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Abstract  

Background 

Minimal phenotyping refers to the reliance on self-reported responses to one or two questions for disease case 

identification instead of full diagnostic criteria. This strategy has been applied in genome-wide association 

studies (GWAS) on major depressive disorder (MDD), leading to lowering of phenotyping costs, increasing 

sample sizes, and more GWAS hits. It assumes that any increase in diagnostic noise, and its impact on the nature 

of GWAS loci thus identified, can be mitigated by the large increase in sample size.  

 

Methods 

We assess the impact of using different definitions of MDD in 337,198 White-British, unrelated samples in the 

UKBiobank with GWAS, analyses of heritability and genetic correlation, and comparison with previously 

published statistics on MDD and other psychiatric conditions. Definitions of MDD include seeking medical help 

for anxiety or depression, reporting MDD or its cardinal symptoms, and meeting full DSM criteria for MDD.  

 

Findings 

Heritability of depression defined by minimal phenotyping (<15%) is lower than DSM-based MDD (26%), and 

the former shares as much genetic liability with DSM-MDD (0·81) as it does a non-MDD help-seeking condition 

(0·84). While minimal phenotyping-based depression and DSM-based MDD show similar shared genetic 

liability with other conditions like neuroticism, a greater proportion of the genome contribute to the former (77%) 

than the latter (64%). Enrichment of heritability in CNS specific genes is found in both minimal phenotyping 

definitions of depression and other psychiatric conditions, but not DSM-MDD. GWAS loci identified in the 

minimal phenotyping definitions of depression, even when found in DSM-based MDD, show similar effects in 

other psychiatric conditions.  

 

Interpretation 

Using minimal phenotyping strategy for GWAS, when applied to MDD, carries significant potential risks. It 

primarily identifies non-specific genetic factors shared between MDD and other psychiatric conditions, biases 

our view of genetic architecture of MDD, and limits our ability to identify pathways specific to MDD. 
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Research in context 

 

Evidence before this study 

The number of genetic loci associated with MDD published has increased from two in 2015 to 44 in 2018 due 

to the large increase in sample size afforded by minimal phenotyping approaches. Downstream analyses on these 

association statistics have shown that genetic factors contributing to MDD are enriched in central nervous system 

(CNS) specific genes, correlated with other psychiatric conditions, and account for only a small proportion of 

total liability to MDD. Most importantly, the increase in GWAS loci and reasonable functional interpretations 

from secondary analyses have led to the conclusion that increasing sample size, even at the expense of diagnostic 

accuracy or symptomatic homogeneity, is the key to identifying genetic loci associated with MDD.  

 

Added value of this study  

This study examines the consequences of using minimal phenotyping as a sample collection strategy for MDD 

on the results of genome-wide association studies conducted with the collected samples. Our results and 

simulations suggest that the increase in GWAS hits, the lower heritabilities, the genetic correlation with other 

psychiatric conditions, and the CNS-specific enrichment of heritability may be result of false-positive cases and 

misidentification of other conditions as MDD. With new evidence we conclude that genetic factors associated 

with minimal phenotyping definitions of depression are largely not specific to MDD, but shared with other 

psychiatric conditions. Using results from previously published GWAS on depression based on minimal 

phenotyping strategies, we are able to generalize our results to be representative of this strategy. 

 

Implications of all available evidence  

Minimal phenotyping definitions of MDD primarily identify loci shared with other psychiatric conditions due 

to an overly broad collection strategy that increase sample size at the expense of specificity. Secondary analyses 

using association statistics from GWAS conducted using this strategy should be mindful they are more useful 

for elucidating shared molecular pathways with other conditions than pathology specific to MDD. Taken at face 

value, they can misinform our prioritization of genes to be investigated for function in experimental or clinical 

studies, and incur great costs. With increasing accessibility and utilization of large biobanks and commercially 

collected datasets, our results are a timely warning of the consequences of lowering diagnostic specificity in 

genetic research. Future GWAS studies should resist the temptation of focusing solely on maximizing the 

number of identified GWAS loci, and put resources and collaborative efforts into building of large databases of 

detailed clinical diagnosis for identifying loci specific to MDD.  
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Introduction 

 

