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Abstract

Hypoxia is a well-recognized risk factor in several pulmonary vascular diseases including 

pulmonary hypertension (PH). Furthermore, hypoxia-associated inflammatory changes enhance 

the structural and functional changes in the pulmonary artery (PA) of PH patients. Understanding 

the mechanisms that link hypoxia and inflammation, particularly early in disease, is key to 

development of novel therapeutic avenues for PH. Thymic stromal lymphopoietin (TSLP) is an 

“early” inflammatory mediator thought to be critical in diseases such as asthma, chronic 

obstructive pulmonary disease and atopic dermatitis. TSLP has canonical effects on the immune 

system, but can also have non-canonical effects on resident lung cells, e.g. airway smooth muscle. 

Currently, the expression and role of TSLP in the PA is unknown. We hypothesized that locally-

produced TSLP potentiates the effects of hypoxia in PA remodeling and contractility relevant to 

PH. Experiments in human PA endothelial cells (PAECs) and smooth muscle cells (PASMCs) 

found PAECs to be a larger source of TSLP which targets PASMCs to enhance intracellular Ca2+ 

responses to vasoconstrictor agonist as well as cell proliferation, acting via a number of signaling 

cascades including Stat3 and PI3/Akt. Hypoxia, acting via HIF1, enhanced PAEC production of 

TSLP, and promoted TSLP effects on PASMCs. Interestingly, TSLP per se enhance HIF1. 

Overall, these novel data highlight a role for TSLP in hypoxia effects on the PA, and thus relevance 

for inflammation in PH. 
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Introduction

Thymic stromal lymphopoietin (TSLP) is an IL-7-like cytokine first identified in the thymus as a 

factor in T and B cell development,[1-3] but now found to be produced by a variety of non-thymic 

cell types including epithelial cells of the lung, gut and skin, fibroblasts, and circulating and tissue 

immune cells, particularly dendritic cells.[2, 4, 5] Acting via a heterodimeric complex of its 

receptor TSLP-R and IL7R, TSLP serves as an interface between the environment and the body 

to skew the immune response towards a Th2 phenotype early during the response to allergic and 

other stimuli [6, 7]: an effect that has driven the high interest in TSLP in atopic dermatitis, allergic 

asthma, and non-infectious GI disorders.[3, 8-11] In spite of such interest, there are currently 

significant knowledge gaps in TSLP expression and signaling patterns (particularly given species 

and cell type differences). 

The relevance of TSLP to the pulmonary vasculature lies in the role of inflammation in 

diseases such as pulmonary hypertension (PH). While different types of PH differ in etiology, risk 

factors and presentations, there are two factors that may be important across multiple PH groups: 

hypoxia and inflammation. Hypoxia is certainly a key aspect of Group III PH, and can also be 

contributory in Group IV.[12, 13] In addition, there is increasing evidence that inflammation also 

plays a significant role in PH pathogenesis and exacerbation, and is likely important not only in 

Group III, but also Group I and IV.[14, 15] In this regard, hypoxia can influence the inflammatory 

response with subsequent effects on PA structure and function.[16-18] For example, in high-

altitude mountain sickness,[19, 20] circulating levels of pro-inflammatory cytokines are increased. 

In healthy persons, hypoxia increases serum IL-6, and C-reactive protein as well IL-6 receptor 

levels.[21-23] In mice, even short-term hypoxia leads to vascular leakage, inflammatory cell 

infiltrates and elevated serum cytokines.[24, 25] There is strong circumstantial evidence for an 
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inflammatory pathogenesis of PH[24, 26-28]. Furthermore, PH is associated with inflammatory 

conditions including rheumatoid arthritis, lupus, and collagen vascular diseases.[24, 29, 30] 

The significance of understanding the mechanisms by which hypoxia induces 

inflammation is clear. While such mechanisms may vary in different forms of PH, what is 

important to recognize is that if we can identify early mediators of the inflammatory response to 

hypoxia, then novel preventive and therapeutic avenues can be explored. Here, given the 

increasing recognition that TSLP is an early respondent and inflammatory mediator in other organ 

systems, we believe that the TSLP/TSLP-R signaling cascade is a novel target to explore in PH, 

especially given the potential that TSLP may have pleiotropic effects relevant to PH 

pathophysiology. Furthermore, the information derived from our studies has the potential to target 

other disease conditions where the hypoxia-inflammation axis is important, including lung injury 

especially following transplantation. Accordingly, in the current study, we explored the potential 

role of TSLP in the human pulmonary artery (PA) as a first step towards understanding the 

contribution of TSLP to PH. We hypothesized that TSLP represents a locally-produced 

inflammatory mediator in the PA, with autocrine/paracrine effects on the endothelium and smooth 

muscle. 
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Materials and Methods

