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ABSTRACT

SimpactCyan is an open-source simulator for individual-based models in HIV epidemiology. Its core algorithm is written

in C++ for computational efficiency, while the R and Python interfaces aim to make the tool accessible to the fast-growing

community of R and Python users. Transmission, treatment and prevention of HIV infections in dynamic sexual networks are

simulated by discrete events. A generic “intervention” event allows model parameters to be changed over time, and can be

used to model medical and behavioural HIV prevention programmes. First, we describe a more efficient variant of the modified

Next Reaction Method that drives our continuous-time simulator. Next, we outline key built-in features and assumptions of

individual-based models formulated in SimpactCyan, and provide code snippets for how to formulate, execute and analyse

models in SimpactCyan through its R and Python interfaces. Lastly, we give two examples of applications in HIV epidemiology:

the first demonstrates how the software can be used to estimate the impact of progressive changes to the eligibility criteria

for HIV treatment on HIV incidence. The second example illustrates the use of SimpactCyan as a data-generating tool for

assessing the performance of a phylodynamic inference framework.

Introduction
In epidemiology, mathematical models are widely used to simulate progression, transmission, prevention and treatment of
infectious diseases. The majority of these models are deterministic compartmental models, simulating population averages of
changes in infection status and disease stages over time. However, many infectious diseases, in particular sexually transmitted
diseases, are subject to high individual heterogeneity. Unlike compartmental models simulating population averages, individual-
based models (IBMs) keep track of the events that happen to each individual separately, and are therefore able to take into
account various sources of individual heterogeneity1.

The ability to let population-level features of complex systems emerge from processes and events that happen to interacting
individuals, is arguably the most important quality of IBMs. As the computational expense of IBMs has become less prohibitive
thanks to multi-core processors and increased access to high-performance computers, there is a growing use of IBMs in
infectious disease epidemiology2. SimpactCyan is conceived as a versatile model-building tool to address research questions in
HIV epidemiology at the intersection of network and social epidemiology, computational biology, public health and policy
modelling.

A large amount of general frameworks for individual-based simulations have been developed in the last decades. These
platforms vary widely in terms of platform properties, usability, operating ability, pragmatics and security management, which
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Tool Time imple-
mentation

Sexual net-
work

R interface Python inter-
face

Source code
available
online

Reference

SimpactCyan continuous,
mNRM

dynamic 3 3 3 5–7

GEMFsim continuous,
Gillespie
algorithm

static 3 3 3 8

FAVITES continuous,
Gillespie
algorithm

static 3 3 3 9

EpiModel discrete dynamic 3 7 3 10

STDsim discrete dynamic 7 7 7 11

NetLogo discrete dynamic 3 7 3 12, 13

EMOD discrete dynamic 7 7 3 14

HIV-CDM discrete dynamic 7 7 7 15

MicroCOSM discrete dynamic 7 7 7 16

Path 2.0 discrete dynamic 3 (through
RNetLogo)

7 7 17

TITAN discrete dynamic 3 3 3 18

Table 1. Functional and structural differences between SimpactCyan and existing tools for IBM studies in HIV epidemiology.

makes it difficult to choose the most suitable framework for simulation in the context of a particular research question3.
Table 1 summarises functional and structural differences between SimpactCyan and ten other tools for constructing

individual-based models of HIV transmission between individuals connected via sexual relationships. These tools were
identified by an ongoing systematic review of simulation-based methods for the calibration of individual-based models to
summary data in epidemiology4.

Current software for implementing IBMs to address questions in HIV epidemiology has several shortcomings. While some
modelling tools (e.g. STDSIM for simulating transmission of HIV and other Sexually Transmitted Diseases11) are not open
source, other IBMs (e.g. EMOD14) are relatively difficult to modify. Another limitation of EMOD is that it can only be used
on computers running Windows 10, Windows Server 12, Windows HPC Server 12 or CentOS 7.1. Furthermore, while it has
interfaces for Matlab and Python, it does not have an R interface. NetLogo models, on the other hand, are easily modifiable3,
and can be run from within the R environment12, but are prohibitively slow for simulating large populations over the time-scale
relevant for HIV epidemiology.

With a few exceptions (the GEMFsim8 and FAVITES9 simulators), existing simulators that can be readily used in HIV
epidemiology implement IBMs in discrete time rather than continuous time. By simulation in continuous time we mean that
events can take place and subsequently the state of the system can be updated at any point in time. It also means that the
time interval between the execution of two consecutive events is only limited by the numeric precision of the implementation
of the method used to sample event times. A continuous time implementation of IBMs has the advantage that it elegantly
handles competing risks to multiple events. For instance, an individual may be concurrently at risk of HIV-related mortality
and at risk of transmitting the virus to a partner. Evaluating the model in fixed time steps may lead to the situation where
both events are scheduled to have taken place between now and the next time step. However, in reality, this is only possible
if the transmission event happens first. In the continuous time model evaluation, we know exactly which of the two events
is scheduled first, and logical consequences for the likelihood of subsequent events are processed along with the execution
of the first event. Furthermore, events happening after short and long time periods can be included in a single simulation. In
contrast, in a discrete time model, simulating events that occur on vastly different time-scales can be computationally inefficient.
Frequently occurring events may require a small time step, possibly leading to the occurrence of rare events being evaluated
with a much higher frequency than necessary.