There is now little doubt that a key requisite for the robust identification of genetic risk loci underlying 

psychiatric disease is the use of an appropriately large sample. However, while the costs of genotyping and 

sequencing continue to fall, the cost of phenotyping remains high1, limiting sample collection. One solution for 

reducing the burden of case identification is to utilize minimal phenotyping, such as clinical information from a 

discharge register2, or reliance on subjects’ self-reported symptoms, help-seeking, diagnoses or medication, 

which can be collected much more cheaply a psychiatric assessment including all diagnostic criteria. We refer 

to this strategy as “minimal phenotyping”, as it both minimizes phenotyping costs and reduces data collected 

from a full set of diagnostic criteria to a single or few self-reported answers.  

 

However, apart from the detection of more and more GWAS loci3-5 (Supplemental Table S1), the consequences 

of sacrificing symptomatic information on phenotype quality and the nature of loci identified has rarely been 

investigated. These may be particularly important for major depressive disorder (MDD) because of its 

phenotypic and likely etiological heterogeneity6, high degree of comorbidity with other psychiatric diseases7, 

and substantial discrepancies between self-assessment using symptom scales and diagnoses made with full 

diagnostic criteria8. While a majority of the population self-identify as having one or two depressive symptoms 

at any one time, only between 9 and 20% of the population have sufficient symptoms to meet criteria for lifetime 

occurrence of MDD8-10. Similarly, self-report of diagnosis or prescribed treatment, as employed by 23andMe, 

can be affected by the low rate of help-seeking among those who meet MDD diagnostic criteria (~50%)11-13, 

false positives outnumbering true positives in primary care diagnoses unassisted with diagnostic criteria (by 

~50%)12, and high rates of anti-depressant prescription for a wide range of conditions13-15. As such, a cohort of 

MDD cases obtained through the use of self-report of either the illness or a prescribed treatment may yield a 

sample unrepresentative of the clinical disorder, but enriched in those with non-specific sub-clinical depressive 

symptoms and depression secondary to a comorbid disease.  

 

By comparing the genetic architecture of minimal phenotyping definitions of depression with those using full 

diagnostic criteria for MDD in UKBiobank16, a community-based survey of half a million men and women, we 

assess the implications of a minimal phenotyping strategy for GWAS in MDD. We find that MDD defined by 

minimal phenotyping has a large non-specific component, and if GWAS loci from these definitions are chosen 

for follow-up molecular characterization, they may not be informative about biology specific to MDD.  

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 11, 2018. ; https://doi.org/10.1101/440735doi: bioRxiv preprint 

https://doi.org/10.1101/440735
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

Results 

Definitions of depression in UKBiobank 

 

We identified four ways that MDD can be defined in UKBiobank. First, using self-reports of seeking medical 

attention for depression or related conditions, we identified a “Help-seeking” definition of MDD (referred to as 

“broad depression” in a previous GWAS3). Second, participants were diagnosed with “Symptom-based” MDD 

if, in addition to meeting the help seeking criteria described above, they reported ever experiencing one or more 

of the two cardinal features of depression (low mood or anhedonia) for at least two weeks (this is the “probable 

MDD” diagnosis available in UKBiobank17). 30% of cases in the Help-seeking based definition reported having 

no cardinal symptoms of depression and did not meet the “Symptom” based definition. We call these “No-MDD” 

help-seeking conditions. Third, we define a “Self-Report” form of depression based on participants’ self-reports 

of all past and current medical conditions to trained nurses. Finally, a “DSM-based” diagnosis of lifetime MDD 

was derived from subjects who answered an online “Mental Health Follow-up” questionnaire18 which included 

all DSM-V criteria for MDD (Supplemental Methods, Supplemental Table S2). We consider the first three 

categories to be various forms of “minimal phenotyping”, while the fourth utilized full diagnostic criteria 

including the need for episode associated impairment or distress. Figure 1 outlines the different diagnostic 

categories, and the numbers that each contains.  

