










Figure 8: Simulation results of spatial updating of attention with top-down attention for
different time steps. The activities of both LIP maps (XbP C ; XbCD ) as well as the setup
and the triggered attention pointers are plotted. Additionally, the diagonal on which the
attention signal is fed into the LIP maps is plotted with a yellow dashed line. The symbols
are identical to Figure 7. The time in ms is aligned to saccade onset. (A) Long before saccade,
the attention pointer at the desired attention position (AP) is encoded by the LIP map for the
PC signal (red blob). (B) Shortly before saccade, the CD signal rises and activates neurons in
LIP CD, which trigger a second attention pointer at the remapped attention position (RAP,
blue blob). (C) Shortly after saccade, both attention pointers are shifted according to the eye
movement as they are retinotopic. This leads to an attention pointer at the lingering attention
position (LAP, red blob) and another one at AP (blue blob). (D) Long after saccade, the PC
signal updates to the new eye position (ST) and the CD signal decays, so there is again only
one attention pointer triggered by LIP PC at AP (red blob).
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The functional roles of the two eye-related signals used in our model have been recently
discussed in a review (Sun & Goldberg, 2016). As the (proprioceptive) eye position signal
is inaccurate after saccade, LIP gain fields may not be suitable to solve the spatial accuracy
problem. Therefore, Sun and Goldberg (2016) conclude, that there are ”[...] two different
representations of space: a rapid retinotopic one and a slower craniotopic one.”. In the
model presented here, these two representations interact to trigger predictive remapping and
spatial updating of attention. Both phenomena can be well explained by a lateral or reentrant
network at the level of LIP, such that the presaccadic activation is re-computed in the future
reference frame by means of the corollary discharge. For simplicity, we assumed two different
neuron types, CD and PC eye-related cells. However, it is likely that the separation is not so
complete and there may be a continuum of cells.

Since previous simulations with the 1D model version indicate that mislocalization in total
darkness around saccade and saccadic suppression of displacement also can be accounted for
by the same neural circuits (Ziesche & Hamker, 2011, 2014; Ziesche et al., 2017) and as the
1D version of this model was designed prior to the observation of updating of attention, from
the models point of view this observation can be considered an inherent prediction.

Although the newly presented and the previous 1D model does a good job of accounting
for several outstanding issues and accurately replicates the behavioral findings of Jonikaitis
et al. (2013), there are nevertheless a number of issues that have to be addressed in future
work. First, the exact timing of the proprioceptive eye position signal needs to be explored
in more detail. While a recent study in LIP suggests that gain fields may update even after
150ms (B. Y. Xu, Karachi, & Goldberg, 2012), which is about 80 − 100ms later than in our
model, Y. Xu et al. (2011) report an update after 60ms in somatosensory cortex. No such
information exists in humans. Our parameters are based on previous versions of the model
(Ziesche & Hamker, 2011, 2014; Ziesche et al., 2017) and mainly motivated to account for
human behavioral data. Second, there is some variation in experimental studies regarding the
dominance of the effects in the data which requires future clarifications. For instance, Marino
and Mazer (2018) find in V4 only evidence for predictive remapping of attention but not for
lingering of attention whereas Yao, Treue, and Krishna (2018) detect in MT only lingering
but no remapping of attention. Yao et al. (2016) even find neither remapping nor lingering
of attention in a psychophysical study with humans though these results are may be biased
by their experimental design where remapped and lingering attention position were not only
irrelevant, but importantly these positions were never target locations that tested the amount
of attention. Lisi, Cavanagh, and Zorzi (2015) suggest, that spatial updating of attention
depends on the setup of the experiment, namely whether visual objects, which can serve as
spatial landmarks, are presented or not. In their experiments, they found that the lingering
effect vanishes if a placeholder is shown at the attended location for the whole trial. However,
the ability to maintain attention at a spatiotopic location during saccades increases with the
presence of placeholders. These findings may help to classify the various contradictory results.
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Appendix

Neuro-computational Model

The neurons in each map follow different ordinary differential equations (ODEs). In our
extension of the original 1D model to the two-dimensional one, we use the same ODEs as
stated in Ziesche and Hamker (2011), but with some simplifications and extensions. For all
ODEs that compute firing rates r, we set negative values to zero.