Culture of Human Pulmonary Artery Endothelial Cells (PAECs) and Smooth Muscle Cells 

(PASMCs)  

Human PAECs and PASMCs were obtained from commercial sources (Thermo Fisher Scientific, 

Waltham, MA and ATCC, Manassas, VA) or, under a Mayo Institutional Board-approved protocol 

conforming with the Declaration of Helsinki. Cells were isolated from PA of lung samples 

incidental to patient thoracic surgery at Mayo Clinic-Rochester (lobectomies, pneumectomies for 

non-PH transplant indications and focal non-infectious indications such as localized tumors) as 

previously described [31-33]. Since samples were obtained post-hoc incidental to surgery and not 

for the purpose of this research per se, and furthermore patient care was unaffected by any studies 

performed with such samples, the protocol was considered not Human Subjects research and 

exempt by Mayo IRB (minimal risk protocol). 

Sample collection was limited to normal appearing areas of the vasculature identified by 

the pathologist and verified under gross microscopy. Samples were de-identified and were 

considered not Human Subjects Research (minimal risk protocol).  The PA was transported rapidly 

to the laboratory in ice-cold Hank’s Balanced Salt Solution (HBSS), cleaned and the endothelium 

separated, with adventitia removed for further cell isolation. 

For PASMCs, endothelium-denuded tissue was minced and placed in 100mm petri dishes 

with DMEM F12 containing 10% FBS/1% ABAM.  Tissue explants were maintained for 5-7 days 

at 37°C in 95% air/5% CO2 after which the source tissue was removed, cells grown to confluence 

for experiments,  plated in 60mm dishes (Western analysis), 8 well Lab-Tek culture chambers or 

96 well plates (proliferation assays).  

PAECs were isolated via modification of methods described previously.[31, 34] Briefly, 

endothelium from PA was minced with a razor blade and  incubated in Earle’s Balanced Salt 
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Solution (EBSS) containing 0.1% Collagenase II and 0.25 U/ml Dispase (Thermo) for 30 min at 

37oC with continuous agitation. DNase I (7.5 g/ml final concentration, Sigma, St. Louis, MO) 

was then added and tissue incubated for another 30 min at 37oC. Dissociated cells were separated 

from undigested tissue using a 100m strainer and pelleted at 400xg for 5 minutes.  Cells were 

resuspended in PBS and subsequently incubated with anti-CD45 and anti-CD31 microbeads 

(Miltenyi Biotec, Inc, Auburn, CA) and endothelial cells magnetically separated using the 

AutoMacs Pro cell separation system (Miltenyi) according to manufacturer’s protocol. Final cell 

pellet was resuspended in Endothelial Cell Growth Medium-2 (EGM-2, Lonza, Walkersville, 

MD), plated in 75cm2 flasks and grown to confluence.  

Prior to experimentation, PAECs and PASMCs were serum-deprived for 24 h and all cells 

were used between passages 1 and 5. PAEC and PASMC phenotype was verified by 

immunostaining using anti-CD31 (Abcam, Cambridge, MA; ab24590) or smooth muscle specific 

anti-smooth muscle actin (Sigma, St. Louis, MO; A2547) primary antibodies, respectively.

Cell Exposures

Human PAECs and PASMCs were incubated for 72 h at 37°C in normoxia (21% O2) or 

hypoxia (1% O2) in serum free medium (control), supplemented as appropriate with 20ng/ml 

recombinant human TSLP (R&D Systems, Minneapolis, MN). The role of HIF-1 was verified 

using 10M (final concentration) of HIF-1 pharmacological inhibitor (Santa Cruz Biotechnology, 

Inc., Dallas, TX). The functional activity of TSLP was inhibited with the use of 10M STAT-3 

Inhibitor, LLL12 (EMD Millipore, Billerica, MA). Inhibitors were incubated with cells 1h prior to 

adding TSLP.