Another limitation of existing implementations of IBMs for dynamic sexual networks, is that they consider possible
relationships sequentially. As a consequence they require ad-hoc assumptions and decisions about in what order people “go out”
to find partners and can “be found”. For example, in EMOD, males and females are placed in a separate queue, where they stay
for a predefined period, after which they form a relationship14. In STDsim, the order of going out to search for a partner and for
being available for a relationship are both determined by stochastic processes11.
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SimpactCyan is a simulator for event-driven IBMs in HIV epidemiology, evaluated in continuous time: the state of the
system is updated each time an event happens. Furthermore, all possible relationships are considered simultaneously instead of
sequentially.

Simpact (SimpactWhite) was first developed in Matlab19–21. Later, variants were developed as a MASON Multi-agent
Simulation Toolkit in Java (SimpactBlue), and in Python (SimpactyPurple)22. To improve both speed and user-friendliness of the
tool, we embarked on a major overhaul in 2013, leading to the current version (SimpactCyan) that combines a computationally
efficient simulation engine written in C++ with R and Python interfaces. An exhaustive, deep comparison of SimpactCyan with
all prior Simpact programs is beyond the scope of this paper, and arguably not crucially important, for the simple reason that
there is no ongoing development of nor support for any of the legacy versions (SimpactWhite, SimpactBlue and SimpactPurple)
and these versions are no longer in use. However, it may be useful to give some perspective of the relative improvement. In the
early stages of SimpactCyan development, we conducted a comparison study that indicated runtimes for SimpactCyan were up
to 280 times shorter, compared to SimpactWhite23.

In this paper, we describe a more efficient variant of the modified Next Reaction Method (mNRM) that drives the simulator,
we outline key built-in features and assumptions of individual-based models formulated in SimpactCyan, and provide code
snippets for how to formulate, execute and analyse models in SimpactCyan through its R and Python interfaces. As runtimes
for SimpactCyan strongly depend on population size and the intensity with which relationships are formed and dissolved in the
population, we present the results of a concise simulation study to provide additional insights and visual representation of these
associations. We end by giving two examples of applications in HIV epidemiology: the first demonstrates how the software can
be used to estimate the impact that changes to the eligibility criteria for antiretroviral therapy (ART) had on HIV incidence in
a hyperendemic setting. The second example illustrates the use of SimpactCyan as a data-generating tool for assessing the
performance of other modelling frameworks.

Discrete events simulation algorithm
The modified Next Reaction Method (mNRM)
Event times, i.e. time points in the simulation at which events are scheduled to take place, are determined using the modified
Next Reaction Method (mNRM)24, a more efficient variant of the Gillespie algorithm25–27 and the Next Reaction Method28.
The mNRM was originally designed for simulating chemical systems with time-dependent propensities and delays, but in
SimpactCyan we use it to simulate how individuals are at risk of events according to time-dependent hazard functions. In the
mNRM algorithm, there is a core distinction between internal event times and (simulated) real-world event times. The internal
event times determine when an event will be triggered according to the event’s internal clock. Internal clock time advances
faster as the hazard for the event increases. By real-world time we mean the calendar time in the simulated population.

Calling the internal time interval until a specific event fires DT , such internal time intervals are randomly sampled from an
exponential distribution: DT ⇠ Exp(1).

The event’s hazard function h(•), referred to as the propensity function in24, maps the internal time interval DT until the
event fires onto Dt, a real-world time interval,

DT =
Z t+Dt

t
h(X(t),s)ds, (1)

in which t is the previous time an event was triggered. (This corresponds to equation 13 in the original article24, where we
have omitted the event-specific index for concision.) It is this hazard h that can depend on the state X(t) of the simulation, and
possibly also explicitly on time t. In SimpactCyan, the state of the simulation is made up of all the individuals in the population
and their respective properties, such as their age, gender, HIV infection status, ART status, and whom they are in relationships
with. This state X(t) does not depend on time in a continuous manner, it only changes when an event is fired, i.e. when its
internal time interval expires. Note that the formula above is for a single event, and while DT itself is not affected by other
events, the mapping onto Dt certainly can be: other events can change the simulation state, and the hazard of the event depends
on this state.

The main idea is illustrated in Figure 1: internal time intervals are chosen from an exponential distribution, and are mapped
onto real-world time intervals through hazard functions. Because hazards can depend on the simulation state and can have an
explicit time dependency, this mapping can be rather complex.

While the hazard can cause complex behaviour, this is of course not necessarily the case. If one uses a constant hazard, this
merely causes a linear scaling between internal time DT and real-world time Dt:

DT = hDt (for a constant hazard).

This also illustrates that the larger the hazard, the earlier the event will fire, i.e. the real-world time interval will be smaller.
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0 T1 T2 T3 T4

T0 T1 T2 T3

Internal time

Real-world time0 t1 t2 t3 t4

Figure 1. In the modified Next Reaction Method, intervals DTi (in general for different events) are generated independently
from other events in a straightforward manner, using an exponential probability distribution (DTi ⇠ Exp(1)), and are used to
advance an internal clock T . Using the notion of a hazard function (1), these internal time intervals are mapped onto intervals
Dti, which advance a (simulated) real-world time t, and need not have a straightforward relation to the internal times: a small
internal time difference can lead to a large real-world time difference and vice versa. It is through this hazard function that
interdependencies between events can be introduced.

As an example, let’s consider the event of forming a heterosexual relationship. At a certain time in the simulation, many
formation events will be scheduled, one event for each man-woman pair that can possibly form a relationship. The internal time
interval for each of these events will be drawn from the simple exponential distribution. The mapping to a real-world time at
which the event will fire, is done using the hazard-based method, and the event that will take place next is the one that will have
the smallest of these real-world times (cfr. the time ordering in step 6 of algorithm 3 in24). This hazard depends on aspects of
the simulation state as defined by the hazard function for relationship formation: how many relationships the man and woman
of the candidate couple are already engaged in, what the preferred age differences with their respective partners are, etc. One
can also imagine an explicit time dependency in the hazard: e.g. the hazard of forming a relationship increases as the time
period since the relationship became possible gets longer.