• Firing rates of neurons in map Xr representing the stimulus position in a eye-centered
reference frame:

τ
d

dt
rXr = rXr,in

(
1 +

[
AXr − rXr

]+ FB∑
wXbPC →XrrXbPC

)
− rXr

with rXr,in the sensory bottom-up input created by a given stimulus:

rXr,in = SXrKXr exp
−‖pXr − cXr‖2

2(σXr)2

Here, SXr is the short-term synaptic depression simulated as in Hamker (2005) modeling
the decaying response strength over time while the stimulus is presented, KXr defines
the strength of the stimulus and ‖pXr − cXr‖2 is the distance between stimulus position
pXr and receptive field center cXr for each neuron of the map. As we now have a two-
dimensional visual scene, the stimulus position as well as the receptive field center are
two-dimensional.

• Firing rates of neurons in map XePC and XeCD representing eye position in head and
retinotopic eye displacement, respectively:

τ
d

dt
rXePC = rXePC,in − rXePC

τ
d

dt
rXeCD = rXeCD,in − rXeCD

where rXePC,in and rXeCD,in are Gaussian input signals modeling the proprioceptive eye
position signal and the corollary discharge signal, respectively:

rXePC,in = KXePC exp
−‖pXePC − cXePC‖2

2(σXePC)2

rXeCD,in = TCXeCD (t)KXeCD exp
−‖pXeCD − cXeCD‖2

2(σXeCD)2

KXePC and KXeCD are the strengths of the corresponding signal, ‖pXePC − cXePC‖2 is
the distance between eye position pXePC and center of eye position tuning cXePC for
each neuron of map XePC and likewise, ‖pXeCD − cXeCD‖2 is the distance between eye
displacement pXeCD and center of eye displacement tuning cXeCD for each neuron of map
XeCD. Again, the positions are now two-dimensional. TCXeCD (t) models the time
course of the phasic corollary discharge signal, namely rise and decay around saccade
onset:

TCXeCD (t) =

{
exp −‖t

CD−t‖2
2(σCD,rise)2 , if t <= tCD

exp −‖tCD−t‖2
2(σCD,decay)2

, if t > tCD

with tCD the time, where the CD signal reaches its maximum. In our model, this
maximum is at 10ms after saccade onset consistent with data of Ferraina, Paré, and
Wurtz (2002).

• Firing rates of neurons in map XeFEF representing the eye displacement in a head-
centered reference frame:

τ
d

dt
rXeFEF =

FF∑
wXeCD → XeFEFrXeCD

FF∑
wXePC → XeFEFrXePC

− rXeFEFwXeFEF

inh

inh∑
rXeFEF − rXeFEF
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In contrast to the original ODE, we simplified the firing rate for XeFEF by removing the
saturation term as well as the gain modulation term. Thus, this map is now a classical
basis function map instead of a gain modulation map to combine PC and CD signal.

• Firing rates of neurons in map XbPC representing the joint representation of stimulus
position and eye position:

τ
d

dt
rXbPC =

FF∑
wXr→ XbPCrXr

([
AXbPC −max rXbPC

]+ FF∑
wXePC → XbPCrXePC

)

+
FF∑

wXePC → XbPCrXePC

FB∑
wXh→ XbPCrXh +

exc∑
wXbPC

exc rXbPC

−
(
rXbPC +DXbPC

)
wXbPC

inh

inh∑
rXbPC − rXbPC

For the firing rates of XbPC we added an additional feedback signal that combines the
PC signal with the signal of the intermediate cells of Xh. This feedback signal is identical
to the feedback signal of the other LIP map XbCD. Additionally, we removed the
perisaccadic suppression factor on the input from XePC as otherwise the feedback from
Xh would be reduced over a certain period of time due to the multiplicative interaction
with the PC signal.