Immunostaining
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PAECs and PASMCs were seeded in 8 well Lab-Teks (Thermo) at 5,000 cells/well.  Cells 

were fixed in 4% paraformaldehyde for 15 min and washed with TBS.  For detection of TSLP cells 

were permeabilized for 10 min in TBS containing 0.1% Triton X-100.  Detection of TSLP-R did 

not require permeabilization.  Cells were then blocked for 1h in TBS containing 4% normal donkey 

serum and incubated for 1h at room temperature with 5g/ml primary antibody (TSLP, Santa Cruz, 

sc-33791; TSLP-R, Santa Cruz, sc-83871). Samples were then washed with TBS and incubated 

with donkey anti-rabbit Alexa 555 secondary antibody (1:500, Thermo) for 1h at room 

temperature, washed with TBS and coverslips mounted with Flurogel II containing DAPI (Electron 

Microscope Sciences, Hatfield, PA).  Cells were visualized using a Nikon Eclipse TE2000-U 

microscope with a 40x/1.30 NA oil objective lens.   

Assessment of TSLP Levels

Cell culture supernatants from PAECs and PASMCs grown on 60mm petri dishes and 

exposed to normoxia or hypoxia, were concentrated using Ultracel 3k Amicon Ultra centrifugal 

filters (EMD Millipore)  and assayed for TSLP via ELISA (R and D Systems, Minneapolis, MN) 

according to manufacturer’s protocol, and as described previously for airway cells.[5] Changes in 

optical density were determined using a FlexStation3 microplate reader (Molecular Devices, 

Sunnyvale, CA) set to 450 nm (wavelength correction set to 540 nm) and compared to 

manufacturer-provided calibration curve. 

Western Analysis

Standard SDS-PAGE (Criterion Gel System; Bio-Rad, Hercules, CA; 4-15% gradient gels) 

and Trans-Blot Turbo transfer system using nitrocellulose membranes (Bio-Rad) were used. 

Membranes were blocked with LiCor blocking buffer (LiCor, Inc., Lincoln, NE) for 1h at room 

temperature prior to addition of primary antibody (1 g/mL rabbit anti-TSLP-R, sc-83871,Santa 
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Cruz;  1 g/mL rabbit anti-TSLP, sc-33791, Santa Cruz;1 g/mL rabbit anti-ERK, sc-94, Santa 

Cruz; rabbit anti-PI3K, 1:500, 06-195, EMD Millipore; 1g/ml rabbit  anti-Akt, , 4691, Cell 

Signaling Technologies, Inc, Danvers, MA;  2 g/mL rabbit anti-Cyclin E, sc-25303, Santa Cruz; 

2 g/mL rabbit anti-PCNA, sc-25280, Santa Cruz; 2 g/mL rabbit anti-JAK2, sc-294, Santa Cruz; 

2 g/mL rabbit anti-STAT3, sc-482, Santa Cruz ; 1g/ml rabbit  anti-GAPDH, 2218, Cell 

Signaling) overnight at 4oC with gentle rocking. Membranes were washed in TBS, incubated with 

goat anti-rabbit or anti-mouse secondary antibodies (IRdye800, 1:10,000 dilution, LiCor) for 1h 

at room temperature.  Blots were visualized and densitometry performed with an Odyssey infrared 

imaging system (Li-Cor Biosciences).

Cell Proliferation Assay

Proliferation of PASMCs was assayed at 72h (with or without preceding interventions) 

using the CyQuant NF kit (Invitrogen) according to manufacturer’s protocol. Cells were first 

washed with HBSS and exposed to the CyQuant dye for 1 h at room temperature. Dye binding to 

DNA (fluorescence) was measured on the FlexStation3 microplate reader. Dye calibrations were 

performed empirically using different cell counts to establish a standard curve and fluorescence 

converted to cell number to determine degree of proliferation. 

Real Time Calcium Imaging

We have previously described the techniques for real-time fluorescent imaging of [Ca2+]i 

using 5 M Fura-2/AM [31, 35]. Following dye loading for 45 minutes at room temperature, cells 

were visualized using a Nikon TE2000-U inverted microscope and Nikon Elements imaging 

software. Cells were initially perfused with HBSS containing 2mM CaCl2 to establish a baseline 

then perfused with 10M serotonin. [Ca2+]i responses from 20 regions of interest were obtained 

from multiple cells per chamber. 
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Statistical Analysis

All experiments were performed in cells from 4-8 different artery (patient) samples (n 

values are indicated for each experiment in the results). Not all protocols were performed in each 

sample although a minimum of 4 different samples was used for each experiment.  For box plots,  

both median (solid line) and mean (dashed line) are indicated. Analysis of results was 

accomplished using one-way ANOVA with repeated measures or Tukey post-hoc analysis where 

appropriate.  Statistical significance was set at p<0.05; all values are expressed as means + SE.
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Results

