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Abstract
Genome-scale metabolic models (GSMMs) of living organisms are used in a wide variety
of applications pertaining to health and bioengineering. They are formulated as linear pro-
grams (LP) that are often under-determined. Flux Variability Analysis (FVA) characterizes
the alternate optimal solution (AOS) space enabling thereby the assessment of the robust-
ness of the solution. fastFVA (FFVA), the C implementation of MATLAB FVA, allowed to
gain substantial speed up, although, the parallelism was managed through MATLAB. Here
veryfastFVA (VFFVA) is presented, which is a pure C implementation of FVA, that relies
on lower level management of parallelism through a hybrid MPI/OpenMP. The flexibility of
VFFVA allowed to gain a threefold speedup factor and to decrease memory usage 14 fold
in comparison to FFVA. Finally, VFFVA allows processing a higher number of GSMMs in
faster times accelerating thereby biomedical modeling and simulation.
VFFVA is available online at https://github.com/marouenbg/VFFVA.
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Modeling and simulation of biological systems gained tremendous interest thanks to the

increasing predictive ability of the modeled systems in healthcare and the biotechnology

industry [6]. Microbial and human systems are most amenable to modeling given the de-

velopment of high-throughput techniques that enable the spatiotemporal characterization of

biological systems [18].

Particularly, constraint-based reconstruction and analysis (COBRA) methods enable the re-

construction of the metabolism of biological systems in silico as linear programs [19]. Sub-

sequently, an objective function of the system is formulated and optimized for, e.g., biomass

yield, metabolite production. Although the objective is uniquely determined, the set of cor-

responding solutions forms the space of alternate optimal solutions (AOS) that describe the

possible conditions in which the optimal objective is achievable. The AOS space is quan-

tified using flux variability analysis (FVA) [11], which provides a range of minimum and

maximum values for each variable of the system. Biologically, these values overlap with the

fitness of a given system to achieve optimality and allow to validate the metabolic phenotype

through matching the empirical ranges with the FVA bounds. FVA was applied to quantify

the fitness of macrophages after the infection of Mycobacteirum tuberculosis [2], resolve

thermodynamically infeasible loops [14], and compute the essentiality of reactions [4].

fastFVA (FFVA) [7], a recent implementation of FVA gained tremendously in speed over

the fluxvariability COBRA toolbox MATLAB function [10]. Two main improvements

were the driving factor of the gained efficiency: first, the C implementation of FVA allowed

higher flexibility in comparison to MATLAB [12] through the use of the CPLEX C API. The

second was the use of the same LP object, which avoided solving the problem from scratch

in every iteration, thereby saving presolve time. FFVA is compiled as MATLAB Executable

(MEX) file, that can be called from MATLAB directly.

Nevertheless, given the exponentially growing size of metabolic models, FFVA is run in

parallel in most cases. Parallelism simply relies on allocating the cores through MATLAB

parpool function [12] and running the iterations through parfor loop. The load is stati-

cally balanced over the workers such as they process an equal amount of iterations. Nev-

ertheless, the solution time varies greatly between LPs which does not guarantee an equal

processing time among the workers in static load balancing. Often, the workers that were

assigned a set of fast-solving LPs process their chunk of iterations and stay idle, waiting to

synchronize with the remaining slower workers, which can result in less efficient global run

times. Here I present veryfastFVA (VFFVA), which is a pure C implementation of FVA,

that has a lower level management of parallelism over FFVA. The program is provided as

a standalone, and does not rely on MATLAB thereby offering an open source alternative

for constraint-based biological analysis. The significant contribution lies in the management

of parallelism through a hybrid OpenMP/MPI, for shared memory and non-shared memory
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systems respectively, which offers excellent flexibility and speed up over the existing imple-

mentations. While keeping the up-mentioned advantages of FFVA, load balancing in VFFVA

was scheduled dynamically [20] in a way to guarantee equal run times between the workers.

The input does not rely on MATLAB anymore as the LP problem is read in the industry

standard .mps file, that can also be obtained from the classical .mat files through a provided

converter. The improvements in the implementation allowed to speed up the analysis by a

factor of three and reduced memory requirements 14 fold in comparison to FFVA and the

Julia-based distributedFBA implementation [9], in a similar parallel setting.

Taken together, as metabolic models are steadily growing in number and complexity, their

analysis requires the design of efficient tools. VFFVA allows making the most of modern ma-

chines specifications to run a more considerable amount of simulation in less time thereby

enabling biological discovery.