• Firing rates of neurons in map XbCD representing the joint representation of stimulus
position and eye displacement:

τ
d

dt
rXbCD =

FF∑
wXr→ XbCDrXr

(
1 +

[
AXbCD − rXbCD

]+ FF∑
wXeFEF → XbCDrXeFEF

)

+

FF∑
wXeFEF → XbCDrXeFEF

FB∑
wXh→ XbCDrXh

−
(
rXbCD +DXbCD

)
wXbCD

inh

inh∑
rXbCD − rXbCD

• Firing rates of neurons in map Xh:

τ
d

dt
rXh = SXhIXh +

exc∑
wXh

excr
Xh −

(
rXh +DXh

)
wXh

inh

inh∑
rXh − rXh

with IXh the input consisting of the feedforward input from both LIP maps and a newly
introduced, attentional top-down signal rXh,in:

IXh =
FF∑

wXbPC → XhrXbPC +
FF∑

wXbCD → XhrXbCD + rXh,in

rXh,in = KXh exp
−‖pXh − cXh‖2

2(σXh)2

where KXh denotes the strength of the attention and ‖pXh− cXh‖2 the distance between
attention position pXh and center of attention position tuning cXh for each neuron of
map Xh, each with two dimensions. SXh is the synaptic suppression simulated as in the
study by Hamker (2005):

SXh = 1− dXh
s s

τXh
s

d

dt
s = IXh − s

As the dimension of each map has to be doubled compared to the definition of the maps
in Ziesche and Hamker (2011), we reduced the number of neurons in each dimension to com-
pensate for the higher computational effort. More precisely, we have 21 neurons for the
horizontal and 15 neurons for the vertical covering a rectangular visual field of 40◦ × 30◦.
Thus, Xr,XePC , XeCD and Xh are now two-dimensional containing 21 × 15 neurons and
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XeFEF , XbPC and XbCD are four dimensional with 21× 15× 21× 15 neurons.

The connections between the different maps are defined through the different weights used
in the ordinary differential equations. The connection weights follow Gaussian functions
dependent on the distance between the position of the neuron in the pre-synaptic map and
the position of the neuron in the post-synaptic map, i.e.

wpre→post = Kpre→post exp

(
− distance

(σpre→post)
2

)

with wpre→post set to 0 if the value is lower than 0.001. The measurement of the distance
differs among the connections due to the different dimensions of the maps and the different
ways of connecting maps. There are three types of connections: horizontal, vertical and
diagonal. The horizontal and vertical connections are used to connect two-dimensional maps
with four-dimensional maps where two of the four dimensions are disregarded (either the first
two or the last two). For example, we connect Xr with XbPC horizontally independent of
the last two dimensions of XbPC . That means, the distance used for the Gaussian function
depends only on the position of the neuron in Xr and the first two position parameters of
the neuron in XbPC . More precisely, suppose we want to connect neuron (i, j) of Xr with
neuron (k, l,m, n) of XbPC . The distance between these neurons is then calculated by:

distance = ‖i− k‖2 + ‖j − l‖2

The weight between neuron (i, j) and neuron (k, l,m, n) is then:

wXr→ XbPC

(i,j),(k,l,m,n) = KXr→ XbPC exp

(
−‖i− k‖

2
+ ‖j − l‖2

(σXr→ XbPC)
2

)

This connection pattern is also used to connect Xr with XbCD, XeCD with XeFEF and
XbPC with Xr.
Similarly, a vertical connection between a two-dimensional map and a four-dimensional map
makes only use of the last two position parameters of the neurons in the four-dimensional
map to calculate the distance. Thus, the distance between neuron (i, j) of a two-dimensional
map and neuron (k, l,m, n) of a four-dimensional map is then:

distance = ‖i−m‖2 + ‖j − n‖2

Such a vertical connection is used to connect XePC with XeFEF and to connect XePC with
XbPC .
These definitions of the connection patterns allows the interpretation of the four dimensions
of a map as follows: The first two dimensions represent the horizontal and the vertical infor-
mation of a horizontally connected input and the last two dimensions represent the horizontal
and the vertical information of a vertically connected input.
For a diagonal connection pattern we use both horizontal and vertical information of the
four-dimensional map to connect it with a two-dimensional map. We use such a connection
pattern to connect Xh with the LIP maps XbPC and XbCD and vice versa. The distance
between neuron (i, j) of Xh and neuron (k, l,m, n) of a LIP map is defined as follows:

