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Abstract

A central challenge in human genomics is to understand the cellular, evolutionary, and clinical

significance of genetic variants. Here we introduce a unified population-genetic and machine-

learning model, called Linear Allele-Specific Selection InferencE (LASSIE), for estimating the

fitness effects of all potential single-nucleotide variants, based on polymorphism data and pre-

dictive genomic features. We applied LASSIE to 51 high-coverage genome sequences annotated

with 33 genomic features, and constructed a map of allele-specific selection coefficients across all

protein-coding sequences in the human genome. We show that this map is informative about both

human evolution and disease.
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Introduction

Innovations in DNA sequencing and genotyping have enabled the discovery of millions of genetic

variants in human populations, with new variants continuing to be discovered at a rapid pace1–4.

The great majority of these variants, however, are likely to have no impact on cellular function or

human phenotypes, including disease, and many others are probably of only minor importance.

The task of identifying which genetic variants are functionally important remains a major rate-

limiting step in human genetics, with implications for both basic research and clinical practice.

Numerous computational strategies have been developed for the identification of functional

variants, both to prioritize variants for experimental follow-up, and to address broader issues such

as the genetic architecture of disease or the fraction of human nucleotides that are functionally

important5–10. These computational predictors generally leverage genomic features correlated with

function, such as sequence conservation6, 8, 11–13, protein structure14–16, chromatin accessibility17, 18,

and protein-DNA interactions19, 20. Recently it has been shown that predictive power can be

boosted by considering multiple features together, typically using supervised machine-learning

models such as logistic regression, random forests, or support vector machines21–25. These models

detect complex patterns associated with known pathogenic variants and use them to predict the

effects of unannotated variants, often with good accuracy.

Nevertheless, the existing supervised machine-learning predictors suffer from some impor-

tant limitations. For example, their predictions are typically hard to interpret, because they reflect

some measure of similarity to a training set of known pathogenic variants based on a complex
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statistical model rather than a model formulated in terms of biological principles. In addition,

the “known” disease variants used for training are generally unrepresentative of all pathogenic

variants—e.g., by being enriched for coding regions, splice sites, and well-studied genes23, 26—

which results in training biases and poor generalization. A related problem is that the reported

prediction power for these methods is typically over-optimistic, because it is based on held-out

training data with the same biases26. In general, these methods effectively serve as predictors of

variants like those in the training set, rather than of all functional variants of interest.

An alternative strategy is to identify genetic variants that are subject to purifying (negative)

selection. This approach depends on the assumption that functional and disease-associated variants

are likely to reduce evolutionary fitness, which clearly does not hold in all cases. Nevertheless, this

approach has the important advantages of mitigating the bias from training data and allowing for

more interpretable, evolution-based models. This evolution-based strategy has now been used ex-

plicitly or implicitly by many state-of-the-art variant prioritization methods, including LINSIGHT,

fitCons, CADD, and FunSeq29, 27–32. Among these methods, LINSIGHT and fitCons are based

on explicit evolutionary models and can be used to obtain maximum-likelihood estimates of in-

terpretable quantities, such as the per-nucleotide probability that new mutations will have fitness

consequences. These methods perform well in the prioritization of disease and regulatory variants

and also provide evolutionary insights9, 27, but they have some important limitations. For example,

LINSIGHT and fitCons assume that all alternative alleles at each nucleotide have equal effects on

fitness9, 27, 28, 33, and do not provide estimates of true selection coefficients, which arguably provide

the most precisely interpretable description of fitness effects.
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A separate thread in the population genetics literature has addressed the problem of estimat-

ing the bulk distribution of fitness effects (DFE) from a designated collection of genomic regions,

such as all coding sequences. Methods for addressing this problem typically calculate the prob-

ability of a summary of polymorphism data, such as the site frequency spectrum (SFS), given an

explicit parameterization of selection coefficients using diffusion approximations of the Wright-

Fisher model34–40. These methods generally also make use of an explicit model of demographic

history, because of the confounding effect of demography on the SFS36, 37, 41. These DFE inference

methods allow for the inference of true selection coefficients but they are unable to pinpoint the

fitness effects of individual variants owing to the intrinsic sparsity of polymorphisms.