While most of the events in SimpactCyan are scheduled using the exponential distribution to generate values for internal
DT , some events are scheduled directly in real-world time. An example of this is the scheduling of the HIV ‘seeding’ event, i.e.
the timing of introducing HIV into the population. This alternative method could still be thought of as a special case of internal
and real-world time mapping. This is because if DT is set to the actual real-world time interval until the event fires, and the
hazard is set to h = 1, internal and real-world time intervals match.

More efficient mNRM algorithm
Each time an event is triggered, the state of the simulation changes. Because the hazard of any event can depend on this state, in
the most general version of the mNRM algorithm, one would recalculate the real-world event times of all remaining events
each time an event gets triggered: this ensures that the possibly changed state is taken into account. Always recalculating all
event fire times is computationally very inefficient, however. Although the state may have been changed somewhat, this change
may not be relevant for many of the event hazards in use. As a result, most updated real-world event times would be the same
as before.

To avoid unnecessary recalculations of event times, SimpactCyan employs a variant of the mNRM algorithm, in which each
individual is linked to a list of events that involve him or her, and events that involve multiple people will appear on the lists of
all of these individuals. For example, a mortality event would be present in the list of only one individual, while a relationship
formation event concerns two people and would therefore appear on two such lists. Figure 2 illustrates this idea. The lists
are meant to keep track of event times that may require recalculation as a result of another event firing. If the HIV-positive
partner of Person X (not depicted in Figure 2) dies, this death will trigger several updates to the system, including that the
deceased gets removed from the population, and dissolution events are triggered immediately (i.e. no recalculation needed) for
all the relationships that the deceased was engaged in. Such dissolution events will subsequently lead to the removal of the HIV
transmission event that was on Person X’s list (also without any recalculation required).

When an event fires, only the properties of a very limited set of people are changed, hence one only needs to recalculate the
fire times of the events in those people’s lists. For example, when the event of Person A forming a relationship with Person B
takes place, the real-world fire times for the events in the lists of Person A and Person B will be automatically recalculated.
Apart from affecting the people in whose lists an event appears, some events can affect additional people. As an example, a
birth event will only appear in the list of the pregnant woman and not in the event list of the father, because the scheduled birth
should not be affected in the event of the death of the father. However, when triggered, the newborn will be listed as a child of
the father. In general, the number of additionally affected people will be very small compared to the size of the population,
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Population

Person A
(diagnosed HIV)

Person D
(HIV positive)

relationship 
formation

relationship 
formation

non-AIDS 
related death

HIV diagnosis

chronic HIV AIDS

HIV transmission relationship 
dissolution

AIDS-related 
mortality

monitoring 
event

Person B
(HIV negative)

Person C
(HIV positive)

tk tk+1 tk+2 tk+3 tk+4 tk+5 tk+6 tk+7 tk+8 tk+9

relationship 
dissolutionHIV transmission

Figure 2. The Figure shows, for four different people in the population, what the next three scheduled events are after time
point tk. Solid lines represent time intervals; The dotted line represents the formation of a relationship; the arrow represents
HIV transmission. We can see that Person A and Person B will form a relationship. Concurrent with their relationship to
Person A, person B is also already in a relationship with Person C. We can see that an HIV transmission from Person C to
Person B is scheduled, after Person C is diagnosed. After HIV transmission, person B and person C break up their relationship.
After forming a relationship with Person B, Person A (who was already diagnosed with HIV) is monitored to follow up the
progression of HIV. Person A dies a non-AIDS related death. Person D, who is HIV positive, will progress to the chronic stage
of HIV infection, after which he or she will develop AIDS, and die of AIDS-related complications.

causing only a fraction of the event fire times to be recalculated. This allows the modified algorithm to run much faster than the
basic algorithm that always recalculates all event times. Furthermore, fire times of events that are present in the event lists of
two individuals (e.g. relationship formation), are recalculated by only one of them.

Besides these types of events, there are also ‘global’ events. These events do not refer to a particular person and will modify
the state in a very general way. In general, when such a global event is triggered, this causes all other event fire times to be
recalculated. Introducing HIV into the population through an HIV seeding event is an example of a global event.

Population and events in SimpactCyan
Model populations consist of men and/or women. They can be introduced into the simulation in two ways: (i) during the
initialization of the simulation, in which case individuals with certain ages (drawn from a distribution) are added to the
simulation, and (ii) through the birth of new individuals during the course of the simulation run.

Once born, an individual will become sexually active when a debut event is triggered. If the individual is introduced into the
population at the start of the simulation, and the age exceeds the debut age, this event no longer needs to be scheduled. Every
person always has a ‘normal’ mortality event scheduled, which corresponds to a cause of death other than AIDS.

