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Abstract 26 

 27 

Polygenic risk scores have the potential to improve health outcomes for a variety of 28 

complex diseases and are poised for clinical translation, driven by the low cost of 29 

genotyping (<$50 per person), the ability to predict genetic risk of many diseases with a 30 

single test, and the dramatically increasing scale and power of genetic studies that aid 31 

prediction accuracy. However, the major ethical and scientific challenge surrounding 32 

clinical implementation is the observation that they are currently of far greater predictive 33 

value in individuals of recent European ancestry than others. The better performance of 34 

such risk scores in European populations is an inescapable consequence of the heavily 35 

biased makeup of genome-wide association studies, with an estimated 79% of 36 

participants in all existing genetic studies being of European descent. Empirically, 37 

polygenic risk scores perform far better in European populations, with prediction 38 

accuracy reduced by approximately 2- to 5-fold in East Asian and African American 39 

populations, respectively. This highlights that—unlike specific clinical biomarkers and 40 

prescription drugs, which may individually work better in some populations but do not 41 

ubiquitously perform far better in European populations–clinical uses of prediction today 42 

would systematically afford greater improvement to European populations. Early 43 

diversifying efforts, however, show promise in levelling this vast imbalance, even when 44 

non-European sample sizes are considerably smaller than the best-powered studies to 45 
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date. Polygenic risk scores provide a new opportunity to improve health outcomes for 46 

many diseases in all populations, but to realize this full potential equitably, we must 47 

prioritize greater inclusivity of diverse study participants in genetic studies and open 48 

access to resulting summary statistics to ensure that health disparities are not increased 49 

for those already most underserved. 50 

 51 

Keywords: health disparities, genetic risk prediction, polygenic risk scores, diversity, 52 

population genetics, statistical genetics 53 

 54 

Polygenic risk scores (PRS), which predict traits using genetic data, are of burgeoning 55 

interest to the clinical community as researchers demonstrate their growing power to 56 

improve clinical care, genetic studies of a wide range of phenotypes increase in size 57 

and power, and genotyping costs plummet to less than US$50. Many earlier criticisms 58 

of limited prediction power are now recognized to have been chiefly an issue of small 59 

sample size, which is no longer the case for many outcomes 1. For example, integrated 60 

models of PRS together with other lifestyle and clinical factors have enabled clinicians 61 

to more accurately quantify the risk of heart attack for patients; consequently, they have 62 

more effectively targeted the reduction of LDL cholesterol and by extension heart attack 63 

by prescribing statins to patients at the greatest overall risk of cardiovascular disease 2-
64 

6. While we share enthusiasm about the potential of PRS to improve health outcomes 65 

through their eventual routine implementation as clinical biomarkers, we consider the 66 

consistent observation that they are currently of far greater predictive value in 67 

individuals of recent European descent than in others to be the major ethical and 68 
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scientific challenge surrounding clinical translation and, at present, the most critical 69 

limitation to genetics in precision medicine. The scientific basis of this imbalance has 70 

been demonstrated in population genetics simulations, theoretically, and empirically 71 

across many traits and diseases 7-18.  72 

 73 

All studies to date using well-powered genome-wide association studies (GWAS) to 74 

assess the predictive value of PRS in European and non-European descent populations 75 

have made a consistent observation: PRS predict individual risk far better in Europeans 76 

than non-Europeans. In complex traits including height, body mass index (BMI), 77 

educational attainment, schizophrenia, and major depression, existing PRS computed 78 

with the largest available GWAS results predict outcomes far more accurately in new 79 

samples of European-descent than they do in non-Europeans, with the clearest study 80 

examples in East Asians and African Americans 11,12,14-20. Rather than chance or 81 

biology, this is a predictable consequence of the fact that the genetic discovery efforts to 82 

date heavily overrepresent European populations globally. The correlation between true 83 

and genetically predicted phenotypes decays with genetic divergence from the makeup 84 

of the discovery GWAS, meaning that the accuracy of polygenic scores in different 85 

populations is highly dependent on the study population representation in the largest 86 

existing ‘training’ GWAS. Here, we document study biases that underrepresent non-87 