In this article, we present a unified model that combines elements of machine-learning meth-

ods for variant prediction and diffusion-approximation methods for DFE inference to enable esti-

mation of allele-specific selection coefficients at every nucleotide in a genomic region of interest.

We have implemented our model in a computer program, called Linear Allele-Specific Selection

InferencE (LASSIE), and applied it to all protein-coding sequences in the human genome, using

publicly available human polymorphism data and more than two dozen predictive genomic fea-

tures. We validate LASSIE by comparing the estimated selection coefficients with known patterns

of natural selection in coding regions and by testing their predictive power for inherited pathogenic

variants and cancer-driver mutations. We then show that LASSIE can be used to define a “null”

distribution for the relationship between genomic features and selective effects, which enables the

identification of genes under unusually strong or unusually weak selection. Genes under unusually

strong selection are associated with brain-specific expression and autism spectrum disorder.
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Results

LASSIE uses a unified machine-learning and population genetic model to estimate allele-

specific selection coefficients. The key idea behind the LASSIE model is that, while polymor-

phisms are too sparse to allow direct estimation of allele-specific selection coefficients, there is a

strong correlative relationship between genomic features and fitness effects that can be exploited to

enable such estimation. The general idea is similar to that behind fitCons9, 28 and LINSIGHT27, but

in this case a richer machine-learning model accommodates allele-specific effects and a diffusion-

based likelihood function allows for the estimation of true selection coefficients.

The LASSIE model consists of two components (Fig. 1). First, for the population genetic

component of the model, we use a generative probabilistic model for the site frequency spectrum

(SFS), adopting the Poisson Random Field (PRF) framework for direct likelihood calculations34, 42, 43.

Second, we account for predictive genomic features using a neural network. The output of this net-

work is not a class assignment, as in typical supervised-learning applications, but instead is a set of

parameters that feed into the PRF model for likelihood calculations. Thus, the overall model is a

generative model for the data, fitted in an unsupervised manner by maximization of the likelihood,

but it conditions on a potentially large, complex, and informative set of genomic features using a

neural network. This conditioning allows for pooling of data across genomic sites, and improved

shrinkage estimators for allele-specific selection coefficients.

Population genomic data is described using a PRF-based mixture model. For reasons of effi-

ciency, selection is accommodated using a three-component mixture model rather than a contin-
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uous distribution of selection coefficients. The mixture components capture the average effects

of strong negative selection, weak negative selection, and neutral drift, respectively. The use of a

mixture model allows the full PRF model to be fitted to the data in a preprocessing step, so that

only the site-specific probabilities of the mixture components (the mixture coefficients) need to be

estimated in the context of the neural network (see below).

To account for the confounding influence of demography on the SFS, we first fitted a sim-

ple demographic model to a collection of putatively neutrally evolving nucleotide sites flank-

ing protein-coding exons. We focused on the 51 high-coverage Yoruba samples from the 1000

Genomes Project, because this population appears to be well described by a pure “expansion”

model, without population bottlenecks or introgression events34, 37, 39. We assumed a three-epoch

model with a constant effective population size in each epoch, and we estimated the timings and

magnitudes of population expansions by maximum likelihood (Methods). The estimated model

posits that the Yoruba population experienced a moderate expansion about 6000 years ago, fol-

lowed by a more dramatic expansion about 600 years ago (Fig. 1b). Despite its simplicity, this

demographic model provides an excellent fit to the observed SFS (Supplementary Fig. 1).

We then fitted a mixture model to genome-wide protein-coding sequence data, estimating

the three mixture coefficients as well as the selection coefficients for the weak and strong negative

selection components but keeping the neutral model fixed. This analysis indicates that ∼10% of

potential coding mutations in the human exome are under weak negative selection with a repre-

sentative selection coefficient of s = −1.30× 10−4 and about 51% of coding mutations are under

strong negative selection with a representative selection coefficient of s = −5.86×10−4 (Fig. 1b).
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We found that this mixture model also fit the exome-wide SFS well (Supplementary Fig. 1).

Genomic features are incorporated using a mixture density network model. We modeled the

relationship between genomic features and allele-specific probabilities of selection components

using a mixture density network model44. This model transforms the genomic features associated

with each allele to site- and allele-specific mixture coefficients (Fig. 1c). These mixture coeffi-

cients, in turn, can be used to compute the probability of the exome-wide data under the PRF

mixture model. Thus, the edge weights in the neural network function as the free parameters of a

generative model for population genomic data conditional on genomic features.