To get an HIV epidemic started, an HIV seeding event must be scheduled. When this event is triggered, a number of people
in the existing population will be marked as being HIV-infected. An infected individual will go through a number of infection
stages, starting with acute HIV infection. After a default duration of 3 months29, a chronic stage event is triggered, moving the
individual to the chronic infection stage. A fixed amount of time before dying of AIDS (15 months by default)29, an AIDS
stage event is triggered, marking the transition of the chronic HIV stage to the AIDS stage. Six months before the expected
AIDS-related death, a final AIDS stage event is triggered, after which the individual is in the ‘final AIDS stage’. It is assumed
that one is too ill to be sexually active during this final stage29. When the AIDS mortality event is triggered, the individual dies
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of AIDS.
The population.msm parameter enables simulation of populations in which (some) men only form sexual rela-

tionships with other men, and/or can form relationships with with men and women. Under the default parameter setting
(population.msm = no), every man-woman pair past the age of sexual debut can potentially form a relationship. For
every such pair, a formation event is scheduled by sampling from the probability distribution that emerges as a result of the
specified hazard function for relationship formation. An example for such a hazard function is the ‘agegap’ hazard, shown in
the equation below. Only when an event of this type is triggered, an actual relationship is formed between the involved persons,
which in turn can cause other events to get scheduled, e.g. a relationship dissolution event.

hazard = F ⇥ exp
✓

abaseline +anumrel,manPman +anumrel,womanPwoman

+ anumrel,diff|Pman �Pwoman|+ameanage(Aman(t)+Awoman(t))/2
+ aeagerness,sum(Eman +Ewoman)+aeagerness,diff|Eman �Ewoman|
+ adist|~Rman �~Rwoman|
+ agap,factor,man|Aman(t)�Awoman(t)�Dp,man �agap,agescale,manAman(t)|
+ agap,factor,woman|Aman(t)�Awoman(t)�Dp,woman �agap,agescale,womanAwoman(t)|

+ b (t � tref)

◆

(2)

This complex looking hazard is actually of the form exp(A+Bt). The a parameters are weights that need to be set
in the configuration of the simulation. They control the importance of various aspects of how individuals choose sexual
partners. Via so-called intervention events, these weight parameters can be changed at arbitrary points in time during the
simulation. In this way, temporal changes in sexual risk behaviours can be modelled, such as reductions in partner concurrency,
age-disparate relationships or overall sexual activity levels. Variable P represents the number of relationships that an individual
is currently engaged in, A(t) the age of the individual, and E represents a person-specific sex drive, of which the distribution is
user-defined to allow control over the amount of heterogeneity in sexual activity within the population. The effect of distance
(|~Rman �~Rwoman|) between the candidate partners can also be taken into account.

In the terms about the age gap, the age difference between the man and woman in the potential relationship is compared to
the preferred age difference Dp (which defaults to zero). If the agap,agescale values are set to zero, then Dp will always be the
preferred age gap; a positive value between zero and one will cause the preferred age difference to increase as the individual
grows older. The agap,factor values at the start of these terms in turn determine the importance of the preferred age difference in
the hazard. By setting the agap,factor to a negative value, the hazard decreases as the actual age difference between the candidate
partners deviates from the preferred age difference.

The b parameter can be used to introduce an effect on the hazard that depends on the time since the relationship became
possible. Here, tref refers to the point in time at which the relationship between the two candidate partners became possible. If
no relationship existed between them earlier, this is the time at which the youngest person reached the debut age. On the other
hand, if they were previously in a relationship with each other already, it is the time at which that relationship was dissolved.
For completeness, the factor F is a normalization-like factor, to be able to use similar parameters for different population sizes.

A formation event results in the establishment of a sexual relationship, and subsequently, the female partner is at risk of
falling pregnant. In that case a conception event will be triggered and a while later a birth event will take place, introducing a
new individual into the population. In case one of the partners in the relationship is HIV-infected, transmission of the virus may
occur. If so, a transmission event will fire, and the newly infected individual will go through the different infection stages as
described earlier. Of course, it is also possible that the relationship will cease to exist, in which case a dissolution event will be
triggered. Note that in the version at the time of writing, there is no mother-to-child-transmission (MTCT).

Starting ART and dropping out of treatment is managed by another sequence of events. When an individual becomes
HIV-infected, either by HIV seeding or by transmission, first a diagnosis event is scheduled. Upon diagnosis, an HIV monitoring
event is scheduled to monitor the progression of the HIV infection. When this event is fired, ART may be initiated, but only
if the individual is both eligible (according to a CD4 cell count threshold) and willing to start HIV treatment; if not, a new
monitoring event will be scheduled. If ART is initiated, no more monitoring events will be scheduled, but the individual will
be at risk of discontinuing his or her HIV treatment, in which case a dropout event is triggered. When a person drops out of
treatment, a new diagnosis event will be scheduled, which should be interpreted as an act of re-engagement in HIV Care30.

Formulating, running and analysing IBMs with SimpactCyan from R or Python
Instructions for installing the core SimpactCyan program and its R interface (the Python interface is automatically installed
along with the core program) can be found at http://www.simpact.org/how-to-use-simpact/. To set up a
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simulation, one needs to prepare a configuration file as a text file with key/value pairs, describing all parameters of the
simulation, a snippet of which could look like this:

...
population.nummen = 200
population.numwomen = 200
population.simtime = 40
...

Preparing the configuration file manually is time-consuming work however, as all event properties needed in a simulation
must be set. To make it easier to prepare and run simulations, there is a Python module that can be used to control SimpactCyan
from Python, or alternatively an R library that can be installed in R, with a similar interface. It is also possible to use a combined
approach: first prepare a configuration file from within R or Python, and subsequently use this configuration to start simulations
from the command-line. It can be very helpful when running simulations on a high performance computing cluster for example,
where R or Python may not be available.