Material and methods

Flux variability analysis

The LP problem modeling the metabolism of a given organism has n reactions that are

bounded by lower bound lb(n,1) and upper bound ub(n,1) vectors. The matrix S (m,n) repre-

sents the stoichiometric coefficients of each of the m metabolites involved in the n reactions.

The system is usually constrained by S .v = 0 to represent the steady-state, also referred to as

Flux Balance Analysis (FBA) [17]. An initial LP optimizes for the objective function of the

system to obtain a unique optimum, e.g., biomass maximization, like the following:

maximize Zbiomass = cT
biomassv

subject to

S .v = 0

lb < v < ub

(1)

The system being under-determined (m < n), there can be an infinity of solution vectors v(n,1)

that satisfy the unique optimal objective (cT v), with c(n,1) as the objective coefficient vector.

In a second step, in order to delineate the AOS space, the objective function is set to its

optimal value followed by an iteration over the n dimensions of the problem. Consequently,

each of the reactions is set as a new objective function to maximize (minimize) the LP and

obtain the maximal (minimal) value of the reaction range. The total number of LPs is then
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equal to 2n in the second step which is described as the following:

For each reaction i ∈ [1, n]

set ci = 1

max/min Zi = cT v

subject to

S .v = 0

cT
biomassv = Zbiomass

lb < v < ub

(2)

The obtained minimum and maximum objective value for each dimension define the range

of optimal solutions.

Management of parallelism

Problem 2 is entirely parallelizable through distributing the 2n LPs among the available

workers. The strategy used so far in the existing implementations was to divide 2n equally

among the workers. Nevertheless, the solution time can vary widely between LPs because

ill-conditioned LPs can induce numerical instabilities requiring longer solution times. Con-

sequently, dividing equally the LPs among the workers does not ensure an equal load on each

worker.

Since it is challenging to estimate a priori the run time of an LP, the load has to be dynami-

cally balanced during the execution of the program.

In shared memory systems, Open Multi-Processing (OpenMP) library allows balancing the

load among the threads dynamically such that every instruction runs for an equal amount of

time. The load is adjusted dynamically, depending on the chunks of the problem processed

by every thread. At the beginning of the process, the scheduler will divide the original prob-

lem in chunks and will assign the workers a chunk of iterations to process. Each worker that

completes the assigned chunk will receive a new one until all the LPs are processed.

In systems that do not share memory, Message Passing Interface (MPI) was used to cre-

ate instances of Problem 2. Every process then calls the shared memory execution through

OpenMP.

In the end, the final program is comprised of a hybrid MPI/OpenMP implementation of paral-

lelism which allows great flexibility of usage, particularly in High-Performance Computing

(HPC) setting.
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Another application: generation of warmup points

The uniform sampling of metabolic models is a common unbiased tool to characterize the

solution space and determine the flux distribution per reaction [3, 13]. Sampling starts from

pre-computed solutions called warmup points, from which the sampling chains start explor-

ing the solution space. The generation of p ≥ 2n warmup points is done similarly to FVA.

The first 2n points are solutions of the FVA problem, while the points ≥ 2n are solutions cor-

responding to a randomly generated coefficient vector c. Another difference with FVA lies in

the storage of the solutions v rather than the optimal objective cT v. The generation of 30,000

warmup points was compared using the COBRA toolbox function createWarmupMATLAB and

a dynamically load-balanced C implementation createWarmupVF that was based on VFFVA.

Model description

A selection of models [7] was tested on FFVA and VFFVA. The models (Table 1) are char-

acterized by the dimensions of the stoichiometric matrix S m,n. Each model represents the

metabolism of human or bacterial systems. Models pertaining to the same biological system

with different S matrix size, have different levels of granularity and biological complexity.

Table 1: Model size and description.