Hypothesizing that genomic features used in variant prioritization would also be informative

in this context, we collected 33 diverse features for every potential derived mutation in the human

exome, including protein conservation scores, nucleotide conservation scores, protein structural

features, RNA-seq signals, and categories indicating changes in the encoded protein (nonsynony-

mous, nonsense, stop-gained; Fig. 1a; see Supplementary Table 1 for a complete list of features).

We then fitted the mixture density model to the exome-wide data by maximum likelihood, keeping

the selection coefficients fixed at their previously estimated values (see Methods). The features

most strongly predictive of selection included stop-gain and missense mutations, several measures

of phylogenetic conservation, and several features describing structural properties of amino acid

substitutions such as whether the affected reside is buried or exposed, or whether the substitution is

predicted to stabilize or destabilize folding45 (Supplementary Fig. 2). For ease of interpretation,

we summarized the probabilities of neutrality, weak negative, and strong negative selection for

each candidate mutation by the absolute value of the expected selection coefficient, |s|.
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Notice that our general framework allows for a variety of network architectures, ranging

from many-layered networks to the simple case of no hidden layers. The use of hidden layers

provides the potential to capture nonlinear relationships between genomic features and selection

coefficients, but at the cost of larger numbers of free parameters and increased risk of overfit-

ting. In our tests, we found that a linear model actually fit the data better than a nonlinear one

(Supplementary Table 2), so we have adopted this simple “linear” architecture for LASSIE.

The estimated selection coefficients are consistent with known evolutionary patterns but sug-

gest pervasive weak selection against synonymous mutations. The selection coefficients esti-

mated by LASSIE are highly variable across potential mutations (see Fig. 2a & b). As expected,

LASSIE assigns larger values of |s| to nonsynonymous and nonsense mutations than to synony-

mous mutations. Because synonymous mutations tend to occur at third codon positions, the spatial

distribution of allele-specific selection coefficients exhibits a general three-nucleotide periodic pat-

tern in coding regions. Inspection of individual genes reveals that LASSIE frequently distinguishes

known pathogenic variants (shown in red, with relatively large estimates of |s|, in Fig. 2a & b) from

benign variants (shown in blue, with small estimates of |s|).

Overall, the distribution of |s| recapitulates well-known patterns of constraint on coding se-

quences. For example, LASSIE predicts that most nonsense mutations are under strong negative

selection (Fig. 2c). In contrast, nonsynonymous mutations show a bimodel distribution of selec-

tion coefficients, with modes corresponding to strong and weak negative selection (Fig. 2c). While

coarse-grained and truncated at our estimate for strong negative selection (see Discussion), this

distribution is reasonably consistent with the bulk distribution inferred in a non-site- and allele-
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specific manner in previous studies; for example, we estimate that an expected 45% of nonsynony-

mous mutations are under neutral or weak negative selection (|s| ≤ 1.3× 10−4 in our formulation)

in comparison to estimates of ∼30% with |s| ≤ 1.0 × 10−4 in ref. 37. In agreement with previ-

ous analyses based on codon substitution models46, we also find that nonsynonymous mutations

in highly expressed genes are under significantly stronger negative selection than nonsynonymous

mutations in genes expressed at lower levels (Fig. 2d).

Interestingly, the distribution of |s| for synynomous mutations suggests that only an expected

70.5% of such mutations are effectively neutral, whereas 25.9% are under weak negative selection

and 3.6% are under strong negative selection (Fig. 2c). Weak negative selection on synonymous

mutations is significantly elevated in highly expressed genes, multi-exon genes, and SRSF1 and

SRSF7 binding sites (Supplementary Fig. 3), suggesting that roles in mRNA splicing contribute

to it, perhaps among other features. This finding of a substantial influence from weak negative

selection on synonymous substitutions is consistent with studies showing reduced substitution rates

or reduced nucleotide diversity at synonymous sites relative to pseudogenes or introns47–52 and

suggests that the widespread practice of using such mutations as a proxy for neutral evolution49, 53

could result in major biases in downstream analyses (see Discussion).

