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Abstract9

Heterogeneous populations can lead to important differences in birth and death rates across a10

phylogeny. Taking this heterogeneity into account is thus critical to obtain accurate estimates of11

the underlying population dynamics. We present a new multi-state birth-death model (MSBD)12

that can estimate lineage-specific birth and death rates. For species phylogenies, this corresponds13

to estimating lineage-dependent speciation and extinction rates. Contrary to existing models,14

we do not require a prior hypothesis on a trait driving the rate differences and we allow the same15

rates to be present in different parts of the phylogeny. Using simulated datasets, we show that16

the MSBD model can reliably infer the presence of multiple evolutionary regimes, their positions17

in the tree, and the birth and death rates associated with each. We also present a re-analysis of18

two empirical datasets and compare the results obtained by MSBD and by the existing software19

BAMM. The MSBD model is implemented as a package in the Bayesian inference software20

BEAST2, which allows joint inference of the phylogeny and the model parameters.21
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Significance statement22

Phylogenetic trees can inform about the underlying speciation and extinction processes within23

a species clade. Many different factors, for instance environmental changes or morphological24

changes, can lead to differences in macroevolutionary dynamics within a clade. We present here25

a new multi-state birth-death (MSBD) model that can detect these differences and estimate both26

the position of changes in the tree and the associated macroevolutionary parameters. The MSBD27

model does not require a prior hypothesis on which trait is driving the changes in dynamics and28

is thus applicable to a wide range of datasets. It is implemented as an extension to the existing29

framework BEAST2.30
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1 Introduction31

Model-based phylogenetic and phylodynamic inferences are widely used to study both epidemics32

and macroevolution by using genetic sequences to reconstruct evolutionary processes. In many33

cases, the underlying population is structured, i.e it is composed of many different subpopulations34

which are subject to different evolutionary dynamics. Ignoring this structure and the resulting35

lineage-specific changes in evolutionary parameters can lead to biases in the inferred phylogeny36

and parameter estimates [1].37

Multi-state birth-death models have been widely used to model population structure and38

analyze phylogenies built from individuals in a structured population [2, 3, 4, 5], both in epi-39

demiological and macroevolutionary applications. These models contain a series of discrete states40

with state-specific birth and death rates, such that each state corresponds to a specific evolution-41

ary regime. Based on a phylogeny where each tip is associated with a state, the state-dependent42

birth-and death rates are estimated. Birth events correspond to transmission events in epidemi-43

ology and speciation events in macroevolution, while death events correspond to becoming-non-44

infectious events in epidemiology and extinction events in macroevolution. A state might be for45

example a geographic location or the presence of a particular trait.46

The Binary State Speciation and Extinction (BiSSE, [2]) and its extension to multiple states47

MuSSE, included in the package Diversitree [3], were the first efforts to infer state-specific birth48

and death rates from ultrametric phylogenies, i.e trees with all tips sampled at the same point49

in time, where each tip is assigned to a state. In [4], these approaches were extended to non-50

ultrametric trees. More recently, the Beast2 package BDMM [5] allowed the joint reconstruction51

of a phylogeny and quantification of the parameters of an underlying multi-state birth-death52

model. These approaches all have in common that the model is conditioned on a particular total53

number of states and the state at each tip in the phylogeny. This necessitates the formulation54

of a hypothesis as to which underlying feature drives the pattern of evolutionary rates. The55

BiSSE models in particular have been criticized for their approach being biased towards inferring56

trait-dependent rates regardless of the chosen trait [6]. Although this was addressed by the57

introduction of the HiSSE model [7] which uses a more appropriate null hypothesis, testing58

multiple different traits or combinations of traits would still require a different run of the inference59
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for each. Thus there is a clear need for models which do not make such strong prior assumptions60

on the process driving the changes in evolutionary rates.61

The method Bayesian Analysis of Macroevolutionary Mixtures (BAMM, [8]) addresses these62

issues and is able to infer the number of states, assign each lineage of the tree to a state and63

estimate the birth- and death rate parameters associated with each state. However, its results64

have been called into question, as [9] identified issues regarding the calculation of its likelihood65

function and a strong dependency on the prior when inferring the number of states, as well as66

inaccurate diversification rates estimates. Some of those criticisms were addressed by [10], which67

showed that the simulation used in [9] contained a large number of shifts which only affected68