Model Organism Size
Ecoli_core [16] Escherischia coli (72,95)
P_putida [15] Pseudomonas putida (911,1060)
EcoliK12 [5] Escherischia coli (1668,2382)
Recon2 [23] Homo sapiens (4036,7324)
E_Matrix [21] Escherischia coli (11991,13694)
Ec_Matrix [22] Escherischia coli (13047,13726)
Harvey [24] Homo sapiens (157056,80016)

Hardware and software

VFFVA and createWarmupVF were run on a Dell HPC machine with 72 Intel Xeon E5

2.3GHz cores and 768 GigaBytes of memory. The current implementation was tested with

Open MPI v1.10.3, OpenMP 3.1, GCC 4.7.3 and IBM ILOG CPLEX academic version

(12.6.3). FFVA and createWarmupMATLAB were tested with MATLAB 2014b [12] and dis-
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tributedFBA was run on Julia v0.5. ILOG CPLEX was called with the following parameters:

PARALLELMODE=1

THREADS=1

AUXROOTTHREADS=2

Additionally, large-scale coupled models with scaling infeasibilites might require

SCAIND=-1

The call to VFFVA is done from bash as follows:

mpirun -np <nproc> --bind-to none -x OMP_NUM_THREADS=<nthr> ./veryfastFVA

<model.mps> <scaling>

,with nproc is the number of non-shared memory processes, nthr is the number of shared

memory threads, scaling is CPLEX scaling parameter where 0 leaves it to the default (equi-

libration) and -1 sets it to unscaling. createWarmupVF was called in a similar fashion:

mpirun -np <nproc> --bind-to none -x OMP_NUM_THREADS=<nthr>

./createWarmupPts <model.mps> <scaling>

For large models, OpenMP threads were bound to physical cores through setting the envi-

ronment variable

OMP_PROC_BIND=TRUE

while for small models, setting the variable to FALSE yielded faster run times. The schedule

is set through the environment variable

OMP_SCHEDULE=schedule,chunk

where schedule can be static, dynamic or guided, and chunk is the minimal number of

iterations processed per worker at a time. The source code is available online [8].

Other possible implementations

The presented software can be implemented in Fortran since the library OpenMP is sup-

ported as well. Additionally, Python’s multiprocessing library allows to balance the load

dynamically between non-shared memory processes, but the parallelism inside one process

is often limited to one thread by the Global Interpreter Lock (GIL). This limitation could be

circumvented through using OpenMP and Cython [1]. The advantage of VFFVA lies in the

implementation of two levels of parallelism following a hierarchical model where MPI pro-

cesses are at a top-level and OpenMP threads at a lower level. The MPI processes manage the
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coarse-grained parallelism, and OpenMP threads manage the finer-grained tasks that share

memory and avoid copying the original problem, which increases performance and saves

consequent memory. This architecture adapts very well with modern distributed hardware in

HPC setting.

Results

The OpenMP/MPI hybrid implementation of VFFVA allowed gaining important speedup

factors over the static load balancing in the MATLAB implementation. In this section, the

run times of VFFVA were compared to FFVA at different settings then the different strategies

of load balancing were compared through their impact on the run time per worker. While

in FFVA the authors benchmarked serial runs [7], in the present work, the emphasis was put

upon parallel run times.

Parallel construct in a hybrid OpenMP/MPI setting

The MATLAB implementation of parallelism through the parallel computing toolbox pro-

vides great ease-of-use, wherein two commands only are required to allocate and launch

parallel jobs. Also, it saves the user the burden of finding out if the jobs are run on mem-

ory sharing systems or not. VFFVA provides the user with a similar level of flexibility as

it supports both types of systems and ensures sensibly the same numerical results as FVA.

Besides, it allows accessing advanced features of OpenMP and MPI such as dynamic load

balancing. The algorithm starts first by assigning chunks of iterations to every CPU (Figure

1), where a user-defined number of threads simultaneously processes the iterations. In the

end, the CPUs synchronize and pass the result vector to the master core to reduce them to

the final vector.

The main contributions of VFFVA are the complete use of C, which impacted mainly the

computing time of small models (n < 3000) and the dynamic load balancing that was the

main speedup factor for larger models.

Impact on computing small models

VFFVA and FFVA were run five times on small models, i.e., Ecoli_core, EcoliK12, P_putida.

VFFVA had at least 20 fold speedup (Table 2). The main contributing factor was the use of

C over MATLAB in all steps of the analysis. In particular, the loading time of MATLAB

java machine and the assignment of workers through parpool was much greater than the
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analysis time itself.

The result highlighted the power of C in gaining computing speed, through managing the

different low-level aspects of memory allocation and variable declaration.

In the analysis of large models, where MATLAB loading time becomes less significant,

dynamic load balancing becomes the main driving factor of the gained speedup.

Table 2: Comparison of run times of FFVA and VFFVA in small models in seconds.