 

There are three features to these definitions of MDD we recognize as important for the comparison of their 

genetic architecture. First, for each diagnostic category we used controls who were asked the relevant questions 

but failed to meet criteria. As such, cases from one category can be controls in another, resulting in substantial 

overlap in both cases and controls between categories (Supplemental Figure S1), which impacts assessment of 

genetic architecture and genetic correlation between them19. Second, not all participants in UKBiobank were 

asked questions from all categories. For example, questions for the Symptom-based definition DepAll were 

asked in only 10 out of 22 assessment centers in UKBiobank (Supplemental Table S3), resulting in differences 

in population structure between definitions (Supplemental Methods, Supplemental Figure S2). Third, different 

definitions of depression have different prevalences (from 0·078 to 0·341, Supplemental Table S4), which 

though unlikely biased due to population structure (Supplemental Tables S5-6), need to be corrected for when 

assessing genetic architecture.  

Minimal phenotyping definitions of depression are epidemiologically different from DSM-based MDD  

 

We assessed whether risk factors were similar between definitions of depression20. Figure 2a-f shows the mean 

effect (odds ratio, OR) with confidence intervals of each of the following known or putative risk factors on each 
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definition of depression: sex21,22, age23, educational attainment24-26, socio-economic status27, neuroticism28,29, 

and cumulative traumatic life events preceding assessment30,31 (Supplemental Methods, Supplemental Table S7).  

 

Estimates of the risk factor effect sizes differed substantially, and often highly significantly, as shown by the 

confidence intervals in the figure. This is most marked for traumatic experience, sex, and age, much less so for 

neuroticism and socio-economic status. We examined how the relationship between risk factors classifies 

depression diagnoses and found that minimal phenotyping definitions of depression cluster separately from 

DSM-based MDD (Figure 2g).  

  

Minimal definitions of depression are not just milder or noisier version of DSM-MDD  

 

We next addressed the question of the genetic relationship between the different MDD definitions. We made 

three observations. First, we found that depression defined by minimal phenotyping strategies have lower 

heritabilities than more strictly defined definitions (Figure 3a). Self-report and help-seeking based definitions 

have heritabilities of 15% or less (SelfRepDep heritability = 10·96%, se = 0·85%; Psypsy heritability = 12·57%, 

se = 1·18%; GPpsy heritability = 14·34%, se = 0·81%). Increasing the number of diagnostic criteria used for 

case definition to include the cardinal symptoms increases the estimated heritability moderately (DepAll 

heritability = 18·49%, se = 1·50%). By contrast, the DSM-based definition of MDD (LifetimeMDD) has a much 

higher heritability of 26·21% (se = 2·15%); imposing the further criterion of recurrence brings the heritability 

up to 31·95% (se = 2·56%). For comparison, we provide heritability estimates from previous studies of 

MDD4,32,33 (Supplemental Figure S3) and find they fit squarely into the trend we observe: the less strict the 

criteria used to diagnose MDD, the lower the heritability. All heritability estimates were estimated on the liability 

scale using PCGCs34, a method specifically suited for case-control analyses with covariates19. We ensured that 

the trend we observe holds regardless of method used19,35-37 (Supplemental Methods, Supplemental Table S8), 

and was not affected by regions of high linkage-disequilibrium or complexity38 (Supplemental Methods, 

Supplemental Figure S2).  

 

Second, we found that shared genetic liability between minimal and strictly defined MDD is likely not specific 

to MDD. The genetic correlation between the help-seeking definition of depression GPpsy and DSM-based 

MDD LifetimeMDD is 0·81 (se = 0·03), significantly different than unity (Figure 3c). One interpretation of this 

finding is that the correlation represents a large shared genetic liability to MDD, and minimal phenotyping 

definitions such as GPpsy are therefore of interest to researchers trying to find the biological basis of 

depression4,5. However, of the proportion of genetic liability of LifetimeMDD that can be explained by that of 

GPpsy (approximately 0·812=66%), much of it may be shared with the No-MDD definition that excluded MDD 

symptoms (GPNoDep), the genetic liability of which explains approximately 0·70 of genetic liability of GPpsy 
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(genetic correlation = 0·84, se = 0·05), and 0·34 of that of LifetimeMDD (genetic correlation = 0·58, se = 0·08). 

In other words, the genetic correlation between minimal and strictly defined MDD includes a large proportion 

of non-specific liability to mental ill-health, rather than specifically to MDD.  