small clades of the phylogeny, making them difficult to detect. [10] also pointed out that the69

sensitivity to the prior decreased sharply when using the default settings of BAMM rather than70

the setting used by [9]. However, issues regarding the calculation of the extinction probability71

in the likelihood function used by BAMM have to our knowledge not been addressed. Moreover,72

the process of moving between states is not explicitly modelled by BAMM, which may be a73

contributing factor to the prior sensitivity observed in some situations. Additionally, BAMM74

assumes that each state emerges only once along the tree. It thus implicitly links the changes75

in birth and death rates to lineage-specific innovations with no innovation occurring more than76

once, which may not adequately represent situations where the rates are driven by environmental77

or geographic conditions, for instance.78

In this paper, we present a new Bayesian method for inferring lineage-specific birth and79

death rates jointly with a phylogeny, using a multi-state birth-death model. This method infers80

the number and position of evolutionary regimes as well as the state change rate, and requires81

strong assumption with respect to the features driving the variation in birth and death rates.82

We validate the implementation of this new method and evaluate its performance on simulated83

datasets. We then use it to re-analyze two empirical phylogenies and compare the results to84

those obtained by BAMM on those trees. Finally we discuss the limitations of the method and85

planned future work.86
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2 Results87

We developed and implemented the MSBD model as a package within the BEAST2 framework.88

It takes genetic sequences or fixed phylogenetic trees as an input. The output is the inferred89

trees (in the case of sequences) and an assignment of lineage-specific birth and death rates to90

all lineages in the tree. Changes of these rates may happen anywhere along a branch. In what91

follows, we will first show evidence for the correctness of our implementation in a simulation92

study. Then, based on simulations, we investigate the accuracy of our tool when estimating93

the rates and change times. Last, we will present the results of an analysis of a lizard and a94

hummingbird phylogeny.95

2.1 Validation: sampling from prior96

To assess the correctness of the implementation of our model, we compare the distributions97

obtained by simulating under the model and by running the MSBD inference without data. The98

distributions are expected to match if the model is correctly implemented.99

The results of the simulations without extinction are shown in Figure 2. The distributions100

obtained by forward simulation and by sampling from the prior match perfectly for all statistics,101

which provides strong evidence that the MCMC method is implemented correctly.102

As expected, the simulations with extinction do not fully match between the two methods,103

as the forward simulation allows for state changes in the extinct parts of the tree whereas our104

method assumes there were none. As shown in Figure S1, there is a slight discrepancy in the105

statistics linked to the tree topology, and a stronger discrepancy in the statistics linked to the106

state distribution.107

2.2 Accuracy of the inference108

We use simulated phylogenies to assess the accuracy of the inference. Some datasets were sim-109

ulated under the model, using a fixed set of states and a change rate γ. Other datasets were110

created by simulating two different trees under constant birth-death processes and attaching111

them. These joined datasets were thus characterized by the proportion p of tips in state 1 rather112

than γ.113
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2.2.1 Parameter estimates114

We evaluated the accuracy of the parameter estimates for the birth rates, death rates and state115

change rates by estimating the relative error of the median estimate and the coverage on simulated116

datasets. The error on the birth and death rates was evaluated both as an average across all tips117

and as an average across the entire tree, weighted by the edge lengths.118

The results are shown in Figure 3. Estimates for the parameter γ are accurate for values119

around 0.2, corresponding to between 1 and 3 state changes in the tree on average. However,120

the estimates are much worse when γ is high, i.e. 2.61. This is likely due to the approximation121

of no state changes in the unsampled parts of the tree being more violated when γ is high.122

Estimates of the birth rates are very accurate, except for the estimates at the tips under123

high γ. Since the estimates averaged over the whole tree do not suffer in a similar way, this124

exception is likely due to mis-attributing tips to the wrong regime rather than increased error on125

the regimes themselves: state changes affecting edges leading to tips, which are more likely when126

γ is high, cannot be detected by the inference, and will lead to tips being assigned a different127

state in the inference than the one recorded in the simulation. Estimates of the death rates128

are generally less accurate, although the true value is still in the 95% HPD interval in the vast129

majority of cases.130

In conclusion, the MSBD method is able to recover the correct birth and death rates from131

simulated phylogeny, and is able to estimate the state change rate when it is small.132