Model

FFVA
mean(std)
loading and
analysis
time

VFFVA
mean(std)
loading and
analysis
time

FFVA
mean(std)
analysis
only

2 cores
Ecoli_core 19.5(0.5) 0.2(0.01) 0.37(0.1)
P_putida 19.2(0.7) 0.6(0.02) 0.81(0.09)
EcoliK12 20.4(0.6) 2.2(0.06) 2.41(0.09)

4 cores
Ecoli_core 19.6(0.6) 0.2(0.005) 0.32(0.01)
P_putida 19.4(1) 0.5(0.02) 0.61(0.01)
EcoliK12 20(0.8) 1.3(0.04) 1.64(0.08)

8 cores
Ecoli_core 19.4(0.5) 0.2(0.03) 0.35(0.05)
P_putida 19.6(0.7) 0.4(0.04) 0.53(0.009)
EcoliK12 20(0.49) 0.9(0.01) 1.22(0.08)

16 cores
Ecoli_core 20.2(0.4) 0.2(0.008) 0.41(0.05)
P_putida 19.5(0.4) 0.4(0.04) 0.51(0.03)
EcoliK12 22(0.7) 0.7(0.01) 0.87(0.03)

32 cores
Ecoli_core 22.2(0.4) 0.3(0.008) 0.6(0.12)
P_putida 21.5(0.6) 0.4(0.01) 0.53(0.004)
EcoliK12 21.5(0.6) 0.6(0.03) 0.78(0.04)

Impact on computing large models

The speedup gained on computing large models (Recon2 and E_Matrix) reached three folds

with VFFVA (Figure 2) at 32 threads with Recon 2 (35.17s vs 10.3s) and E_Matrix (44s

vs 14.7s). In fact, with dynamic load balancing, VFFVA allowed to update the assigned

chunks of iterations to every worker dynamically, which guarantees an equal distribution
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of the load. In this case, the workers that get fast-solving LPs, will get a larger number of

iterations assigned. Conversly, the workers that get ill-conditioned LPs and require more

time to solve them, will get fewer LPs in total. Finally, all the workers synchronize at the

same time to reduce the results. Particularly, the speedup achieved with VFFVA increased

with the size of the models and the number of threads (Figure 2-E_Matrix). Finally, the

different load balancing strategies (static, guided and dynamic) were compared further with

two of the largest models (Ec_Matrix and Harvey).

Load management

Load management describes the different approaches to assign iterations to the workers. It

can be static, where an even number of iterations is assigned to each worker. Guided schedule

refers to dividing the iterations in chunks of size n/workers initially and remaining_iterations/workers

afterward. The difference with static lies in the dynamic assignment of chunks, in a way that

fast workers can process more iteration blocks. Finally, the dynamic schedule is very similar

to guided except that chunk size is given by the user, which allows greater flexibility. In

the following section, the load balancing strategies of Ec_Matrix and Harvey models were

compared.

Static schedule

Using static schedule, VFFVA assigned an equal number of iterations to every worker. With

16 threads, the number of iterations per worker equaled 1715 and 1716 (Figure 3-C). Expect-

edly, the run time varied widely between workers (Figure 3-B) and resulted in a final time of

393s.

Guided schedule

With guided schedule (Figure 3-A), the highest speedup (2.9) was achieved with 16 threads

(Figure 3-B). The run time per worker was quite comparable, and the iterations processed

varied between 719 and 2581. The final run time was 281s.

Dynamic schedule

Using a dynamic load balancing with a chunk size of 50 resulted in similar results to the

guided schedule. The final run time equaled 197s, while FFVA took 581s. An optimal

chunk size has to be small enough to ensure a frequent update on the workers’ load, and big

enough to take advantage of the solution basis reuse in every worker. At a chunk size of one,
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i.e., each worker is assigned one iteration at a time, the final solution time equaled 272s. In

fact, for a small chunk size, the worker is updated often with new pieces of iterations, looses

the stored solution basis of the previous problem, and has to solve the LP from scratch which

slows the overall process.

Similarly, Harvey Homo sapiens metabolic model [24] (Figure 4-A) had a 2-fold speedup

with 16 threads using a chunk size of 50 (806 mn) compared to FFVA (1611 mn). The

run times with guided schedule (905 mn), dynamic schedule with chunk size 100 (850 mn)

and chunk size 500 (851 mn) were less efficient due to the slower update rate leading to a

variable analysis time per worker (Figure 4-B,C,D). VFFVA on eight threads (1323 mn with

chunk size 50) proved comparable to FFVA (1214 mn) and distributedFBA (1182 mn) on 16

threads, thereby saving computational resources and time.