TSLP and TSLP-R expression and secretion in human PA. Immunofluorescence staining of 

human PAECs and PASMCs for TSLP and TSLP-R showed the presence of  TSLP and TSLP-R 

in both cell types (Figure 1A). Extracellular TSLP measured by ELISA demonstrated that PAECs 

release TSLP (110+24 pg/ml at normoxia), and such release was significantly enhanced (252+91 

pg/ml) following 72h hypoxia (p<0.05 compared to normoxia control; n=8). However, hypoxia 

did not appear to influence PASMC TSLP release (68+8 and 80+15 pg/ml, respectively; n=5) 

(Figure 1B): levels that were lower than those shown by PAECs. 

TSLP and TSLP-R protein expression in human PAEC and PASMC. Western Blot analysis 

using anti-human TSLP antibody demonstrated TSLP-R expression in both human PAECs and 

PASMCs . TSLP protein levels in PAECs were significantly increased (+78%) following hypoxia 

exposure compared to normoxia controls (p<0.05;n=4) . In contrast to PAECs, intracellular 

expression of TSLP in PASMCs was not significantly changed after 72h exposure to hypoxia (n=4) 

(Figure 2A). Western analysis from human PAEC and PASMC showed expression of TSLP-R and 

significant upregulation in both cell types following 72h hypoxia compared to normoxia controls 

(p<0.05; n=4) (Figure 2B). 

TSLP enhances human PASMC proliferation. Based on our data suggesting that TSLP, 

particularly under hypoxia, derives from PAECs, we explored the idea that such TSLP targets 

PASMCs, and thus focused the remainder of the study on this cell type. PASMCs were seeded into 

96 well plates with approximately 10,000 cells/well and proliferation experiments conducted using 

the CyQuant fluorescent assay. Serum-deprived PASMCs showed baseline proliferation of ~10% 

over a 72 h period compared to time zero. Human PASMCs exposed to 20ng/ml TSLP showed 

significantly greater proliferation (+27%) compared to baseline controls. Hypoxia alone also 
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enhanced human PASMC proliferation (+69%), although TSLP in combination with hypoxia had 

no significant additional effect on proliferation.  HIF inhibitor significantly blunted effects on 

proliferation with hypoxia exposure and in the presence of hypoxia and TSLP (-39% and -54%, 

respectively). The effectiveness of the HIF inhibitor was confirmed via immunostaining by 

prevention of HIF-1 translocation to the nucleus (data not shown). Furthermore, pre-treatment of 

PASMC with LLL12 (STAT3 inhibitor) also inhibited PASMC proliferation with hypoxia and the 

presence or absence of TSLP  (p<0.05, n=4) (Figure 3). 

Proliferation was further verified by Western Blot analysis of human PASMCs for 

proliferating cell nuclear antigen (PCNA) or Cyclin E protein expression following exposure to 

TSLP or hypoxia, both demonstrating enhanced PCNA (+89% with TSLP and +135% with 

hypoxia) and Cyclin E (+165% with TSLP and +115% with hypoxia) expression compared to 

normoxia controls. TSLP had no significant additional effect on expression of PCNA or Cyclin E 

in the presence of hypoxia.  Interestingly, the HIF inhibitor significantly blunted Cyclin E 

expression in the presence of TSLP during normoxia as well as during hypoxia exposure (-40%). 

The STAT3 inhibitor, LLL12, significantly reduced Cyclin E expression levels with TSLP 

treatment in both normoxia and  hypoxic conditions (-60% each compared to respective controls).  

PCNA expression was also significantly inhibited by LLL12 with hypoxia and TSLP treatment  (-

43%) but was not substantially effected during normoxia (p<0.05, n=5 each) (Figure 4).