To use SimpactCyan from within an R session, the RSimpactCyan library must first be installed and loaded. This
provides a simpact.run function that allows a simulation to be configured much more easily than using the configuration
file mentioned above: instead of needing to set all parameters of a simulation, only the parameters that are different from
the default values need to be specified. The full documentation of all the parameters that can be configured, what they mean
and what their default values are, is found at https://simpactcyan.readthedocs.io/en/latest/simpact_
simulationdetails.html. If only the key/value pairs in the code snippet above deviate from their default values, the
configuration of the simulation would simply become:

cfg <- list()
cfg["population.nummen"] <- 200
cfg["population.numwomen"] <- 200
cfg["population.simtime"] <- 40

Similarly, the Python module pysimpactcyan defines a PySimpactCyan class with a run member function that also
needs only the settings that differ from the defaults:

cfg = { }
cfg["population.nummen"] = 200
cfg["population.numwomen"] = 200
cfg["population.simtime"] = 40

Many of the configuration values will be character strings or numbers, but for some options it is allowed to specify one of the
supported one- or two-dimensional probability distributions. For example, the birth.pregnancyduration.dist.type
is by default set to fixed with a value corresponding to 268/365 (simulation times are expressed in years), such that every
pregnant woman would give birth after precisely 268 days. To allow for some variability (e.g. a standard deviation of 16 days),
a log-normal distribution could be used instead:

mu <- 268/365
var <- (16/365)ˆ2
cfg["birth.pregnancyduration.dist.type"] <- "lognormal"
cfg["birth.pregnancyduration.dist.lognormal.zeta"] <- log(mu/sqrt(1+var/muˆ2))
cfg["birth.pregnancyduration.dist.lognormal.sigma"] <- sqrt(log(1+var/muˆ2))

Apart from using a fixed number, supported one-dimensional distributions are the beta, exponential, gamma, log-normal,
normal and uniform distributions, as well as user-defined discrete distributions (e.g. based on the frequencies listed in a CSV
file). For two-dimensional distributions, one can specify a fixed pair of values, or choose values from binormal or uniform
distributions. Here too, user-defined discrete distributions can be specified.

Runtime analysis
We conducted a small simulation study with SimpactCyan to explore how the runtime varies as a function of population size
(at the outset of the simulation), single-core versus multi-core execution of the simulation, fraction of the population of the
opposite sex that each individual can potentially form relationships with, and number of relationships that are formed over
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the course of the simulation. Specifically, we designed scenarios of HIV epidemics in heterosexual populations and ran each
scenario over a calendar time period of 40 years. Each scenario was repeated 10 times with different seeds for the random
number generators, and the average runtime was calculated per scenario. Scenarios varied by initial population size (4 000, 10
000 and 20 000), the fraction of the population of the opposite sex that each individual could form relationships with (0.2 and
0.4), and the effect of the number of relationships already engaged in by candidate partners on the log-transformed hazard of
these two individuals forming a relationship (i.e. the anumrel,man and anumrel,woman parameters in the hazard function (-0.5 and
-5)). These parameters are strongly correlated with the number of relationships that are formed over the course of a simulation.
Lastly, we executed simulations with the single-core and multi-core versions of the algorithm. Simulations were run on a
MacBook Pro with Intel Core i9 6-core processor, running macOS Mojave (Version 10.14.3).
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Figure 3. Mean runtime, in minutes, of simulation runs for model scenarios varying in population size, opposite sex
population fraction accessible for relationship formation, mean number of relationships formed over the course of the
simulation, and computing cores used for each of the runs.

The results of this simulation study are summarised in Figure 3. Runtimes increase faster than linearly with population
size. This is to be expected, since the number of potential relationships that needs to be scheduled in a population of x men
and y women is x*y. I.e. this number increases quadratically with population size. Reducing the number of potential partners
by setting the population.eyecap.fraction parameter to a value smaller than 1, leads to an appreciable reduction in
runtime, without affecting the rate at which relationships are formed by much. Running the simulation in parallel (all 6 cores
of the machine’s processor are used in the calculations) only leads to a (modest) speedup for scenarios of highly connected
networks (many relationships are being formed) in large populations. Typically, simulation studies require several dozens or
hundreds of simulation runs, and in that case it is more efficient to distribute single-core simulations in parallel over multiple
cores than running multi-core simulations sequentially.
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Model applications
The following section discusses two example simulations that were done using SimpactCyan. The first illustrates how
SimpactCyan can be used to assess the impact of progressive changes to the ART eligibility criteria in Eswatini (formerly
known as Swaziland). The second illustrates the use of SimpactCyan as a data-generating tool for assessing the performance
of other modelling frameworks. All code and data files necessary to reproduce the examples are available at https:
//github.com/wdelva/SimpactCyanExamples.

The impact of Early Access to ART for All on HIV incidence
In the MaxART project31, SimpactCyan is used to estimate the likely impact of Eswatini’s shift towards ”Early Access to ART
for All” (EAAA) on the incidence of HIV. HIV incidence is the rate at which HIV-uninfected people acquire the infection. Such
infection events are scheduled each time a relationship is formed between an HIV-infected and an HIV-uninfected individual.
The hazard for the event is given by

hazard = exp(a+bV�c +other terms),

where the other terms are not enabled by default, but allow for a hazard-lowering effect of multiple ongoing relationships
(so-called coital dilution32, 33), as well as a hazard-increasing effect of adolescent age among women34. In this formula, a, b
and c are model parameters; the V value represents the current HIV viral load of the person that is already infected.

The viral load model is based upon the notion that an infected person has a specific set-point viral load, Vsp, which
corresponds to the viral load in the chronic stage of the infection. The three parameters person.vsp.toacute.x,
person.vsp.toaids.x and person.vsp.tofinalaids.x determine the factors by which the HIV transmission
hazard should be multiplied during the initial acute stage, as well as the early and late AIDS stages. The V value in this hazard
expression can therefore be different from the Vsp value, depending on the time since infection. The non-linear form of this
hazard function was inspired by equation (9) published by Hargrove et al.35, while the default parameter values are based on a
fit to model output generated by Fraser et al.36.