 

Finally, we excluded, or limited the role of a number of additional factors for the lower heritabilities of minimal 

phenotyping definitions of MDD. First, the inclusion of milder cases of MDD, equivalent to lowering the liability 

threshold under the liability threshold model39, does not reduce the overall heritability (Supplemental Methods, 

Supplemental Figure S4). Second, minimal phenotyping definitions do not simply have a higher environmental 

contribution to MDD than the stricter definitions. When we assessed heritability in MDD cases with high and 

low exposure to environmental risk factors36,40 we found that minimal phenotyping definitions of depression 

(GPpsy, SelfRepDep) show no significant difference between exposures, similar to or lower than DSM-based 

definitions (LifetimeMDD and MDDRecur) (Supplemental Methods, Supplemental Table S9). Finally, we show 

through simulations that while the lower heritabilities of minimal phenotyping definitions of depression may be 

in part because they are “noisier” versions of DSM-based MDD, misclassifications of those with other conditions 

as depressed can also contribute to the lower heritabilities (Supplemental Figure S4, Supplemental Figure S5). 

The latter is more consistent with the high genetic correlations between minimal phenotyping definitions of 

MDD with GPNoDep, the help-seeking no-MDD definition where cases do not have cardinal symptoms for 

MDD. 

 

Minimal definitions of depression greater more genetic factors with other conditions  

 

We next examined genetic correlations between different definitions of MDD and comorbid diseases. We used 

cross-trait LDSC35 to estimate genetic correlations with neuroticism and smoking (Supplemental Figure S6, 

Supplemental Tables S10-11) in UKBiobank, as well as with all psychiatric conditions in the Psychiatric 

Genomics Consortium (PGC)41 including PGC1-MDD33 and depression defined in 23andMe4 (Supplemental 

Table S1). While genetic correlation estimates in LDSC between case-control traits can be biased when strong 

covariates are involved19, we were unable to mitigate this as we did not have access to case-control aware 

summary statistics appropriate for analysis in PCGCs. Figure 4a and Supplemental Table S13 displays little 

difference in estimates for different definitions of MDD in UKBiobank in their genetic correlation with other 

psychiatric conditions or previous studies of MDD, consistent with previous reports42. 

 

However, the observed genetic correlations result from different genetic architectures. We estimated local 

genetic correlations and their percentage contribution to total genetic correlation using rho-HESS43 (Methods, 

Figure 4b) and show that while just 63·5%, 34·1% and 41·2% of the genome (indexed by percentage of total 

number of independent loci) explains 90% of the genetic correlation between DSM-based MDD (LifetimeMDD) 

and neuroticism, BIP and SCZ respectively, 77·2%, 43·6% and 45·3% of the genome is needed to explain the 
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same percentage of genetic correlation between help-seeking definitions of depression (GPpsy) and the same 

conditions (Figure 4c). In other words, genetic liability of minimal phenotyping definitions of depression that 

can be accounted for by genetic liability of other psychiatric conditions is distributed across a greater proportion 

of loci across genome (each exerting a smaller effect), than that of DSM-based MDD.  

 

Finally, we compared enrichment of heritability in genes expressed in each GTEx tissue44 using LDSC-SEG45. 

As shown in Figure 5, help-seeking definition of depression (GPpsy) show significant enrichment of heritability 

in central nervous system (CNS) tissues, replicated by results from minimal phenotyping definition of MDD in 

23andMe4, while DSM-based MDD (LifetimeMDD), as well as PGC1-MDD, do not. Conversely, the no-MDD 

help-seeking definition GPNoDep, as well as other disorders in PGC41 such as schizophrenia46 (SCZ) and bipolar 

disorder47 (BIP) all show enrichment of heritability in CNS, as do neuroticism and smoking. As such, previously 

reported5 CNS enrichment in minimal definitions of MDD is potentially driven by loci shared with other 

psychiatric conditions like SCZ and BIP, as well as neuroticism and smoking, rather than being specific to MDD.  

GWAS hits from minimal phenotyping are not specific to MDD 

 

We next examined the specificity of action of individual genetic loci found in GWAS of each definition of MDD. 