distance = ‖i− k −m‖2 + ‖j − l − n‖2

For the remaining connection pattern between XeFEF and XbCD that connects two four-
dimensional maps, we read out the pre-synaptic map diagonally and connect this vertically
with the post-synaptic map, i.e. we use all four dimensions of XeFEF and only the last two
dimensions of XbCD to calculate the distance between the neurons. More precisely, if we want
to connect neuron (i, j, k, l) of XeFEF with neuron (m,n, o, p) of XbCD, the distance between
these neurons is:

distance = ‖i+ k − o‖2 + ‖j + l − p‖2

The lateral excitatory connections used in map XbPC and Xh are defined as Gaussian func-
tions dependent on the distance between the positions of the neurons in the maps considering
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all dimensions of the map. Thus, the calculation of the weights follows the equation:

wX∗

exc = KX∗

exc exp

(
−distanceexc

σ2

)
with

distanceexc =

{
‖i− k‖2 + ‖j − l‖2 , for (i, j), (k, l) ∈ Xh

‖i−m‖2 + ‖j − n‖2 + ‖k − o‖2 + ‖l − p‖2 , for (i, j, k, l), (m,n, o, p) ∈ XbPC

To reduce the computational effort, the lateral inhibitory connections with fixed weights wX∗

inh

are not created as explicit connections, but calculated with the help of the mean over all firing
rates multiplied by the total number of neurons:

wX∗

inh

inh∑
rX

∗
= wX∗

inhmean
(
rX

∗
)
∗ number of neurons

At last, Table 1 lists all parameters whose values have changed in comparison to Ziesche
and Hamker (2011). Mainly, the adaption of the values are due to the three major changes
in the model: reduction of number of neurons, simplifying XeFEF , and adding feedback from
Xh to XbPC . The new parameter values for this feedback connection are listed in the last
two rows and are equal to those for the feedback connection from Xh to XbCD.
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parameter equation original value new value

σPC 5 8.0◦ 1.0◦

σXr→XbPC 9 1.0◦ 0.5◦

KXr→XbPC 9 0.6 2.0

σXbPC→Xr 10 1.0◦ 0.5◦

σXePC→XbPC 11 10.0◦ 2.0◦

KXePC→XbPC 11 10.0 1.0

wXbPC

inh 12 0.4 0.04

σXbPC
exc 13 1.0◦ 0.5◦

σCD 14 8.0◦ 1.0◦

σCD,rise 16 50.0 65.0

σCD,decay 17 150.0 50.0

σXeCD→XeFEF 18 1.0◦ 0.5◦

KXeCD→XeFEF 18 0.5 5.0

σXePC→XeFEF 19 2.0◦ 1.0◦

KXePC→XeFEF 19 15.0 10.0

σXr→XbCD 21 1.0◦ 0.5◦

σXeFEF→XbCD 22 1.0◦ 0.5◦

KXeFEF→XbCD 22 3.0 20.0

σXh→XbCD 23 45.0◦ 2.0◦

KXh→XbCD 23 0.13 1.3

wXbCD

inh 25 0.2 0.02

σXbPC→Xh 28 15.0◦ 7.5◦

KXbPC→Xh 28 0.35 0.015

σXbCD→Xh 29 15.0◦ 7.5◦

KXbCD→Xh 29 0.2 0.015

wXh
inh 30 1.0 0.1

σXh
exc 30, 34 1.0◦ 0.5◦

wXh
exc 30, 34 0.2 0.4

σXh→XbPC — — 2.0◦

KXh→XbPC — — 1.3

Table 1: Parameters whose values have changed in comparison to Ziesche and Hamker (2011).
The first column contains the name of the parameter, the second column the equation number
in Ziesche and Hamker (2011) dealing with this parameter. The third and fourth column state
the original and the new value of the parameter. The last two rows contain new parameters.
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