2.2.2 State number and positions133

We measure the accuracy of the inference regarding the number of states and the partition of tips134

into the different states. We use the Variation of Information (VI) criterion [11] to measure the135

distance between the inferred state placement and the truth: a measure of 0 indicates perfect136

concordance between the two. The upper bound of the VI distance depends on the number137

of states in the colouring and varies between 1.39 for 2 states and 3.22 for 5 states, however138

in this paper we have rescaled all VI distances so they range from 0 to 1, in order to make139

comparisons easier. VI distances were calculated for each sample of the posterior separately140

and on a ”consensus” colouring built from the parameter values inferred for each edge. This141
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consensus colouring put tips in the same state if the median estimate of their birth and death142

rates were less than 10% apart. Finally, we also estimated the posterior support for pairs of143

tips to be in the same state, split by whether these pairs are also in the same state in the true144

colouring.145

Results are shown in Figures 4 and 5. The first finding is that the number of states inferred146

by MSBD is not a reliable estimate of the underlying process (Figure 4, right). In particular, the147

median estimate is similar for all datasets. Thus it should not be considered a good indicator of148

how many diversification regimes are in the process. The VI distance also shows discrepancies149

between the sampled clusterings and the truth on all datasets, in particular on the dataset with150

high γ, the dataset with 5 states and datasets with identical birth rate and different death rates151

(Figure 4, left). The consensus clustering however is closer to the truth on all datasets, which152

confirms that birth and death rate estimates are reliable. Due to the model, many simulated153

trees contains small clades of one state nested within another state. We expect these clades154

to be difficult to detect, as they cause small differences in the probability density. To test this155

hypothesis, we excluded all clades which contained less than 6 nodes (internal nodes included)156

from the true colouring, by attributing the tips of that clade to the ancestor state instead. Thus157

the tips belonging to small clades are not removed but simply recoloured (indicated as “With158

recolouring” in Figures 4 and 5). We observe a marked improvement in similarity when using this159

method, confirming that those small clades are unlikely to be detected by the MSBD inference.160

As seen earlier, the death rate estimates are less accurate than the birth rate estimates, and161

this is reflected by these results as well: the inference cannot easily distinguish between two162

states when when the death rates are different but the birth rates are identical even when those163

two states are clearly delimited in the tree (see row 4 of Figure 4). In conclusion, when states164

differ by their birth rates, the consensus colouring represents an accurate estimate of the original165

colouring, especially when excluding smaller clades. The quality of the inference is however much166

worse on states which only differ by their death rates.167

We also looked at the posterior support for pairs of tips being in the same state, shown in168

Figure 5: if the inferred colouring is accurate, we expect pairs which are in the same state in169

the true colouring (in red in the figure) to have much higher support than pairs in different true170

states (in green in the figure). The results are consistent with the previous findings, showing171
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that the posterior support reflects the true state partition if small clades are excluded and states172

have different birth rates.173

2.2.3 Tip state inference174

Figure 6 shows an example of the posterior distribution on the birth rate for one tip of a tree.175

The tree was originally simulated with parameters λ1 = 1, λ2 = 10, µ = 0.5 and γ = 2.61. The176

figure shows a clear bimodal distribution, which is indicative that the inference has identified (at177

least) two separate diversification regimes across the tree, but that there is uncertainty on which178

regime this specific tip belongs to.179

This figure illustrates both the power of the MSBD inference, which is able to infer complex180

and nuanced evolutionary dynamics, and the complexity involved in interpreting the results. The181

median of the posterior is here 8.0, which corresponds to the most sampled state for this tip,182

but entirely misses the state with lower lambda. The 95% HPD interval is [0.0011; 9.94], which183

covers both states but gives no indication that the distribution is bimodal. Finally, the mean184

estimate is 6.0, which is a misleading summary of the distribution.185

In this work we have used the median estimates to measure the accuracy of the inference, as186

it is the most representative of the configuration with the most posterior support. However, one187

should keep in mind that commonly used summary statistics can be flawed when summarizing188

distributions which are strongly multimodal.189

2.3 Empirical datasets190

We re-analyzed two empirical trees which were originally analyzed using BAMM: a phylogeny of191

hummingbird species obtained from [12] and a phylogeny of scincid lizards obtained from [13].192

Both trees contain only extant species, with sampling proportions respectively ρ = 0.86 and193