Mechanisms of TSLP action in human PASMC.  MAPK and PI3K/Akt pathways are known to 

be involved in PA cell proliferation in response to mitogens, thus we investigated the possible link 

between these pathways with TSLP and hypoxia.  Western blot analysis of human PASMCs 

exposed to normoxia or hypoxia in the presence or absence of 20ng/ml TSLP for 72 h demonstrated 

no significant change in the expression of ERK1 and ERK2 with hypoxia  compared to normoxia.  
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Inhibition of STAT3 significantly blunted ERK1/2 expression (-61% and -64% respectively) under 

hypoxic conditions and in the presence of TSLP compared to hypoxia+TSLP.  Similar trends are 

observed with LLL12 treatment in normoxia but are not statistically significant.  In comparison, 

PI3K and Akt expression were considerably increased (+125% and +131%) in the presence of 

TSLP compared to normoxia controls. Additionally, hypoxia also significantly increases 

expression of PI3K (+240%) and Akt (+228%). HIF inhibition significantly prevented 

upregulation of Akt  (-58%) when exposed to hypoxia and TSLP and blunted PI3K expression 

when incubated with TSLP in normoxia (-52%) and hypoxia (-68%). STAT3 inhibition with 

LLL12 substantially reduced PI3K expression (-49%) with TSLP and hypoxia (p<0.05, n=5-6) 

(Figure 5). Overall, these data suggested several common mechanisms where TSLP and hypoxia 

intersect. 

TSLP enhances Jak/STAT pathway protein expression in human PASMC. To further delineate 

the downstream functions of TSLP in human PASMC, we next investigated a known TSLP 

activated pathway in other cell types: Jak2/STAT3 pathway. Western blot analysis of human 

PASMCs exposed to normoxia or hypoxia for 72h, with or without TSLP, showed that hypoxia 

enhances Jak2 expression (+97%)  compared to normoxia control.  TSLP increased Jak2 

expression (+53%) in normoxic conditions but did not potentiate the effects of hypoxia.  HIF 

inhibitor and LLL12 significantly decreased  Jak2 expression in the presence of TSLP during 

normoxia (-38% and -58%, respectively), but only LLL12 treatment caused significant 

downregulation (-73%) of Jak2 compared to combined TSLP and hypoxia exposure. (p<0.05, n=6) 

(Figure 6A). In comparison, Western analysis of STAT3 expression shows significant increase 

with TSLP treatment (+115%) in normoxia and hypoxia (+145%) alone when compared to 
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normoxia controls.  HIF inhibitor (-67%) and LLL12 (-70%) significantly decrease the effect of 

TSLP during hypoxic exposures. (p<0.05, n=6) (Figure 6B)

Effect of TSLP and hypoxia on [Ca2+]i in human PASMC. Enhanced contractility is known to 

occur in PA during hypoxia or PH; therefore, we examined the role of hypoxia and TSLP on [Ca2+]i 

responses to serotonin in human PASMCs. Exposure to 20ng/ml TSLP for 72 h significantly 

increased the amplitude of serotonin responses in PASMCs (627+29 nM) compared to normoxia 

controls (362+15 nM), an effect which was inhibited by HIF inhibitor (493+36 nM).  Hypoxia 

alone significantly increased [Ca2+]i responses  to serotonin (501+24 nM) which was potentiated  

in the presence of TSLP (700+41 nM), but blunted by HIF inhibitor (399+38 nM) (p<0.05, n=4) 

(Figure 7).
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Discussion

In spite of substantial medical advances, PH remains a devastating disease. Although 

multifactorial in etiology, chronic hypoxia is a well-recognized risk factor and 

pathophysiologically relevant mechanism in several forms of PH. Furthermore, hypoxia can 

induce inflammation that only enhances the detrimental structural and functional changes in the 

PA. Accordingly, understanding the mechanisms that link hypoxia and inflammation, particularly 

early in disease, is important. In skin and airway disease, there is increasing recognition that TSLP 

is a locally-produced, critical, early factor that drives the inflammatory cascade relevant to allergy, 

asthma and chronic obstructive pulmonary disease, and furthermore has non-canonical effects on 

airway structure and function. Therefore, we hypothesized that locally-produced TSLP mediates 

and potentiates the effects of hypoxia on PA remodeling and contractility via TSLP receptors 

present in the PA. 

Pulmonary artery endothelial cells regulate both PA structure and function, e.g. via the 

well-known release of NO towards vasodilation and endothelin towards vasoconstriction and 

remodeling. The endothelium certainly experiences alterations in oxygen levels and thus plays a 

major role in mediating and modulating the effects of hypoxia in pathogenesis of diseases such as 

pulmonary hypertension. Accordingly, understanding endothelial mechanisms that are altered  by 

hypoxia becomes important. While hypoxia can influence the PAEC in several ways, the idea that 

locally-produced pro-contractile or pro-proliferative factors permits exploration of the concept that 

such mechanisms can contribute to induction and maintenance of disease. For example, we had 

previously shown that in response to hypoxia, human PAECs can release the neurotrophin BDNF 

which can enhance PASMC contractility [31]. In this regard, the effects of hypoxia on endothelial 