European populations in current GWAS, and explain the fundamental concepts 88 

contributing to reduced phenotypic variance explained with increasing genetic 89 

divergence from populations included in GWAS. 90 

 91 
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Predictable basis of disparities in polygenic risk score accuracy 92 

The lack of generalizability of genetic studies across global populations arises from the 93 

overwhelming abundance of European descent studies—according to the GWAS 94 

catalog 21-24, ~79% of all GWAS participants are of European descent despite making 95 

up only 16% of the global population (Figure 1). More concerningly, the fraction of non-96 

European individuals in GWAS has stagnated or declined since late 2014 (Figure 1), 97 

suggesting that we are not on a trajectory to correct this imbalance. These numbers 98 

provide a composite metric of study availability, accessibility, and use—i.e., cohorts that 99 

have been included in numerous studies are represented multiple times, which may 100 

disproportionately include cohorts of European descent. The relative sample 101 

compositions of GWAS result in highly predictable disparities in prediction accuracy; 102 

statistical and population genetics theory predicts that genetic risk prediction accuracy 103 

will decay with increasing genetic divergence between the original GWAS sample and 104 

target of prediction, a function of population history 9,10. This pattern can be attributed to 105 

several statistical observations which we detail below: 1) GWAS favor the discovery of 106 

genetic variants that are common in the study population; 2) linkage disequilibrium (LD) 107 

differentiates marginal effect size estimates for highly polygenic traits across 108 

populations, even when causal variants are the same; and 3) demographic and 109 

environmental differences may drive differential forces of natural selection that in turn 110 

drive differences in causal genetic architecture. Of note, the first two of these degrade 111 

prediction performance across populations substantially even when there exist no 112 

biological, environmental, or diagnostic differences. 113 

 114 
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Common discoveries and low-hanging fruit 115 

First, the power to discover an association in a genetic study depends on the effect size 116 

and frequency of the variant 25. This power dependence means that the most significant 117 

associations tend to be more common in the populations in which they are discovered 118 

than in other populations 9,26. For example, GWAS catalog variants are on average 119 

more common in European populations compared to East Asian and African 120 

populations (Figure 2B), an observation not representative of genomic variants at large. 121 

Understudied populations offer low-hanging fruit for genetic discovery because variants 122 

that are common in these groups but rare or absent in European populations could not 123 

be discovered even with very large European sample sizes. Some examples include 124 

SLC16A11 and HNF1A associations with type II diabetes in Latino populations, APOL1 125 

associations with end-stage kidney disease, and associations with prostate cancer in 126 

African descent populations 27-30. If we assume that causal genetic variants have an 127 

equal effect across all populations—an assumption with some empirical support that 128 

offers the best case scenario for transferability 31-35—Eurocentric GWAS biases mean 129 

that variants that are common in European populations are preferentially discovered 130 

and associated with risk, and thus account for a larger fraction of the variance in 131 

polygenic risk 9. Furthermore, imputation reference panels share the same biases as in 132 

GWAS, and imputing sites that are common in European populations but rarer in other 133 

populations is challenging when the catalog of non-European haplotypes is substantially 134 

smaller. These issues are insurmountable through statistical methods alone, but rather 135 

motivate substantial investments in more diverse populations to produce similar-sized 136 
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GWAS of biomedical phenotypes as well as sequenced reference panels in other 137 

populations. 138 

 139 

Linkage disequilibrium 140 

Second, the correlation structure of the human genome, i.e. LD, varies across 141 

populations due to demographic history (Figure 2A,C-E). These LD differences in turn 142 

drive differences in effect size estimates (i.e. predictors) from GWAS across 143 

populations, even when causal effects are the same. (Mathematically, the marginal 144 