ρ = 0.85. In both analyses, the sampling proportions were fixed to the truth and the priors for194

the birth and death rates were set to LogNormal(1.5,2.0). The tree topology was fixed and the195

prior on n∗ was set to Poisson(4). The prior on γ was set to LogNormal(−4.0,1.0). We also196

performed a second analysis on the lizards phylogeny using the priors on birth rate and death197

rate which were originally used with BAMM, i.e Exponential(1.0) for both rates. Priors for γ198
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and n∗ were set to the same value as the previous analysis. The BAMM settings used on the199

hummingbirds phylogeny are not publicly available, so a similar analysis was not possible.200

Average diversification rates per edge, weighted by the edge length, were logged for each201

edge. Figure 7, parts A and B, shows the results of the MSBD inference with lognormal priors202

on both empirical phylogenies, summarized as the median of the average diversification rate for203

each edge.204

The hummingbirds inference (part A) shows some similarities with the original analysis by205

BAMM, but also differences. The diversification rates inferred by BAMM lied between 0.1 and206

0.4, consistent with our results. BAMM also found strong posterior support for between 2207

and 4 states with elevated diversification in the clade that includes Bees, Mountain Gems, and208

Emeralds, with particularly strong support for the Bees clade having a distinct diversification209

regime. In accordance with those results, the MSBD inference identifies 3 clades with elevated210

diversification rate, the Bees clade and 2 subclades of the Emeralds family. The main difference211

between the two inferences is that our method finds no evidence for time-dependency in the212

diversification rates, contrary to BAMM which infers an average speciation decay of 0.35 to 0.15213

over 25 Myrs, corresponding to an exponential decay rate of 0.034 across the tree.214

On the lizard phylogeny (part B), the results are quite different from the original analysis215

performed using BAMM. BAMM found strong support for two distinct configurations, one con-216

figuration with separate diversification regimes in the Lerista and Ctenotus clades and the rest217

of the tree, and one configuration with separate diversification regimes in the Lerista clade, the218

Ctetonus clade and the rest of the tree. MSBD on the other hand shows no evidence of separate219

diversification regimes in the tree, and infers a median speciation rate of 0.125 and a median220

extinction rate of 0.005 across the entire phylogeny. Similarly to the hummingbirds dataset, our221

method also detects no time-dependency in the diversification rate, although BAMM infers an222

average speciation decay rate of 0.2.223

As time-dependency is not explicitly modelled in the MSBD inference, detecting it requires224

inferring widespread state changes across the tree. Thus the absence of time-dependency in our225

original inference could be due to the prior on γ being too low, and thus moving the inference226

away from this configuration. To test this hypothesis, we also ran an analysis with a much higher227

prior on γ, set to LogNormal(4.0,1.0). The results are shown in Figure 7, parts C and D. With228
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the higher prior on γ, we can indeed recover signal for time-dependency in the lizards phylogeny,229

with edges close to the tips inferred to have a lower diversification rate than edges closer to the230

backbone of the tree. On the other hand, the hummingbirds phylogeny still shows no strong231

evidence for time-dependency, and no longer detects the clades identified as under different232

diversification regimes by the previous analysis. Thus it appears that when time-dependency233

is absent or weak, higher priors on γ can lead to a significant amount of noise and to the loss234

of signal for particular clades having different rates. This also illustrates the necessity of being235

careful when summarizing results from the MSBD inference, as a more in-depth analysis shows236

that edges in the hummingbirds phylogeny actually show a strong bimodal distribution which is237

very similar from edge to edge. The strong differences apparent in Figure 7, part C are in fact238

due to small variations in this bimodal distribution which lead the median to switch from one239

mode to the other.240

Similar results were obtained when summarizing based on the median speciation and extinc-241

tion rate, as well as when using the same priors as the original BAMM analysis. They are shown242

in Figures S2-S5.243

3 Discussion244

We have presented a new multi-state birth-death model for Bayesian inference of lineage-specific245

birth and death rates. The model is composed of multiple states, each associated with a specific246

birth and death rate, as well as a state change rate. The positions and times of state changes247

on the phylogeny then define to which state each lineage belongs to. The MSBD model thus248

represents a discretization of the true evolutionary process as a series of separate evolutionary249

regimes.250

We have shown on simulated datasets that the MSBD inference can accurately estimate birth251