TSLP have interesting parallels. On the other hand, BDNF also enhances endothelial NO [36] and 
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may thus serve a different purpose in the PA. However, similar to our finding of TSLP effects in 

PASMCs, BDNF has autocrine effects on PAECs [32] where it modulates HIF1 thus priming 

PAECs in their response to hypoxia. Whether a similar autocrine influence of TSLP occurs in 

PAECs is not known, and was not examined in the present study. However, the presence of TSLP-

R on PAECs may allow for such effects. What remains to be then examined is whether in the 

context of hypoxia, overall TSLP effects on the PA would result in vasodilation (e.g. via NO) or 

vasoconstriction due to the effects of TSLP on PASMC calcium responses, as observed in the 

current study. 

Within the PA, smooth muscle cells also play important structural and functional roles 

through effects on vascular tone and contractility, as well as vascular stiffness and fibrosis via cell 

proliferation and production of extracellular matrix. Accordingly, mechanisms derived from 

PAECs as well as PASMCs can have substantial local influences on the smooth muscle in acute 

and chronic conditions. Here, we demonstrate that TSLP is secreted by both PAECs and PASMCs, 

although it appears that PAECs are a more substantial source, and importantly it is PAEC-derived 

TSLP that is upregulated under hypoxic conditions. Thus, we propose that PASMC-derived TSLP 

may represent a “background” level with perhaps autocrine/paracrine effects. What then becomes 

important are the effects of TSLP on PASMCs, and our current results show contributions to 

enhanced PASMC proliferation and contractility, particularly in hypoxia. 

The effects of TSLP on PASMCs involve the receptor TSLP-R which is abundantly present 

in smooth muscle. Interestingly, hypoxia, acting via HIF-1 upregulates TSLP-R, pointing to at 

least one mechanism by which hypoxia and TSLP could interact, particularly given the additional 

observation of increased TSLP production by PAECs in hypoxia.  

There is currently little information on how hypoxia may regulate TSLP or TSLP-R in any 
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tissue. Data from skin, airways and GI suggest that TSLP regulation is highly cell-type specific 

(e.g. constitutive vs. induced, responsiveness to specific cytokines such as TNF-, IL-1) [5, 6, 11]. 

Even in these systems, much of the information is from cellular mRNA, with substantially less 

data on TSLP secretion which is required for autocrine/paracrine function. Nonetheless, promoters 

for HIF-1  have  been identified on the TSLP gene,[35, 37, 38] and some studies have shown 

ERK1/2 mediated alterations in TSLP expression[35, 39] during inflammation. In terms of TSLP-

R, there is even less information on its regulation, but a weak HIF-1 promoter is recognized, 

while the role of other transcription factors is not known.  In non-vascular systems TSLP 

expression can  be enhanced  in a HIF-1 dependent manner[40] and is consistent with the 

presence of the promoters. Our studies showing the suppressing effect of HIF-1 inhibitor on 

TSLP or TSLP-R expression are consistent but further exploration on such regulation is needed. 

Furthermore, it would be important to determine whether baseline TSLP/TSLP-R expression is 

different, or differently influenced by hypoxia in patients with PH, especially if mechanisms such 

as HIF-1 are involved.

PH represents both an imbalance between the extent of vasodilation and vasoconstriction, 

as well as PA remodeling, and the latter involves PAEC and PASMC proliferation and  migration, 

resulting in dysfunctional endothelial and smooth muscle. In vitro, PASMCs and PAECs can 

proliferate in response to multiple signals. JAKs are involved in such mitogen-induced signaling 

in human PA [35, 41] Additionally, ERK and PI3K pathways, as well as Rac1, are also important 

in PA cell proliferation induced by mitogens [35, 42, 43].  These signaling pathways involved in 

mitogen-induced PA cell proliferation happen to be also involved in TSLP signaling, at least in 

other non-vascular systems. For example, TSLP induces cell proliferation of the human myeloid 

leukemia cell line MUTZ-3 via STAT5 phosphorylation [44]. In human airway smooth muscle, 
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we previously showed that STAT5 is activated by TSLP.[5] Similarly, in human airway epithelial 

cells, MAPK, PI3/Akt and NFB are all activated by TSLP [45, 46]. The present results showing 

increase expression of PI3/Akt are entirely consistent in this regard. One report did show that 

phosphorylation of JAK 1 and 2  precedes STAT3 phosphorylation upon TSLP-TSLP-R binding 

in human lymphoid cells [44]. Indeed, it is likely that the range of signaling mechanisms activated 

by TSLP is species-, cell- and perhaps context-dependent. Nonetheless, the role of these signaling 

intermediates in TSLP effects on PASMC was previously unknown, especially in the presence of 

hypoxia or underlying PH. What makes TSLP particularly relevant is the increasing interest in 