GWAS estimate ��� � ∑ ��,��� � ��
�
��� , where ��� are effect size estimates at SNP j, ��,� is 145 

pairwise SNP LD between SNPs j and k, �� is the causal SNP effect at nearby SNP k, 146 

and � is residual error from bias or noise). While differences in effect size estimates due 147 

to LD differences may typically be small for most regions of the genome, PRS sum 148 

across these effects, also aggregating these population differences. Statistical methods 149 

that account for LD differences across populations may help improve risk prediction 150 

accuracy within each population. While empirical studies suggest that causal effect 151 

sizes tend to be shared 31,32, it may not be feasible to fine-map most variants to a single 152 

locus to solve issues of low generalizability, even with very large GWAS (i.e., millions). 153 

This is because complex traits are highly polygenic, meaning most of our prediction 154 

power comes from small effects that do not meet genome-wide significance and/or 155 

cannot be fine-mapped, even in the best-powered GWAS to date 36.  156 

 157 

History, selection, the environment, and complex interactions 158 
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Lastly, other environmental, demographic, and cohort considerations may further 159 

worsen prediction accuracy differences across populations in less predictable ways. 160 

GWAS ancestry study biases and LD differences across populations are extremely 161 

challenging to address, but these issues actually make many favorable assumptions 162 

that all causal loci have the same impact and are under equivalent selective pressure in 163 

all populations. In contrast, other effects on polygenic adaptation or risk scores such as 164 

natural selection can impact populations differently based on their unique histories. 165 

Additionally, residual uncorrected population stratification may impact risk prediction 166 

accuracy across populations, but the magnitude of its effect is currently unclear. These 167 

effects are particularly challenging to disentangle, as has clearly been demonstrated for 168 

height, where evidence of polygenic adaptation is under question 37,38. Comparisons of 169 

geographically stratified phenotypes like height across populations with highly divergent 170 

genetic backgrounds and mean environmental differences, such as differences in 171 

resource abundance during development across continents, are especially prone to 172 

uninterpretable results 39. Related to stratification, most polygenic scoring methods do 173 

not explicitly address recent admixture and none consider recently admixed individuals’ 174 

unique local mosaic of ancestry—further methods development in this space is needed. 175 

Furthermore, comparing PRS across environmentally stratified cohorts, such as in some 176 

biobanks with healthy volunteer effects versus disease study datasets or hospital-based 177 

cohorts, requires careful consideration of technical differences, collider bias, as well as 178 

variability in baseline health status among studies. It is also important to consider 179 

differences in clinical definition of the phenotypes and heterogeneous constitution of 180 

sub-phenotypes among countries. 181 
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 182 

Differences in environmental exposure, gene 	 environment interactions, historical 183 

population size dynamics, and other factors will further limit generalizability for genetic 184 

risk scores in an unpredictable, trait-specific fashion 40,41. While non-linear genetic 185 

factors explain little variation in complex traits beyond a purely additive model 42, some 186 

unrecognized nonlinearities and gene 	 gene interactions can also induce genetic risk 187 

prediction challenges, as pairwise interactions are likely to vary more across 188 

populations than individual SNPs. Mathematically, we can simplistically think of this in 189 

terms of a two-SNP model, in which the sum of two SNP effects is likely to explain more 190 

phenotypic variance than the product of the same SNPs. Some machine learning 191 

approaches may thus modestly improve genetic prediction accuracy for some 192 

phenotypes 43, but these approaches are most likely to improve prediction accuracy for 193 

atypical traits with simpler architectures, known interactions, and poor prediction 194 

generalizability across populations, such as skin pigmentation 44.  195 

 196 

Limited generalizability of genetic prediction across diverse populations 197 

Previous work has assessed prediction accuracy across diverse populations in several 198 

traits and diseases for which GWAS summary statistics are available. These 199 

assessments are becoming increasingly feasible with the growth and public availability 200 

of global biobanks for quantitative traits as well as diversifying priorities from funding 201 

agencies 45,46. As of yet, multi-ethnic work has been slow in most disease areas 47, 202 

limiting even the opportunity to assess prediction utility in non-European cohorts. 203 