Impact on memory usage

In MATLAB, the execution of j parallel jobs implies launching j instances of MATLAB.

On average, one instance needs 2 Gb. In a parallel setting, the memory requirements are at

a minimum 2 j Gb, which can limit the execution of highly parallel jobs. In the Julia-based

distributedFBA, the overall memory requirement exceeded 15 Gb at 32 cores. VFFVA re-

quires only the memory necessary to load j instances of the input model, which corresponds

to the MPI processes as the OpenMP threads save additional memory through sharing one

instance of the model. The differences between the FFVA and VFFVA get more pronounced

as the number of threads increases (Figure 5) i.e., 13.5 fold at eight threads, 14.2 fold at 16

threads, and 14.7 fold at 32 threads.

Finally, VFFVA outran FFVA and distributedFBA both on execution time and memory re-

quirements (Table 3). The advantage becomes important with larger models and a higher

number of threads, which makes VFFVA particularly suited for analyzing the exponentially-

growing-in-size metabolic models in HPC setting.

Table 3: Comparative summary of the methods’ features.

Feature VFFVA distributedFBA FFVA FVA
Speed ++++ +++ ++ +

Memory +++ ++ + +

Load balancing dynamic static static static
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Creation of warmup points for sampling

The generation of 30,000 warmup points were compared using the COBRA toolbox function

createWarmupMATLAB and a dynamically load-balanced C implementation createWarmupVF

on a set of models (Table 4). Since the COBRA toolbox implementation does not support

parallelism, it was run on a single core and divided the run time by the number of cores to

obtain an optimistic approximation of the parallel run times. The speedup achieved varied

between four up to a factor of 100 in the different models (Table 4). Similarly to FFVA

[7], the main factor for the speedup was the C implementation that allowed the reuse of the

LP object in every iteration and save presolve time. Equally, the dynamic load balancing

between workers ensured a fast convergence time.

Taken together, the dynamic load balancing strategy allows the efficient parallel solving of

metabolic models through accelerating the computation of FVA and the fast preprocessing

of sampling points thereby enabling the modeller to tackle large-scale metabolic models.

Table 4: Generation of sampling warmup points using dynamic load balancing.

Model createWarmupMATLAB createWarmupVF

Cores 1 1 2 4 8 16 32
Ecoli_core 149 2.8 1.8 0.8 0.7 0.5 0.5
P_putida 385 12.5 13 8 4 2 2
EcoliK12 801 49 43 23 10.4 9.5 9.1
Recon2 11346 288 186 30 32 24 21
E_Matrix NA* 602 508 130 52 43 43
Ec_Matrix NA* 5275 4986 924 224 118 117

* The generation of warmup points of E_Matrix and Ec_Matrix models did not converge
after 20000 s. The creation of warmup points can vary widely between runs as it involves
the generation of a random c vector in the linear program. The runs were repeated three
times and the average was reported.
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Figure legends

Figure 1: Hybrid OpenMP/MPI implementation of FVA ensures two levels of parallelism.
The distribution of tasks is implemented following a hierarchical model where MPI man-
ages coarse-grained parallelism in non-shared memory systems. At a lower level, OpenMP
processes within each MPI process manage fine-grained parallelism taking advantage of the
shared memory to improve performance.

Figure 2: Run times of Recon2 and E_Matrix model using FFVA and VFFVA on 2,4,8,16,
and 32 threads. The guided schedule was used in the benchmarking.

Figure 3: Run times of Ec_Matrix model. A-Run times of Ec_Matrix model at 2,4,8,16,
and 32 threads using FFVA and VFFVA. B-Run time per worker in the static, guided, and
dynamic schedule using 16 threads. C-The number of iterations processed per worker in the
static, guided, and dynamic schedule using 16 threads.

Figure 4: Run times per worker of Harvey Homo sapiens metabolic model. A-Total run time
of the different load balancing schedules at 8, 16, and 32 threads. B-Run time per worker as
a function of the number of iterations processed using the guided schedule and the dynamic
schedule with a chunk size of 50, 100, and 500 with eight threads, C-16 threads, and D-32
threads.

Figure 5: Physical memory usage at 8, 16, and 32 threads using FFVA, VFFVA, and dis-
tributedFBA highlights a lower memory usage with VFFVA.
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