STAT inhibitors for a number of diseases such as fibrosis.[47]

An interesting observation in our studies was that even under normoxic conditions, 

inhibition of HIF-1 resulted in blunting of TSLP effects in PASMCs, for example on intracellular 

calcium signaling. These data suggest that TSLP may prime PASMCs for hypoxia effects. In this 

regard, the baseline expression and secretion of TSLP by PASMCs (or PAECs) may play such an 

autocrine role. While we did not observe a synergistic effect of TSLP and hypoxia on different 

parameters, we also point out the extremely potent level of hypoxia and the extended duration of 

exposure in these initial studies. Further exploration using different hypoxia and TSLP exposures 

are needed to determine the functional significance of TSLP effect on HIF-1. 

In addition to effects on cell proliferation, we observed that TSLP enhances [Ca2+]i in 

PASMCS. Vasoconstriction  involves increased [Ca2+]i and contractility of PASMCs, which may 

be mediated by a number of regulatory mechanisms, particularly Ca2+ influx mechanisms such as 

store-operated entry and voltage-gated channels, as well as intracellular Ca2+ release from 

sarcoplasmic reticulum, and enhanced Ca2+ sensitivity for force generation, partially involving the 

RhoA/Rho kinase pathway [48, 49]. Previous studies have already shown the importance of 
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enhanced constrictive but blunted dilatory mechanisms in mediating the effects of hypoxia in the 

PA, as well as their contribution of PH pathophysiology. Our results suggest a central role for 

TSLP (e.g. that derived from PAECs) in hypoxia-induced modulation of [Ca2+]i and contractility 

in PASMCs. There is currently little information on such effects of TSLP in any vascular system. 

However, in recent studies using human airway smooth muscle, we demonstrated that TSLP can 

enhance [Ca2+]i responses to agonist, at least via increased Ca2+ influx.[5] Whether TSLP influence 

RhoA/Rho kinase and Ca2+ sensitivity is unknown in PA and will be explored in future studies. 

In conclusion, our study demonstrates that local production of TSLP occurs in the PA, 

largely involving PAECs, while PASMCs which express TSLP-R are responsive. Hypoxia 

enhances local TSLP production and PASMC TSLP-R expression leading to effects on PASMC 

proliferation and enhancement of [Ca2+]i.  As both TSLP production and TSLP-R expression are 

enhanced with hypoxia, the present study suggests that TSLP may play a role in hypoxia induced 

diseases including PH.
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Figure Legends.

Figure 1.  Thymic stromal lymphopoeitin (TSLP) and receptor (TSLP-R) expression and secretion 

in human pulmonary artery endothelial cells (PAECs) and smooth muscle cells (PASMCs).  A) 

Immunofluorescent staining of  PAECs and PASMCs demonstrate the presence of TSLP and 

TSLP-R. Primary (not shown) and Alexa 555 secondary antibody controls reveal only DAPI 

staining of cell nuclei and establish antibody specificity. B) Extracellular TSLP  was measured by 

ELISA and shows release of TSLP by both PAECs and PASMCs during normoxia.  In PAECs, 

TSLP release was significantly enhanced following 72h of 1% hypoxia. Hypoxia did not appear 

to influence PASMC TSLP release. (Values are means + SE. * indicates significant (p<0.05) effect 

compared to control, n=5-8)

Figure 2. Effect of hypoxia on TSLP and TSLP-R expression in PAECs and PASMCs.  A) PAECs 

exposed to hypoxia for 72 h showed significant upregulation of TSLP expression in comparison 

to normoxia controls.  In contrast, TSLP expression in PASMCs following 72 h hypoxia was 

unchanged. B) Western analysis showed significant upregulation of TSLP-R expression in PAECs 

in comparison to normoxia controls.  Similarly, TSLP-R expression in PASMCs was increased 

following hypoxia exposure for 72 h. (Values are means + SE. * indicates significant (p<0.05) 

effect compared to normoxia control, n=4 each)