We found that the help-seeking definitions gave the greatest number of genome-wide significant hits (27 from 

GPpsy and Psypsy) in GWAS. Are these loci relevant and specific to MDD, or are they non-specific and shared 

with other conditions such as SCZ, neuroticism and smoking? We consider loci that show significant and similar 

directions of effects in DSM-based definition of MDD (LifetimeMDD) as relevant to MDD, and those that show 

significant and similar directions of effects in other conditions as non-specific to MDD.  

 

Of the 27 loci from minimal phenotyping definitions, 20 show significant effects (at P<0·05 after multiple testing 

correction for 23 loci) on LifetimeMDD, but all 20 also show significant effects in neuroticism, smoking, SCZ, 

or the no-MDD help-seeking condition (GPNoDep, Supplemental Table S14). Five loci show replication only 

in neuroticism, and ten show replication the no-MDD help-seeking condition GPNoDep. Figure 6 shows that the 

effects of all 27 loci on neuroticism mirror their effects on GPpsy. Hence, while using minimal phenotyping in 

GWAS is useful in identifying loci relevant to MDD, the loci identified are not specific to MDD.  

 

We find the same pattern of results when we use loci identified from a minimal phenotyping strategy in an 

independent study. The consumer genetics company 23andMe mapped loci that contribute to the risk of MDD 

defined by self-reports of receiving a doctor’s diagnosis and treatment of depression4. Of the 17 loci, ten 

replicated in GPpsy (at P<0·05, after multiple testing correction for 17 loci), of which six show significant effects 

in neuroticism, smoking or SCZ (Supplemental Figure S10, Supplemental Table S15) and are therefore non-
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specific to MDD. None of the 17 loci has a significant effect on LifetimeMDD alone. This demonstrates that 

minimal phenotyping approaches consistently identify genetic loci non-specific to MDD in GWAS.   

 

Discussion 

 

Though it is believed that the statistical power gain from using larger sample size compensates for inaccuracies 

in minimal phenotyping4,5,48,49, our study demonstrate that this assumption does not always hold. Using a range 

of definitions of MDD in UKBiobank, from self-reported help-seeking to a full assessment of the DSM-V criteria 

for MDD, we made three major observations. First, the heritabilities of depression defined by minimal 

phenotyping strategies are lower than MDD defined by full DSM-V criteria. Second, although there is substantial 

genetic correlation between definitions, there remain significant differences, indicating the presence of genetic 

effects unique to each definition. Of the genetic liability shared between depression defined by minimal 

phenotyping and DSM-based MDD, a large proportion is not specific to MDD, as indexed by sharing with a 

diagnosis that excludes core depressive symptoms. Third, a larger proportion of genetic loci contributing to 

minimal phenotyping definitions of depression are shared with other psychiatric conditions than those 

contributing to DSM-based MDD, and the former show similar enrichment of heritability in CNS-specific genes 

and shared effects at GWAS loci with other psychiatric conditions. In other words, a large proportion of genetic 

factors identified in minimal phenotyping definitions of depression are not specific to MDD.  

 

Previous studies have reported that sub-clinical depression lies on the same genetic liability continuum as MDD, 

has similar heritability as MDD, and a genetic correlation of 1 with MDD, therefore assaying the former is a 

valid way to interrogate genetics of MDD50,51. However, we show that none of these are satisfied by depression 

defined with minimal phenotyping – it does not simply include those with lower genetic liability to MDD as 

cases. Instead, the discrepancies can be explained by broadly classifying those with depressive symptoms as 

MDD due to their apparent high degree of sharing in genetic liability (0.7)20, without taking into account the 

even higher degree of sharing between depressive symptoms and other traits such as neuroticism (0.79-0.94), 

especially if both were assayed at a single time point52. A recent study of three large twin cohorts specifically 

asked if a combination of MDD, depressive symptoms and neuroticism is able to capture all genetic liability of 

MDD53, and shows that 65% of the genetic effects contributing to MDD are specific. In other words, broadly 

defined depression (inclusive of MDD, depressive symptoms and neuroticism) can index only around one-third 

of the genetic liability to MDD.  

 

One view of these findings is that the shared loci between represent biological features of mental ill health that 

could be of use for understanding the biology of psychiatric disorders and hence be of use in their treatment5,48. 