Nonetheless, we have assembled prediction accuracy statistics from several studies 204 
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using the largest European GWAS to predict several phenotypes in target European 205 

and non-European cohorts. For example, multiple schizophrenia studies consistently 206 

predicted risk on average 2.2-fold worse in East Asians relative to Europeans, (i.e. 207 

μ=0.46, σ=0.06), using summary statistics from a Eurocentric GWAS 11,14 (Figure 3), 208 

despite the fact that there is no genetic heterogeneity in schizophrenia between the two 209 

populations. This finding is even more pronounced in African Americans, where genetic 210 

divergence from Europeans is greater than between Europeans and East Asians 26. 211 

Across several phenotypes with a range of genetic architectures in which empirical 212 

evaluations were available, including BMI, educational attainment, height, and 213 

schizophrenia, prediction accuracy using European GWAS summary statistics was on 214 

average 4.5-fold less accurate in African Americans than in Europeans (i.e. μ=0.22, 215 

σ=0.09, Figure 3) 11,12,15-18. By extension, prediction accuracy is expected to be even 216 

lower in African Americans with higher than average African ancestry or among 217 

populations with greater divergence from Europeans (e.g. some southern African 218 

populations). These enormous disparities are not simply methodological issues, as 219 

various approaches (e.g. pruning and threshold versus LDPred) and accuracy metrics 220 

(R2 for quantitative traits and various pseudo-R2 metrics for binary traits) illustrate this 221 

consistently poorer performance in populations distinct from the discovery sample 222 

across a range of polygenic traits (Table S2). 223 

 224 

Prioritizing diversity shows early promise for polygenic prediction 225 

Early diversifying GWAS efforts have been especially productive for informing on these 226 

questions surrounding risk prediction. Rather than varying the prediction target dataset, 227 
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some GWAS in diverse populations have increased the scale of non-European 228 

summary statistics and also varied the study dataset in multi-ethnic PRS studies. For 229 

example, a BioBank Japan GWAS study (N=158,284) showed that compared to a 2	 230 

larger European GWAS (N=322,154), the variance in BMI explained in an independent 231 

Japanese cohort with Japanese GWAS summary statistics was on average 1.5-fold 232 

greater than with European GWAS summary statistics (R2=0.154 vs 0.104 at p < 0.05, 233 

respectively) 19. Similarly, a Chinese schizophrenia study (N=7,699 cases and 18,327 234 

controls) showed that compared to an effectively 5-fold larger European GWAS 235 

(N=36,989 cases, 113,075 controls), prediction accuracy in an independent Chinese 236 

cohort with GWAS summary statistics from China far surpassed prediction accuracy 237 

from European summary statistics by 2.6-fold (2.3% versus 6.2%) 20. Thus, even when 238 

studies in non-European populations are only a fraction the size of the largest European 239 

study, they are likely to have disproportionate value for predicting polygenic traits in 240 

other individuals of similar ancestry. 241 

 242 

Given this background, we performed a systematic evaluation of polygenic prediction 243 

accuracy across 17 quantitative anthropometric and blood panel traits in British and 244 

Japanese individuals 19,48,49 by performing GWAS with the exact same sample sizes in 245 

each population. We symmetrically demonstrate that prediction accuracy is consistently 246 

higher with GWAS summary statistics from ancestry-matched summary statistics 247 

(Figure 4). Keeping in mind issues of comparability described above, we note that the 248 