Figure 3. Proliferation of PASMCs. Both hypoxia and TSLP (20 ng/ml; 72h) promote robust 

cellular proliferation which can be attenuated by inhibition of HIF inhibitor or STAT3 (LLL12) 

(10M each). See methods for proliferation assay. (Values are means + SE. * indicates significant 
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(p<0.05) effect compared to normoxia control, # compared to hypoxia control; $ compared to 

normoxia TSLP treatment; & compared to hypoxia TSLP treatment; n=4 each)

Figure 4. Proliferation of PASMCs in response to hypoxia and/or TSLP. A) Western blot analysis 

of PASMCs demonstrates upregulation of Cyclin E following TSLP or  hypoxia compared to 

normoxia control.  HIF inhibitor and LLL12 in the presence of TSLP significantly blunted 

increased expression of Cyclin E under normoxia and hypoxia compared to TSLP alone in each 

condition.  B) PCNA expression was also increased with TSLP and hypoxia exposure.  HIF 

inhibitor and LLL12 significantly prevented PCNA upregulation in the presence of TSLP during 

hypoxia only. (Values are means + SE. * indicates significant (p<0.05) effect compared to 

normoxia control, $ compared to normoxia TSLP treatment; & compared to hypoxia TSLP 

treatment; n=5)

Figure 5. Effects of TSLP on MAPK and PI3K/Akt pathways. A) Western analysis of  PASMCs 

shows increased expression of Akt when exposed to TSLP in normoxia, and hypoxia alone. HIF 

inhibitor significantly blunted Akt upregulation compared to hypoxia+TSLP treatment. B) 

Evaluation of PI3K via Western analysis demonstrates significantly increased expression with 

TSLP in normoxia, and hypoxia alone,  an effect blunted by HIF inhibitor compared to TSLP 

treatment in normoxia and  hypoxia . LLL12 prevented PI3K upregulation during hypoxia+TSLP 

only. C) and D) ERK 1 and ERK2 expression is not significantly altered by hypoxia or  in the 

presence of TSLP in normoxia or hypoxia.  LLL12 treatment significantly inhibited ERK1/2 

expression  in the presence of TSLP during hypoxia. (Values are means + SE. $ indicates 
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significant (p<0.05) effect compared to normoxia TSLP treatment; & compared to hypoxia TSLP 

treatment; n=5-6)

Figure 6. TSLP activates Jak2/STAT3 pathway in PASMCs. A) Western blots of human PASMCs 

exposed to normoxia, hypoxia, TSLP and inhibitors as previously stated show that hypoxia 

enhances JAK2 expression compared to normoxia control.  TSLP increased JAK2 expression in 

normoxic conditions but did not potentiate the effects of hypoxia.  HIF inhibitor and LLL12 

significantly decreased JAK2 expression in the presence of TSLP during normoxia  but only 

LLL12 treatment had significant effects on JAK2 expression compared to TSLP+hypoxia 

exposure. B) Analysis of STAT3 expression via Western blot show significantly increased 

expression of STAT3 in normoxic conditions with TSLP  and hypoxia alone.  LLL12 in the 

presence of TSLP significantly reduced STAT3 expression compared to TSLP alone.  HIF 

inhibitor and LLL12 substantially reduced STAT3 expression in the presence of TSLP compared 

to hypoxia+TSLP. (Values are means + SE. * indicates significant (p<0.05) effect compared to 

normoxia control, & compared to hypoxia TSLP treatment; n=6)

Figure 7. Effect of TSLP on PASMC intracellular calcium ([Ca2+]i) responses to agonist. Exposure 

to hypoxia and/or TSLP for 72 h results in increased [Ca2+]i responses to serotonin (10M): effects 

blunted by HIF inhibitor under both normoxic and hypoxic conditions (Values are means + SE. * 

indicates significant (p<0.05) effect compared to normoxia control, # compared to hypoxia control; 

$ compared to normoxia TSLP treatment; & compared to hypoxia TSLP treatment; n=4)
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Figure 8. Schematic of TSLP expression and effect in pulmonary artery. TSLP can be derived 

from PAECs (largely) and PASMCs, with influence on TSLPR expressed by both cell types. 

Hypoxia enhances PAEC-derived TSLP as well as TSLP-R in both cell types, thus enhancing the 

potential for TSLP effect. TSLP acts on PASMCs to enhance cell proliferation and calcium 

responses to agonist (and thus contractility). TSLP may interact with hypoxia by promoting HIF1-

 signaling: effects relevant to diseases such as pulmonary hypertension. 
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