A recent report on genetic analyses of subjective well-being, depressive symptoms and neuroticism identify high 

degree of sharing between genetic liabilities of the three measures, and use the “quasi-replication” of GWAS 
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loci between depressive symptoms and neuroticism as validation of their functional significance54. An alternative 

view is that these loci reflect the ways in which depressive symptoms can develop as secondary effects, including 

through susceptibility to adverse life events55, personality types28, and use or exposure to psychoactive agents 

like cigarette smoking56,57. While useful for understanding the basis of mental ill health, they do not point 

specifically to the genetic basis of MDD.  

 

As sample sizes in association studies increase to hundreds of thousands of subjects, the challenge is no longer 

in increasing the number of genetic loci associated with MDD, but identifying those that are relevant to the 

disease that warrant follow-up analyses of the mechanism by which they exert their effects. Ultimately, we wish 

to understand the etiology of the disease and identify targets for developing treatments. A reliance on minimal 

phenotyping will bias both GWAS and secondary analysis findings towards those genetic loci shared between 

MDD and other conditions, limiting the potential for disease-specific discoveries. 
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Methods 

Control for population structure 

We performed principal component analysis (PCA) on directly genotyped SNPs from samples in UKBiobank 

and used PCs as covariates in all our analyses to control for population structure. From the array genotype data, 

we first removed all samples who did not pass QC, leaving 337,198 White-British, unrelated samples. We then 

removed SNPs not included in the phasing and imputation and retained those with minor allele frequencies 

(MAF) >= 0·1%, and P value for violation of Hardy-Weinberg equilibrium > 10-6, leaving 593,300 SNPs. We 

then removed 20,567 SNPs that are in known structural variants (SVs) and the major histocompatibility complex 

(MHC)38 as recommended by UKBiobank58, leaving 572,733 SNPs that we consistently use for all analyses. Of 

these, 334,702 are common (MAF > 5%), and from these common SNPs we further filtered based on missingness 

<0·02 and pairwise LD r2 < 0·1 with SNPs in a sliding window of 1000 SNPs to obtain 68,619 LD-pruned SNPs 

for computing PCs using flashPCA59. We obtained 20 PCs, their eigenvalues, loadings and variance explained, 

and consistently use these PCs as covariates for all our genetic analyses. We note that control over population 

structure over the SVs and MHC is minimal, and we explore the impact of this in Supplemental Methods, 

Supplemental Table S4-6 and Supplemental Figure S2.  

Imputed genotype filtering 

We performed stringent filtering on imputed variants (version 2) used for GWAS in this study, removing variants 

not among the 33,619,058 variant sites in the Haplotype Reference Consortium60 (HRC) panel, then removing 

all insertions and deletions (INDELs) and multi-allelic SNPs. We hard-called genotypes from imputed dosages 

at 8,968,715 biallelic SNPs with imputation INFO score greater than 0·9, MAF greater than 0·1%, and P value 

for violation of Hardy-Weinberg equilibrium > 10-6, with a genotype probability threshold of 0·9 (anything 

below would be considered missing). Of these, 5,276,842 SNPs are common (MAF > 5%). We consistently use 

these SNPs for all analyses in this study.  

Genome-wide associations 

To obtain and access the difference between odds ratios of associations in different definitions of depression in 

UKBiobank, as well as smoking (data field 20160) and neuroticism (data field 20127), we perform logistic 

regression (or linear regression with --standard-beta for neuroticism) on all 5,276,842 common SNPs (MAF > 

5% in all 337,198 White-British, unrelated samples) in PLINK (version 1·9)61 with 20 PCs and genotyping array 

as covariates. We report all associations with P values smaller than 5 x 10-8 as genome-wide significant. We 

indicated the SNPs in SVs and the MHC in tables of top hits as well as all manhattan plots as hollow points 

instead of solid points due to lack of control for population structure in these regions, and do not interpret 

potential causal effects in these regions (Supplemental Tables S10-11,13, Supplemental Figure S6).   
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Estimation of heritability and genetic correlation among definitions of MDD  

All estimates of heritability we refer to in the main text of this paper are computed with the phenotype-

correlation-genotype-correlation (PCGC)62 approach implemented with PCGCs19, using 5,276,842 common 

SNPs (MAF > 5% in all 337,198 White-British, unrelated samples). We used LD scores at SNPs computed with 