BioBank Japan (BBJ) is a hospital-based cohort, whereas UK Biobank (UKBB) is a 249 

healthier than average population-based cohort, and that differences in observed 250 
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heritability among these cohorts (rather than among populations) likely explain lower 251 

prediction accuracy from the BBJ GWAS summary statistics (Table S3). Some 252 

statistical fluctuations in the relative differences in prediction accuracy across 253 

populations are likely driven by differences in trans-ethnic genetic correlation (i.e. 254 

comparing across ancestries the estimated correlation of common variant effect sizes at 255 

SNPs common in both populations via Popcorn) and/or differences in heritability 256 

measured in each population (Figure S1, Table S3). Prediction accuracy was far lower 257 

in individuals of African descent in the UK Biobank (Figure S5) using GWAS summary 258 

statistics from European or Japanese ancestry individuals (Figure 4). These population 259 

studies demonstrate the power and utility of increasingly diverse GWAS for prediction, 260 

especially in populations of non-European descent. 261 

 262 

While many other traits and diseases have been studied in multi-ethnic settings, few 263 

have reported comparable metrics of prediction accuracy across populations. 264 

Cardiovascular research, for example, has led the charge towards clinical translation of 265 

PRS 1. This enthusiasm is driven by observations that a polygenic burden of LDL-266 

increasing SNPs can confer monogenic-equivalent risk of cardiovascular disease, with 267 

polygenic scores improving clinical models for risk assessment and statin prescription 268 

that can reduce coronary heart disease and improve healthcare delivery efficiency 2,3,5. 269 

However, many of these studies have been conducted exclusively in European descent 270 

populations, with few studies rigorously evaluating population-level applicability to non-271 

Europeans. Those existing findings indeed demonstrate a large reduction in prediction 272 

utility in non-European populations 7, though often with comparisons of odds ratios 273 
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among arbitrary breakpoints in the risk distribution that make comparisons across 274 

studies challenging. To better clarify how polygenic prediction will be deployed in a 275 

clinical setting with diverse populations, more systematic and thorough evaluations of 276 

the utility of PRS within and across populations for many complex traits are still needed. 277 

These evaluations would benefit from rigorous polygenic prediction accuracy 278 

evaluations, especially for diverse non-European patients 50-52.  279 

 280 

Translational genetic prediction may uniquely exacerbate disparities  281 

Our impetus for raising these statistical issues limiting the generalizability of PRS across 282 

population stems from our concern that, while they are legitimately clinically promising 283 

for improving health outcomes for many biomedical phenotypes, they may have a larger 284 

potential to raise health disparities than other clinical factors for several reasons. The 285 

opportunities they provide for improving health outcomes means they inevitably will and 286 

should be pursued in the near term, but we urge that a concerted prioritization to make 287 

GWAS summary statistics easily accessible for diverse populations and a variety of 288 

traits and diseases is imperative, even when they are a fraction the size of the largest 289 

existing European datasets. Individual clinical tests, biomarkers, and prescription drug 290 

efficacy may vary across populations in their utility, but are fundamentally informed by 291 

the same underlying biology 53,54 Currently, guidelines state that as few as 120 292 

individuals define reference intervals for clinical factors (though often smaller numbers 293 

from only one subpopulation are used) and there is no clear definition of who is “normal” 294 

53. Consequently, reference intervals for biomarkers can sometimes deviate 295 

considerably by reported ethnicity 55-57. Defining ethnicity-specific reference intervals is 296 
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clearly an important problem that can provide fundamental interpretability gains with 297 

implications for some major health benefits (e.g. need for dialysis and development of 298 

Type 2 diabetes based on ethnicity-specific serum creatinine and hemoglobin A1C 299 

reference intervals, respectively) 56. Simply put, some biomarkers or clinical tests scale 300 

directly with health outcomes independent of ancestry, and many others may have 301 

distributional differences by ancestry but are equally valid after centering with respect to 302 

a readily collected population reference.  303 

 304 

In contrast, PRS are uniformly less useful in understudied populations due to 305 

differences in genomic variation and population history 9,10. No analogous solution of 306 

defining ethnicity-specific reference intervals would ameliorate health disparities 307 

implications for PRS or fundamentally aid interpretability in non-European populations. 308 