and death rates, and that those estimates can be used to build an accurate partition of the tree252

into states. However, our results also show that the MSBD inference cannot detect clades with253

different rates if the clades have very few tips. This is expected, as the method relies on the254

pattern of relative edge lengths to infer rates, thus small clades will not have enough signal to255

be inferred. Additionally, death rates estimates are less accurate than birth rates estimates in256
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all simulation conditions. This in turn leads to lower accuracy in the inference of the colouring257

of the tree in datasets where states only differ by death rate, with many trees being inferred as258

presenting only one state.259

The empirical analyses show two very different situations when using the default priors: on260

the hummingbirds dataset, our method and BAMM reach similar conclusions both regarding the261

presence and positions of separate diversification regimes and the parameter estimates. On the262

lizards phylogeny however, BAMM and MSBD obtain very different results, with MSBD finding263

no evidence of either rate changes or time-dependent rates. Further analyses on the empirical264

datasets show that MSBD is able to infer a pattern of time-dependent rates in a piecewise265

manner if there is signal for it, however this requires the prior for γ to be set much higher than266

for detecting single clades with different diversification regimes. It appears from our analysis267

that setting the prior in this way when no time-dependency is present can lead to noise and268

loss of signal. Thus one extension of MSBD will be to solve this issue by explicitly modelling269

time-dependent birth and death rates independently from changes in diversification regimes. It270

is to be noted that both empirical analysis were originally run with BAMM v1.0.0. BAMM has271

undergone significant changes since, including several bugfixes and modifications of the likelihood272

function, thus it is possible that the original results do not reflect the results which would be273

obtained with the latest version of the method.274

One important thing to note is that interpreting the results of the MSBD inference requires275

more care than for other models, due to two primary reasons. The first is that the states are276

not linked to specific tips. If two MCMC samples contain k states, we cannot determine a277

precise correspondence between states in the first sample and states in the second. This problem278

is compounded by the variation in the number of states between different samples across the279

chain. Thus individual samples may not be a good representation of the overall inference. This280

is supported by the results shown in Figure 4, where the consensus clustering obtained from the281

rate estimates is much closer to the true clustering than the individual colourings sampled in the282

posterior.283

The second reason is that the MSBD inference will frequently produce multi-modal posterior284

distributions on the rates associated with specific nodes or edges when the data shows signal for285

multiple regimes and there is uncertainty on which regime the node or edge in question belongs to.286
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In these cases, the usual metrics used to describe Bayesian parameter estimates, i.e the median287

and HPD interval, give an incomplete picture of the output by failing to distinguish between288

uncertainty around the rate estimate and uncertainty on regime attribution. Thus analyzing the289

output of the MSBD inference should be tailored to the research question being considered, and290

may require different metrics than the ones we have used in this paper.291

Future work will focus on explicitly implementing time-dependent birth and death rates to292

better accommodate situations where diversity-dependent or environment-dependent diversifica-293

tion is present, and on expanding the inference options available, in particular regarding sampling294

schemes. Currently only state-independent extinct and extant sampling are supported, and these295

are assumed to have known (fixed) values. We plan to incorporate a sampling scheme where each296

extant tip represents a genus or other group of species, as well as state-dependent sampling rates.297

4 Materials and Methods298

4.1 Multi-states birth-death model299

We use a multi-states birth-death (MSBD) model with contemporaneous and non-contemporaneous300

sampling. This model contains n∗ states, each associated with a specific birth rate λi and death301

rate µi, i ∈ {1, 2, ..., n∗}. The process starts with one individual in a state r picked uniformly at302

random from the n∗ possible states, at time tor > 0 in the past. Through time, each individual in303

state i undergoes birth events giving rise to an additional individual in state i with rate λi, and304

dies with rate µi. Additionally, each individual in any state i undergoes a change in birth and305

death rates to a different state j with rate m. Thus, the overall rate of change for any individual306

is γ = m(n∗ − 1). Note that γ = 0 for n∗ = 1.Throughout this paper, we consider γ (and not307

m) as a parameter.308

The process stops at present time t = 0. The model includes both extinct and extant309

sampling: individuals are sampled upon death with a probability σ and individuals at the present310

are sampled with a probability ρ.311

The process gives rise to complete trees, displaying all birth, death, state change, and sampling312