At the time of HIV acquisition, time till HIV-related death is determined, based on a paper by Arnaout et al.37:

tsurvival =
C

V�k
sp

⇥10x.

In this formula, C and k are parameters that can be configured by the user if desired; the x parameter (which defaults to
zero) is person-specific, and its distribution can be configured to control the amount of variation in post-HIV infection survival
times among people with the same set-point viral load.

The set-point viral load value allocated to a newly infected individual is partly determined by that of their infector, i.e. some
heritability of set-point viral load is assumed38. This is done by using a two-dimensional distribution

prob(Vsp.infector,Vsp.infected),

of which the parameters can be chosen using the configuration values. This is subsequently used to obtain the conditional
probability when fixing the initial Vsp value for a person that becomes infected due to the transmission event. By default, a
symmetric, truncated bivariate normal distribution with mean 4, minimum 1, maximum 8, standard deviation 1 and correlation
coefficient 0.33 is used to sample a log10 set-point viral load value for a newly infected person, conditional on the set-point
viral load of the infector. To choose the initial set-point viral loads for ‘seed infections’, a marginal probability distribution is
used, however.

ART initiation affects both the expected time till HIV-related death and the infectiousness of the person on ART. As soon as
ART is started, the log10 viral load is assumed to drop by a user-defined fraction, and the updated current viral load is used to
re-calculate tsurvival. In the EAAA simulation study we assumed that upon ART initiation, the log10 viral load drops by 70%,
effectively rendering the viral load “undetectable” for most ART clients. Via intervention events, most model parameters can
be changed at arbitrary points in time during the simulation. However, person-specific parameter values (e.g. the probability
of accepting ART if ART-eligible) and some event-times (e.g. time of non-HIV-related death) are determined at the time the
individual is introduced into the population (at the start of the simulation or at birth). Hence, changing related parameters
through an intervention event would only affect individuals born into the population after this intervention event, and not the
extant population.

In this study, intervention events allowed us to assume that ART was gradually introduced around the year 2000, and that the
CD4 cell count threshold for ART eligibility progressively shifted towards ever more inclusive criteria, alongside a decreasing
lagtime between HIV infection and HIV diagnosis. These assumptions hold in both the ”Status Quo” scenario and the ”Early
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Access to ART for All” (EAAA) scenario. In the EAAA scenario, however, an additional policy change is modelled: a policy
of immediate access to ART for all people infected with HIV is adopted from October 2016. In the alternative scenario, the
CD4 cell count threshold for ART eligibility stays at 500 cells/microliter from mid 2013 onwards.

The EAAA model was calibrated to demographic, epidemiological and programmatic data (which we refer to as target
features) from Eswatini. Specifically, we used the UNAIDS annual national HIV prevalence estimates (1990-2017) and ART
coverage estimates (2010-2017)39, the estimated average population growth rate over the period 2000 to 201640, the gender-
and age group-specific HIV prevalence and incidence estimates from the 2011-2012 SHIMS I study41 and the UNAIDS 2017
estimate for the fraction of people aged 15 and above who were virally suppressed (less than 1000 viral copies per mL blood)39.
Nineteen model parameters were calibrated to these data. Together these parameters determine the sexual behavioural and
demographic dynamics of the model population, as well as temporal changes in the rate at which HIV-positive people in
the model population were diagnosed with HIV infection, and the extent to which adolescent girls and young women are
biologically more susceptible to HIV acquisition than older women and men. In doing so, these 19 parameters drive the
model’s features (i.e. summary statistics) that needed to be matched to the target features. Model calibration was achieved by
applying the adaptive population Monte Carlo Approximate Bayesian Computation scheme describes by Lenormand et al.42.
Iteratively sampling from the parameter space, starting from the prior distributions (wide-ranged uniform distributions) of the
19 model parameters, the method searches for areas in parameter space that produce model features close to the target features.
After thirteen waves of simulations, totalling 29 500 model runs, the convergence criterion was reached and the calibration
scheme produced a posterior distribution for the 19 parameters, by way of the 250 best fitting models. Here, “model” means a
unique parameter combination producing model features similar to the target features. For each of the 250 models that jointly
comprised the parameter posterior distribution, we calculated the root means squared relative error between model features
and target features, as a summary measure of goodness-of-fit. The 3 models that fit the data best, which one can think of as
the estimated mode of the posterior, were used in the forward projecting step of the analysis. In Supplementary Table S1, we
provide the complete list of the 66 summary statistics (target features) that were used to calibrate the model, as well as the
corresponding model features, obtained by averaging over the 10 model runs.

In this second part of the analysis, we simulated two scenarios for the expansion of ART in Eswatini, and for each of the
two scenarios we ran each of the 3 models 10 times by keeping the model parameter fixed and only changing the seed of the
random number generator. In the EAAA scenario, we simply used the 3 best-fitting models and ran them until 2032. In the
counterfactual scenario, the same model parameters were used with the exception that the CD4 threshold for ART eligibility
remained capped at 500 CD4 cells per microliter from mid 2013 onwards. In all of the subplots of Figure 4, the output from the
3 models is grouped by colour: shades of red for the EAAA scenario and shades of blue for the counterfactual scenario. For
each model, the output of the 10 individual model runs is shown in thin dashed lines, and a solid line shows the average model
trend. A darker, thick line represents the average across the 30 (3 times 10) runs for each scenario. Grey boxes represent the
ranges around the UNAIDS estimates within which the actual numbers lie, based on the best available information39. The black
dot in Figure 4b indicates the 2017 UNAIDS estimate for HIV incidence among 15-49 year-old adults in Eswatini43 (not used
for model calibration).
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Figure 4. Programmatic and epidemic projections under a “Status Quo” (blue) and “Early Access to ART for All” (red)
scenario for the roll-out of a nation-wide ART programme. (a) ART coverage: Fraction of the adult HIV-positive population (�
15 years old) on ART. (b) HIV incidence rate among 15 to 49 year-old people. (c) HIV prevalence among 15 to 49 year-old
people.