Rather, as we and others demonstrate, PRS are unique in that even with multi-ethnic 309 

population references, these scores are fundamentally less informative in populations 310 

more diverged from GWAS study cohorts.  311 

 312 

The clinical use and deployment of genetic risk scores needs to be informed by the 313 

issues surrounding tests that currently would unequivocally provide much greater 314 

benefit to the subset of the world’s population which is already on the positive end of 315 

healthcare disparities*. Conversely, African descent populations, which already endure 316 

many of the largest health disparities across the globe, are often predicted marginally 317 

better, if at all, compared to random (Figure 4). They are therefore least likely to benefit 318 

                                                       
* To maximally benefit all populations, the largest existing GWAS results should be used. Downsampling 
European GWAS for the sake of parity results in worse predictors for all individuals. 
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from improvements in precision healthcare delivery from genetic risk scores with 319 

existing data due to human population history and study biases. This is a major concern 320 

globally and especially in the U.S., which already leads other middle- and high-income 321 

countries in both real and perceived healthcare disparities 58. Thus, we would strongly 322 

urge that any discourse on clinical use of polygenic scores include a careful, 323 

quantitative assessment of the economic and health disparities impacts on 324 

underrepresented populations that might be unintentionally introduced by the use of 325 

PRS and raise awareness about how to eliminate these disparities. 326 

 327 

How do we even the ledger? 328 

What can be done? An equal investment in GWAS across all major ancestries and 329 

global populations is the most obvious solution to truly generate a substrate for equally 330 

informative risk scores, but is not likely to occur any time soon absent a dramatic priority 331 

shift given the current imbalance and stalled diversifying progress over the last five 332 

years (Figure 1). While it may be challenging or in some cases infeasible to acquire 333 

sample sizes large enough for PRS to be equally informative in all populations, some 334 

much-needed efforts towards increasing diversity in genomics that support open sharing 335 

of GWAS summary data from multiple ancestries are underway. Examples include the 336 

All of Us Research Program, the Population Architecture using Genomics and 337 

Epidemiology (PAGE) Consortium, as well as some disease-focused consortia, such as 338 

the T2D-genes and Stanley Global initiatives on the genetics of type II diabetes and 339 

psychiatric disorders, respectively. The prerequisite data for dramatically increasing 340 

diversity also hypothetically exist in several large-scale publicly funded datasets such as 341 
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the Million Veterans Project and Trans-Omics for Precision Medicine (TOPMed), but 342 

with problematic data access issues in which even summary data from GWAS within 343 

and across populations are not publicly shared. While there is an understandable 344 

patient privacy balance to strike when sharing individual-level data, GWAS summary 345 

statistics by population from all publicly funded and as many privately funded projects 346 

as possible should be made easily and publicly accessible to improve global health 347 

outcomes. Efforts to unify phenotype definitions, normalization approaches, and GWAS 348 

methods among studies are also encouraged.  349 

 350 

To enable progress towards parity, it will be critical that open data sharing standards be 351 

adopted for all ancestries and for genetic studies of all sample sizes, not just the largest 352 

European results. Locally appropriate and secure genetic data sharing techniques as 353 

well as equitable technology availability will need to be adopted widely in Asia and 354 

Africa as they are in Europe and North America, to ensure that maximum value is 355 

achieved from existing and ongoing efforts that are being developed to help counter the 356 

current imbalance. Methodological improvements that better define risk scores by 357 

accounting for population allele frequency, LD, and/or admixture differences 358 

appropriately are underway and may help considerably, but will not by themselves bring 359 

equality. All of these efforts are important and should be prioritized not just for risk 360 

prediction but more generally to maximize the use and applicability of genetics to inform 361 

on the biology of disease. Given the acute recent attention on clinical use of PRS, we 362 

believe it is paramount to recognize their potential to improve health outcomes for all 363 

individuals and many complex diseases. Simultaneously, we as a field must address the 364 
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disparity in utility in an ethically thoughtful and scientifically rigorous fashion, lest we 365 

inadvertently enable genetic technologies to contribute to, rather than reduce, existing 366 

health disparities. 367 
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 381 