events (Figure 1, left). The reconstructed tree T is obtained by pruning all lineages of the313
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complete tree without sampled descendants (Figure 1, right). By analogy with the figure we314

will call the attribution of states to lineages and the position of state changes on the tree the315

colouring S of the tree.316

4.2 Probability density of a reconstructed tree317

We derive the likelihood of the MSBD model on a given phylogeny, i.e the probability density of318

the reconstructed tree T with the colouring S, given the values of the birth and death rates for319

each state summarized in η: f [T ,S|η].320

We refer to a node in the phylogeny as either a branching event, a tip or a state change321

event. Thus the edges of T ,S are the edges of T subdivided at state change events, and any322

edge belongs to only one state.323

Following [5], we define pi(t) as the probability of a lineage in state i at time t > 0 not324

appearing in the reconstructed tree, i.e the probability of this lineage not being sampled before325

or at the present. We also define qi,N (t) as the probability density of a given edge N in state i326

at time t > 0 evolving according to the tree T and states S between time t and the present.327

Note that f [T ,S|η] = qr,N (tor) × g(r), with r being the root state, and g(r) being the328

probability of the first individual being in state r. We assume here a uniform distribution, i.e.329

g(r) = 1
n∗ .330

In a similar fashion to [5], we obtain the ordinary differential equations Eq. 1 for pi(t) and331

Eq. 2 for qi,N (t) where t ∈ [te; ts], ts > te with te and ts respectively the end and start times of332

edge N :333

dpi
dt

(t) = −(γ + λi + µi)pi(t) + µi + λipi(t)
2 +

∑
j 6=i

γ

n∗ − 1
pj(t),

pi(0) = 1− ρ,

(1)
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and334

dqi,N
dt

(t) = −(γ + λi + µi)qi,N (t) + 2λiqi,N (t)pi(t),

qi,N (0) = ρ if N leads to a tip at the present te = 0,

qi,N (te) = µiσ if N leads to a tip at time te > 0,

qi,N (te) = λiqi,N ′(te)qi,N ′′(te) if N branches at te > 0 into N ′ and N ′′,

qi,N (te) =
γ

n∗ − 1
qj,N (te) if N changes from state j to i (forward in time) at te > 0.

(2)

These ordinary differential equations do not have an analytical solution. Numerical inte-335

gration is computationally expensive and can be unstable for certain parameters. Thus, in our336

implementation, we make the assumption that no state changes happen in the unsampled parts337

of the tree, meaning we observe all state changes in the reconstructed tree. With this assumption,338

the differential equation for pi(t) simplifies to Eq. 3.339

dpi
dt

(t) = −(γ + λi + µi)pi(t) + µi + λipi(t)
2

pi(0) = 1− ρ
(3)

With this approximation we can derive an analytical solution for pi(t):340

pi(t) = − 1

λi

(yi+ λi(1− ρ))xie
−ct − yi(xi + λi(1− ρ))

(yi + λi(1− ρ))e−ct − (xi + λi(1− ρ))
,

where c =
√

(γ + λi + µi)2 − 4µi(1− σ)λi,

xi =
−(γ + λi + µi)− c

2
, and yi =

−(γ + λi + µi) + c

2
.

(4)

Using Equation (4) in the differential equation for qi,N (t) (Equation 2) allows us to derive341

qi,N (t) analytically:342

qi,N (t) = qi,N (te)e
c(te−t)

(
(yi + λi(1− ρ))e−cte − xi − λi(1− ρ)

(yi + λi(1− ρ))e−ct − xi − λi(1− ρ)

)2

(5)

For an edge N in state i which starts at time ts and ends at time te (ts > te), qi,N (ts) is the343

likelihood of the full subtree descending from edge N . The likelihood of edge N can be obtained344
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as fN =
qi,N (ts)
qi,N (te)

= ec(te−ts)
(

(yi+λi(1−ρ))e−cte−xi−λi(1−ρ)
(yi+λi(1−ρ))e−cts−xi−λi(1−ρ)

)2
.345

This allows us to write the probability density of the phylogeny T and the state changes346

assigned to the lineages S, with Ni being the set of edges in state i, Bi being the set of birth347

events in state i (and for each event b ∈ Bi, tb the time of this event), Si being the set of extinct348

tips in state i, next being the number of extant tips, and k being the number of state change349

events:350

f(T ,S|η = (λ, µ, γ)) =
∏
i

 ∏
N∈Ni

fN ×
∏

b∈Bi(T )