LDSC35 in 10,000 random samples drawn from the White-British samples in UKBiobank as LD reference, and 

MAF at all 5,276,842 common SNPs in all 337,198 White-British samples as MAF reference. As covariates we 

used genotyping array and 20 PCs computed using samples in each definition of MDD with flashPCA59, and 

supplied the eigenvalues of the 20 PCs to PCGCs as deflation factors to correct for deflation in sum of squared 

kinship coefficients when regressing PCs out of genotype vectors. Where we stratified each definition of MDD 

in UKBiobank into two strata by risk factors such as sex (Supplemental Methods), we computed specific PCs 

for each definition and strata. We use summary statistics generated by PCGCs for each definition of MDD in 

UKBiobank to estimate its heritability, and summary statistics of pairs of definitions of MDD to estimate their 

genetic correlation. We detail the methods and results from other approaches we used to compare our estimates 

from PCGCs with in Supplemental Methods and Supplemental Table S8. 

Estimation of genetic correlation between definitions of MDD and other conditions 

We obtain summary statistics for other psychiatric conditions from previous GWAS studies as detailed on 

Supplemental Table S1. We also performed GWAS on smoking and neuroticism in UKBiobank (Supplemental 

Table S10-11, Supplemental Figure S6) for their association summary statistics. We estimated the genetic 

correlation between definitions of MDD in UKBiobank with each of these conditions with LDSC63, with a LD 

reference panel generated with EUR individuals from 1000 Genomes64, at SNPs with association statistics in 

both conditions in each instance. To obtain regional genetic correlation, we partitioned the genome into 1703 

independent loci65 and estimated regional genetic correlation at each locus with rho-HESS43 using a LD reference 

panel generated with EUR individuals from 1000 Genomes64. To estimate the percentage of loci needed to 

explain 90% of the total genetic correlation for both LifetimeMDD and GPpsy with all conditions, we ranked all 

independent loci by their absolute genetic correlation (such that a locus with large negative genetic correlation 

counts just as much as that with a large positive genetic correlation), and asked genetic correlation contributions 

from how many loci would sum up to 90% of the total genetic correlation. 

Enrichment of heritability in genes specifically expressed in tissues  

We estimate the enrichment of heritability in genes specifically expressed in 44 tissues in Genotype–Tissue 

Expression (GTEx)44 project using the partitioned heritability framework in LDSC-SEG45, and a LD reference 

panel generated with EUR individuals from 1000 Genomes64. We first obtain tissue specific gene expression 

annotations in GTEx tissues from LDSC-SEG, then estimated the enrichment of heritability in annotations that 

corresponded to each of the tissues together with 52 annotations in the baseline model66 which we also obtain 
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from LDSC-SEG. We report the P value of the one-sided test of enrichment of heritability (positive regression 

coefficient for the tissue-specific annotation conditioning on other baseline annotations) in genes specifically 

expressed in each tissue against the baseline.  
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Figures 

 

 

Figure1: Definitions of depression in UKBiobank | This figure shows the different definitions of MDD in 

UKBiobank and the colour codings we use consistently in this paper: Red for help-seeking based definitions 

derived from Touchscreen Questionnaire; blue for symptom based definitions derived from Touchscreen 

Questionnaire; green for self-report based definition derived from Verbal Interview; purple for DSM V based 

definitions derived from Online Mental Health Followup; orange for the No-MDD definition where cases are 

those who are cases in help-seeking definitions, but do not have cardinal symptoms for MDD. Data fields 

containing relevant information necessary for building these definitions of depression are specified; solid arrows 

emerging from a data field mean an answer of “Yes" to the question specified by the data field, while textured 

arrows mean an answer of “No"; number of cases and controls for each definition are shown in the form of 

cases/controls. 
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Figure2: Relationship between definitions of depression and environmental risk factors | a-f) These figures 

show forest plots of odds ratios (OR) and -log10 P values (LogP) between known environmental risk factors and 

different types (Category) of definitions of depression in UKBiobank (Definition) from logistic regression, using 

UKBiobank assessment centre, age, sex and years of education as covariates to control for potential geographical 

and demographic differences between environmental risk factors, except when they are being tested. Lifetime 

trauma measure was derived from Online Mental Health Followup (Supplemental Methods, Supplemental Table 