Figure 1 – Ancestry of GWAS participants over time compared to the global 382 

population. Cumulative data as reported by the GWAS catalog 23. A notable caveat is 383 

that because some cohorts are included in numerous studies, some individuals are 384 

represented multiple times. This bias in multiple counting is especially likely for publicly 385 

available cohorts, which are more likely to be of European or East Asian descent. 386 

Individuals whose ancestry is “not reported” are not shown. 387 
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388 

Figure 2 – Demographic relationships, allele frequency differences, and local LD 389 

patterns between population pairs. Data analyzed from 1000 Genomes, in which 390 

population labels are: AFR = continental African, EUR = European, and EAS = East 391 

Asian. A) Cartoon relationships among AFR, EUR, and EAS populations. B) Allele 392 

frequency distributions in AFR, EUR, and EAS populations of variants from the GWAS 393 

catalog. C-E) Color axis shows LD scale (r2). LD comparisons between pairs of 394 

populations show the same region of the genome for each comparison (representative 395 

region is chr1, 51572kb-52857kb) among pairs of SNPs polymorphic in both 396 

populations, illustrating that different SNPs are polymorphic across some population 397 

pairs, and that these SNPs have variable LD patterns across populations. 398 

 399 

9
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400 

Figure 3 – Empirical comparison of phenotypic variance explained across 401 

populations using polygenic scores computed with European GWAS. All GWAS 402 

studies included here were conducted in European ancestry populations, with PRS 403 

calculated and evaluated in independent European, East Asian, and African American 404 

target cohorts. The European study biases result in the highest prediction accuracies in 405 

independent European cohorts, followed by declining accuracy with increased genetic 406 

divergence from Europe. A) Proportion of variance explained in each of the original 407 

studies. B) Relative proportion of variance explained in each population with respect to 408 

an independent European target population in each study. The diminished proportion of 409 

variance explained in East Asian and African American populations relative to 410 

Europeans is remarkably consistent despite differing genetic architectures, prediction 411 

methods, and accuracy metrics due to similar population histories within these cohorts. 412 

BMI = body mass index, EA = educational attainment, and SCZ = schizophrenia. 413 
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 416 

 417 

Figure 4 – Polygenic risk prediction accuracy in Japanese, British, and African 418 

descent individuals using independent GWAS of equal sample sizes in the 419 

BioBank Japan and UK Biobank. All target prediction cohorts are withheld from the 420 

GWAS and thus independent. Sample sizes in each GWAS are identical between BBJ 421 

and UKBB (Table S1). To optimize signal to noise, each point shows the maximum R2 422 

(i.e. best predictor) across 10 p-value thresholds. R2 values for all p-value thresholds 423 

are shown in Figures S2-S4. Prediction accuracy tends to be higher in the UK Biobank, 424 

likely because observed heritability tends to be higher than in the BioBank Japan (Table 425 

S3). A) Genetic prediction accuracy for 17 anthropometric and blood panel traits in 426 
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Japanese individuals using summary statistics from GWAS of independent BioBank 427 

Japan versus UK Biobank samples. B) Genetic prediction accuracy for the same 17 428 

anthropometric and blood panel traits in independent British individuals using summary 429 

statistics from GWAS of independent BioBank Japan versus the UK Biobank samples. 430 

C) Genetic prediction accuracy for 17 anthropometric and blood panel traits in African 431 

descent individuals in the UK Biobank using summary statistics from GWAS of 432 

independent BioBank Japan versus UK Biobank samples. 433 
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