λi(tb)×
∏

s∈Si(T )

σµi

× ( γ

n∗ − 1

)k
× ρnext (6)

Note that if n∗ = 1, then k = 0 and the term
(

γ
n∗−1

)k
is removed from Equation 6. Note also351

that if the tree starts with 2 lineages at time t1 instead of 1 lineage at time tor, the likelihood352

becomes 1
λr
f(T ,S|η = (λ, µ, γ)).353

4.3 Bayesian inference354

We implemented our model in a Bayesian framework as an add-on to the popular MCMC in-

ference software BEAST2 [14], which allows to estimate S and η from a phylogeny based on

Equation 6. The inference can be performed on a fixed tree T , or directly on sequences, in which

case T is inferred jointly with the other parameters using the substitution and clock models

provided by BEAST2. In a joint inference, we sample from the following distribution:

f(T ,S, η, θ|D) =
P (D|T , θ)f(T ,S|η)f(η)f(θ)

P (D)

with the data D being the sequence alignment, θ being the parameters of the sequence evolution355

model, and f(η)f(θ) being the prior distributions for the model parameters, and f(D|T , θ) being356

Felsenstein’s likelihood for the sequencing data. If we condition on a fixed tree T , we use D = T .357

While we infer n∗ for our data, the number of states assigned to the reconstructed phylogeny,358

n, may be smaller than n∗, i.e. n ≤ n∗. To reduce the complexity of the computation, we do not359

sample the birth and death rates associated with the states which are not currently assigned to360
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the tree, and instead marginalize over those rates. This marginalization introduces an additional361

term (n∗−1)!
(n∗−n)! to the probability density to account for the sampling of n∗ − n unassigned states.362

It has been shown that in unstructured models, the three parameters λ, µ and σ are not363

identifiable [15]. In order to avoid potential parameter correlations in the structured model, we364

require the sampling probabilities ρ and σ to be provided as inputs.365

More details on the implementation can be found in the Supplement.366

4.4 Simulation study367

To study the behaviour of our method, we simulated trees under our model using a range of368

parameter values. We used a stochastic forward in time simulation process which takes the369

following inputs:370

• a stopping condition: the process is stopped upon reaching a certain number of tips or371

after a certain time had passed372

• a rate γ of state change373

• the total number of states in the process n∗374

• a function to sample birth rates and death rates for all states375

• sampling rates or sampling numbers for the extant tips and extinct tips376

The birth-death process is started with either one or two lineages and is simulated with the377

Gillespie algorithm until the stopping condition is met or all lineages descending from one of the378

starting lineages have gone extinct, in which case the resulting tree is discarded. At the end of the379

process, lineages are discarded based on the sampling settings to obtain the reconstructed tree.380

If the sampling settings lead to no lineages being sampled, the resulting tree is also discarded.381

4.4.1 Validation: sampling from prior382

To ensure that the implementation of our model is correct, we performed a comparison of the383

distribution of trees obtained from forward in time simulations of the process to the distribution384

obtained from running an MCMC inference without sequence data under our model with the385

same priors. This “sampling from the prior” procedure has been described in [16].386
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We performed two sets of simulations, one with death (i.e µi > 0 ∀i) and one without387

death (i.e µi = 0 ∀i). The distributions obtained without death should match if the model is388

correctly implemented, however we expect a discrepancy when simulating with death, due to the389

approximation made in the probability density function employed by the MCMC.390

The number of tips was fixed to 50, and tmrca was fixed to 1.0. The priors used were the391

following: LogNormal(1.5,1.0) for the birth rates λi and LogNormal(1.0,1.0) for the state change392

rate γ. The prior for the death rates µi was the Dirac function δ0 in simulations without death393

and LogNormal(-1.0,0.5) in simulations with death. The prior on n∗ was set to Poisson(4).394

The forward in time simulation was performed as follows. Parameters for five different states395

were drawn from the prior distributions, then a tree was simulated starting with two lineages in396

the same state, with this initial state being chosen uniformly at random. The simulation was397

stopped after a time t = 1.0, or when all lineages had gone extinct. The simulated tree was kept398

in the dataset if the following two conditions were met: the number of extant tips was n = 50 and399

the time of the most recent common ancestor tmrca = 1.0, i.e neither of the original two lineages400

had gone fully extinct. New parameters were drawn from the priors for the next simulation,401

independent of the previous draw having resulted in a tree which was kept or not.402