S7); Townsend deprivation index, years of education, sex, age, and neuroticism were derived from Touchscreen 

Questionnaire (Supplemental Methods). g) This figure shows a hierarchical clustering of definitions of 

depression in UKBiobank using ORs with environmental risk factors performed using the hclust function in R, 

“Height” refers to the Euclidean distance between MDD definitions at the ORs of all six risk factors.  
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Figure3: Heritability and genetic correlation estimates among definitions of MDD in UKBiobank | a) This 

figure shows the heritability estimates from PCGCs19 on each of the definitions of MDD in UKBiobank 

(Methods). Heritability “h2(liab)” as shown on the figure has been converted to liability scale39,62 using the 

observed prevalence of each definition of depression in UKBiobank as both population and sample prevalences 

(Supplemental Table S4). b) This figure shows the genetic correlation between DSM-based LifetimeMDD and 

all other definitions of MDD in UKBiobank, estimated using PCGCs.  

 

a

b
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Figure4: Genetic correlation between definitions of MDD and other psychiatric conditions | a) This figure 

shows the genetic correlation “rG (liab)” estimated by cross-trait LDSC63 on the liability scale between 

definitions of MDD in UKbiobank with other psychiatric conditions in both UKBiobank (smoking and 

neuroticism) and PGC41 (Supplemental Table S1), including schizophrenia46 (SCZ) and bipolar disorder47 (BIP) 

(Supplemental Table S1). b) This figure shows the cumulative fraction of regional genetic correlation “rG” (out 

of sum of regional genetic correlation across all loci) between definitions of MDD in UKBiobank with SCZ in 

1703 indepedent loci in the genome65 estimated using rho-HESS43, plotted against percentage of independent 

loci. DSM-based LifetimeMDD is shown in purple while help-seeking based GPpsy is shown in red. The steeper 

the curve, the smaller the number of loci explain the total genetic correlation. The dotted black line represents 

a

b c
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100% of the sum of genetic correlation between each definition of MDD in UKBiobank with SCZ. The 

cumulative sums of positive regional genetic correlations (right of y axis) go beyond 100% – this is mirrored by 

the negative regional genetic correlation (left of y axis) that go below 0%. We rank all 1703 loci by their 

magnitude of genetic correlation, and ask what fraction of loci sums up to 90% of total genetic correlation. c) 

This figure shows the percentage of loci summing up to 90% of total genetic correlation “rG” between either 

LifetimeMDD (in purple) or GPpsy (in red) with all psychiatric conditions tested. The higher the percentage, the 

higher the number of genetic loci contributing to 90% of total genetic correlation.  
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Figure5: Tissue-specific gene expression enrichment in definitions of MDD | This figure shows the -log10(P) 

of enrichment in heritability in genes specifically expressed in 44 GTEx tissues45, estimated using partitioned 

heritability in LDSC35; help-seeking based definitions of MDD GPpsy, as well as its constituent no-MDD 

phenotype GPNoDep, show enrichment of heritability in genes specifically expressed in CNS tissues, similar to 

an independent cohort of help-seeking based MDD (23andMe4) and other psychiatric conditions such as bipolar 

disorder (BIP)47, schizophrenia (SCZ)46, autism (AUT), and personality dimension neuroticism.  
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Figure6: GWAS hits from minimal phenotyping definition of MDD in UKBiobank are not specific to MDD 

| This figure shows the odds ratios (ORs) at 27 loci significantly associated with help-seeking based definitions 

of MDD in UKBiobank (GPpsy and Psypsy), in GWAS conducted on DSM (LifetimeMDD, in purple), help-

seeking (GPpsy in red) and no-MDD (GPNoDep, in orange) based definitions of MDD, as well as conditions 

other than MDD: neuroticism, smoking and SCZ (all in brown). SNPs missing in each panel are not tested in the 

respective GWAS. For clarity of display, scales on different panels vary to accommodate the different 

magnitudes of ORs of SNPs in different conditions. ORs at all 27 loci are highly consistent across phenotypes, 

regardless of whether it is a definition or MDD or a risk factor or condition other than MDD. All results shown 

in Supplemental Table S14).  
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