Nat Methods 15:201–206. 670 

28.  Richter DC, Ott F, Auch AF, Schmid R, Huson DH. 2008. MetaSim—A 671 
Sequencing Simulator for Genomics and Metagenomics. PLOS ONE 3:e3373. 672 

29.  Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for 673 
Illumina sequence data. Bioinforma Oxf Engl 30:2114–2120. 674 

30.  Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis 675 
G, Durbin R, 1000 Genome Project Data Processing Subgroup. 2009. The 676 
Sequence Alignment/Map format and SAMtools. Bioinforma Oxf Engl 25:2078–677 
2079. 678 

31.  Quinlan AR, Hall IM. 2010. BEDTools: a flexible suite of utilities for comparing 679 
genomic features. Bioinforma Oxf Engl 26:841–842. 680 

 681 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 11, 2018. ; https://doi.org/10.1101/440651doi: bioRxiv preprint 

https://doi.org/10.1101/440651