We assessed the match between the two distributions of trees on two measures: the gamma403

statistic, which measures the balance of recent branching events in a tree against older events,404

and the colless statistic, which measures the left-right balance of lineages in a tree. To assess the405

sampling of state positions we also compared the distribution for the number of tips in the state406

with the maximum number of tips and the number of sampled states.407

4.4.2 Accuracy of the inference408

We assessed the quality of the MSBD inference on simulated datasets covering a range of possible409

configurations: constant birth and death rates, multiple states with different birth rates, multiple410

states with different death rates, and multiple states with different birth and death rates. Some411

of these datasets were simulated using the forward in time process described previously. Our412

parameter choices for λ and µ are displayed in Figure 3. In short, we performed one set of413

simulations with γ = 0. Then we performed a set of simulations with two different birth rates414

(λ1 = 1, λ2 = 10, µ = 0.5). Next we performed a set of simulations with two death rates,415
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where the net diversification (birth-death) matched the simulation with the birth rate variation416

(λ = 10.5, µ1 = 10, µ2 = 1). The rationale for keeping the net diversification the same was to417

investigate the difference of performance of the method when varying birth vs. death rates in418

the light of as few changes as possible across the simulations. Finally we did a set of simulations419

with 5 birth rates and one death rate. We chose “low” and “high” values of γ such that the420

resulting trees would contain respectively between 1 and 3 state changes and between 10 and 14421

state changes on average, excluding the changes on edges leading to tips. The “low” value was422

thus set to 0.2 for datasets with 2 states, and 0.29 for the dataset with 5 states, while the “high”423

value was set to 2.61.424

This process often led to trees where one of the states only covered a small portion of the425

tree, and so there was little signal for the presence of two states. To address this issue, we426

also simulated so-called joined trees, which were made of two trees simulated separately under a427

constant birth-death process. The root of the smaller tree was then attached to the bigger tree428

such that the resulting tree was ultrametric. These joined datasets were thus characterized by429

the proportion p of tips in state 1 rather than by a change rate γ.430

No sequences were simulated, and all analyses were performed with fixed tree topologies.431

Thus we estimated S and η for a fixed tree T . We measured the accuracy of the parameter432

estimates as well as the colouring S.433
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Figure 1: Visual representation of the multi-state birth-death model on a complete tree (left)
with sampling events indicated in orange, and on the corresponding reconstructed tree (right).
Each state is represented by a colour: the ancestral state, in black, starts at the root. The other
states, in blue, red and green, start at change points along the tree. The same state can be
present in multiple clades along the tree, such as the blue state in the complete tree.
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Figure 2: Comparison of the distributions of multiple summary statistics on trees obtained from
forward simulation (in green) and MCMC sampling from the prior (in red) under a pure-birth
MSBD process.
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Figure 3: Performance of the birth, death and state change rates inference on different datasets.
All measures are averages over 100 trees, with 200 tips for the datasets with 1 or 2 states and
500 tips for the dataset with 5 states.
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Figure 4: Performance of the state number and colouring inference on different datasets. All
measures are averages over 100 trees, with 200 tips for the datasets with 1 or 2 states and 500
tips for the dataset with 5 states.
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Figure 5: Posterior support for pairs of tips being inferred in the same state over different
datasets. All measures are averages over 100 trees, with 200 tips for the datasets with 1 or 2
states and 500 tips for the dataset with 5 states.

25

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 11, 2018. ; https://doi.org/10.1101/440982doi: bioRxiv preprint 

https://doi.org/10.1101/440982
http://creativecommons.org/licenses/by-nc-nd/4.0/


D
e

n
si

ty

ns2_l1x10_m0.5_hg_2.log

-5 0 5 10 15 20
0

5E-2

0.1

0.15

0.2

0.25
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the MSBD method.
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Figure 7: Empirical hummingbirds phylogeny (parts A, C) and lizards phylogeny (parts B, D)
coloured by the median diversification rate inferred by MSBD for each edge. Inferences were run
with a prior favoring low values of γ (parts A, B) or higher values of γ (parts C, D).
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