The impact of the policy shift to EAAA was estimated by the relative reduction in HIV incidence (1 minus the ratio of
the incidence rates under the two scenarios). Under the counterfactual scenario, HIV incidence was projected to drop by 12%
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by the end of 2019, from its base level of 2.2 / 100 PY in October 2016. However, under the factual scenario, the models,
on average, estimated that the incidence will decrease by 64% over that same period, to 0.8 / 100 PY. The impact of EAAA,
as measured by the incidence rate ratio for the 2 scenarios is projected to remain stable over the next decade. The variation
between the output of these three models, as shown in Figure 4b, provides a sense of the uncertainty around our best guess
of the future impact of EAAA on HIV incidence. It should, however, not be interpreted as an estimate of the credibility or
confidence interval, because only the mode of the posterior was used in the impact estimation.

SimpactCyan as a data-generating benchmarking tool
The second use case illustrates how SimpactCyan can be used as a data-generating tool for benchmarking the performance
of other modelling frameworks. Phylogenetic models have been used to infer properties of epidemics from reconstructed
phylogenetic trees, including time-trends in HIV incidence rates44, 45 and the age-mixing pattern in HIV transmission clusters46.
Yet, as the truth is typically unknown, it is difficult to assess the validity of these novel modelling frameworks, or document
their sensitivity to breaches in the models’ assumptions. For instance, some phylogenetic inference methods require that HIV
sequence data are available for the majority of HIV-positive people47. However, in many settings, this assumptions is not met.
In Figure 5 we illustrate the basic idea of SimpactCyan as a data-generating tool for benchmarking.

First, we simulated an HIV epidemic similar to the epidemics in the EAAA analysis explained in the previous model
application. Figure 5a shows the cumulative HIV transmission network that originated from one of the 20 seed infectors (man
858). This network links all individuals who got infected with HIV by man 858 or one of his descendants by the end of the
simulation. Next, we converted the transmission network into a phylogenetic tree by assuming that HIV transmission events
correspond to branching points in the phylogeny. While this assumption is obviously overly simplistic, it is not an uncommon
assumption in phylodynamic modelling studies48–51. More importantly, it does not invalidate the didactic purpose of this model
application, which is to show how SimpactCyan can be used as a data-generating tool for benchmarking the performance of
other modelling frameworks in simulation settings where the user has control over the extent to which the assumptions made
by the phylodynamic inference method are in line with the processes that generated the simulated data. Using the Seq-Gen
program52, we simulated the viral evolution along this phylogeny, assuming a generalised time-reversible substitution model53

with a gamma-invariable mixture model (GTR+g+I) for rate heterogeneity among sites. In this way, we generated synthetic
HIV sequence data. Specifically, for the root sequence we chose a consensus sequence of the pol region of HIV-1 subtype
C, isolated in 1989 from South Africa and retrieved from the HIV Sequence Database of the Los Alamos National Library
(LANL) (access number HIV.1.C.ZA.PolCDS1989)54. The program jModelTest version 2.1.355 was used for selecting the best
fitting evolutionary model to explain the viral diversity in a dataset of HIV-1 subtype C sequences from 386 South African
patients, also extracted from the LANL HIV Sequence Database. Using hierarchical likelihood ratio tests, the GTR+g+I
model was ranked as the best fitting evolutionary model for these viral sequence data, and the model’s parameter values as
estimated by jModelTest were used in the forward viral evolution simulation. Specifically, the relative frequencies of adenine
(A), cytosine (C), guanine (G), and thymine (T) were estimated at 0.3906, 0.1752, 0.2201, and 0.2142 respectively. Further, the
inferred value for the shape parameter for the g rate heterogeneity was 0.625, and the heterogeneity in transition rate across
sites was discretized into 4 discrete g rate categories. The 6 substitution rate parameters of the GTR model were estimated at
1.9803, 9.4404, 0.9423, 0.8770, 11.6367, and 1.0000, with an assumed evolutionary rate of 0.00475 substitutions per site per
year (branch length scaling factor)56, 57. The fraction of invariant sites was estimated at 0.213. Next, we fed these synthetic
sequences into the phangorn58 and treedater R packages59 to reconstruct the time-resolved phylogenetic tree (Figure 5b), by
fitting the GTR+g+I model with a likelihood-based approach and root-to-trip regression. Lastly, we summarised the timing of
the internal nodes in the reconstructed time-resolved tree by a vector of the number of internal nodes (i.e. branching points) per
calendar year time interval.

In Supplementary Table S2, we show the model parameters of the generalised time-reversible substitution model with a
gamma-invariable mixture model (GTR+g+I) for rate heterogeneity among sites, fitted to the empirical sequence data (sample
size = 386), and fitted to the simulated sequences (sample size = 2896). To allow for a more direct comparison, we extracted
from the complete synthetic sequence dataset a matching sample of simulated sequences with sampling dates as close as
possible to those of the empirical sequence data. In Supplementary Figure S1, we also show the empirical phylogenetic tree,
the matching sample simulated tree, and a violin plot of the density of patristic distances of the respective trees. Lastly, we
report in Supplementary Table S3 nine topological properties of the respective trees. Taken together, this additional information
shows strong agreement between empirical and simulated data.

If all people ever infected are included in the sequence dataset and the same molecular evolution model is used to generate
the sequence data and to reconstruct the phylogenetic tree, the timing of the internal nodes in the reconstructed tree should
correspond with the timing of the simulated HIV transmission events. Indeed, in a perfect scenario of internal consistency and
complete data, the distribution of internal nodes in the reconstructed phylogenetic tree and simulated HIV transmission events
matched nearly perfected (red and dark blue lines in Figure 5c). While an exhaustive sensitivity analysis of how phylodynamic
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Figure 5. (a) The cumulative HIV transmission network, linking all individuals whose HIV infections originated from one
seed infector (man 858). (b) The time-resolved phylogenetic tree, reconstructed from synthetic HIV sequence data, generated
by simulating the molecular evolution of HIV viral strains across the HIV transmission network. (c) The probability density of
internal nodes in the reconstructed phylogenetic tree(shades of blue) and simulated HIV transmission events (red). The
correlation between the timing of the internal nodes and HIV transmission events becomes weaker as the HIV sequence
coverage decreases.

inference could be affected by missing data and assumptions that are not consistent with the data-generating processes is
beyond the scope of this paper, we simulated three additional scenarios, to illustrate how reduced sequences coverage (50%,
25% and 12.5%) could add noise and bias to the phylodynamic inference. Coverage here is defined as the fraction of people in
the cumulative HIV transmission network for whom a consensus sequence is included in the HIV sequence database. In all
three of these imperfect scenarios, we still used the appropriate molecular evolution model to reconstruct the phylogenetic tree.
As sequence coverage decreases, the timing of internal nodes becomes a less accurate proxy for the timing of transmission
events, and hence, a less reliable source for inferring time trends in HIV incidence.

Future directions
Ongoing developments of SimpactCyan include the addition of events for the transmission and treatment of other sexually
transmitted infections such as Herpes Simplex Virus 2 (HSV-2) and Hepatitis C Virus (HCV), as well as additional events for
parenteral and mother-to-child transmission of HIV and co-infections, to allow studies of HIV transmission in injecting drug
users (IDU) and children. We also plan to extend the software by enabling explicit modelling of relationships between sexual
risk behaviour and health seeking behaviour. This is in response to recent evidence to suggest that high sexual risk behaviour
is associated with a lower likelihood to be aware of one’s HIV infection, and a lower likelihood of being virally suppressed
among people who know they are HIV positive60.

Conceived as a flexible open-source, open access tool, rather than a proprietary asset, SimpactCyan’s extensions and
applications should not solely come from its original developers. Instead, we want to position this simulator as a vehicle for
open science in HIV epidemiology. Therefore, others are encouraged to use it for the development of their own IBMs, as the
starting point for their own simulation engine, as a data-generating and/or benchmarking tool in methodological research, or for
educational purposes.

Acknowledgements
The authors thank Jonathan Dushoff and Roxanne Beauclair for valuable comments on earlier drafts of this manuscript. The
computational resources (Stevin Supercomputer Infrastructure) and services used for the calibration of the EAAA model were
provided by the VSC (Flemish Supercomputer Center), funded by Ghent University, FWO and the Flemish Government –
department EWI.

Funding sources
This work was supported by grants G091210N, G0B4314N and W002514N from the Research Foundation – Flanders (FWO),
grant ZEIN2010PR375 from the Flemish Interuniversity Council (VLIR), grant 100014 from NRF-TWAS, and a grant from the
Dutch Postcode Lottery.

12/15



Author contributions
JL wrote all the source code of the core engine and the R and Python interfaces presented in this paper, and wrote the first
draft of the manuscript. DMH drafted the introduction section and Figure 2. EK contributed to Figure 2 and provided editorial
assistance. DN wrote R code for the second example application. NH contributed to the software design and provided editorial
assistance. WD contributed to the software design, performed the runtime analysis, wrote R code for the example applications,
and wrote the ”Model applications” and ”Future directions” sections of the manuscript. All authors reviewed the manuscript.

Competing interests
The authors declare no competing interests.

References
1. Railsback, S. F. & Grimm, V. Agent-based and individual-based modeling: a practical introduction (Princeton university

press, 2011).

2. Willem, L., Verelst, F., Bilcke, J., Hens, N. & Beutels, P. Lessons from a decade of individual-based models for infectious
disease transmission: a systematic review (2006-2015). BMC Infect. Dis. 17, 612 (2017). DOI 10.1186/s12879-017-2699-8.

3. Kravari, K. & Bassiliades, N. A survey of agent platforms. J. Artif. Soc. Soc. Simul. 18, 11 (2015).

4. Delva, W., Hazelbag, C. M. & Dushoff, J. Simulation-based calibration of individual-based models to summarised data in
hiv epidemiology: a systematic literature review and new mice-based method. In 22nd International AIDS Conference
(AIDS 2018) (Amsterdam, The Netherlands, 2018).

5. Liesenborgs, J. Simpact cyan. https://simpactcyan.readthedocs.io/en/latest/index.html (2017).
Accessed: 2019-04-10.

6. Liesenborgs, J., Hendrickx, D. M., Van Reeth, F., Hens, N. & Delva, W. Simpactcyan: a simulation engine for individual-
based models in hiv epidemiology. In Epidemics6 – 6th International Conference on Infectious Disease Dynamics (Sitges,
Spain, 2017).

7. Hendrickx, D. M. et al. Comparison of two individual-based models for simulating hiv epidemics in a population with
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