The estimated selection coefficients are predictive of mutations associated with Mendelian

diseases and cancer. While LASSIE was designed as an evolutionary measure, it may also be

useful in the prediction of mutations associated with disease, assuming such mutations tend to be

under selection11, 12, 27, 29, 30. To evaluate the method in this setting, we measured its power in the

prediction of known Mendelian disease variants, comparing it with the popular variant prioritiza-
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tion methods PolyPhen-221, SIFT11, Eigen54, CADD29, and phyloP8. In this experiment, we used

pathogenic and benign variants from the ClinVar database55 as positive and negative examples,

respectively. Despite no use of disease data for training (see Discussion), LASSIE performed re-

markably well on this benchmark (Fig. 3a), displaying slightly greater values of the area under the

receiver operating characteristic curve (AUC) statistic (AUC=0.879) than even the best previously

published methods, such as Eigen (AUC=0.867) and PolyPhen-2 (AUC=0.845).

As a second, largely orthogonal, test of predictive power for clinically relevant variants,

we evaluated LASSIE’s performance in the prioritization of nonsynonymous cancer-driver muta-

tions. Cancer-driver mutations in germline cells may significantly increase the risk of early-onset

malignant tumors and, therefore, are likely to be under strong purifying selection in human popu-

lations. To test this hypothesis, we obtained a set of nonsynonymous mutations overlapping with

mutational hotspots recurrently observed across patients in 243 cancer genes56, which should be

enriched for cancer drivers. We randomly sampled a matched number of singleton nonsynonymous

somatic mutations in the same genes to represent putative passenger mutations. LASSIE showed

reasonable accuracy in this task (AUC=0.743), again performing better than all other methods

tested, although the overall power was modest for all predictors (Fig. 3b). Nevertheless, the selec-

tion coefficients estimated by LASSIE are significantly predictive of cancer-driver mutations and

could potentially be combined with other features to improve predictive power.

To examine disease relevance at higher resolution, we compared our estimates of |s| with

a recent saturation genome editing (SGE) study of 13 exons of the BRCA1 gene57. This study

assigned nearly every possible single nucleotide variant (SNV) in these exons a “function score”
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indicating its effect on cell growth in an optimized HAP1 cell line, and then classified each SNV

as “non-functional” (i.e., disruptive to growth), “functional” (nondisruptive), or “intermediate.”

We found that “non-functional” variants had mostly high estimates of |s|, “functional” variants

were enriched for medium and low estimates of |s|, and “intermediate” variants had intermediate

estimates of |s| (Fig. 3c). Moreover, the 20 “pathogenic” variants from ClinVar that have been

reviewed by experts almost all were both classified by SGE as “nonfunctional” and had close to

the maximum possible estimate of |s|, whereas the 12 expert-reviewed “benign” variants from

ClinVar were almost all “functional” and tended to have low to moderate estimates of |s| (Fig. 3c).

Indeed, a threshold of |s| = 0.0005 (dotted line) would almost perfectly distinguish between the

pathogenic and benign variants in ClinVar, with only three misclassifications (see Supplementary

Fig. 4 for ROC curves). Nevertheless, many “functional” variants appear to be under fairly strong

selection, and some “non-functional” variants under fairly weak selection, indicating that there are

fundamental limits to the use of natural selection as an indicator for disease (see Discussion).

LASSIE and other methods have reasonable accuracy for rare but not common GWAS vari-

ants. Because rare genetic variants are most likely to be under negative selection, we hypothesized

that evolution-based methods would be more predictive of rare than common variants associated

with complex traits. To evaluate this hypothesis, we tested several methods separately on rare

(MAF < 1%) and common (MAF > 5%) nonsynonymous variants from the GWAS catalog58,

using matched variants from the 1000 Genomes Project as negative controls (Methods). In agree-

ment with our hypothesis, most predictors were significantly more powerful in the prediction of

rare GWAS variants than of common variants (Fig. 3d–e). Furthermore, LASSIE was among the
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most accurate methods in the prioritization of both rare and common GWAS variants.

Brain-specific and autism spectrum disorder-related genes are under unusually strong selec-

tion. LASSIE’s assumption of a single shared relationship, across all genes, between predictive

genomic features and |s| may fail for certain subsets of genes. We searched for groups of genes

that systematically deviate from this average relationship, using rare variants from 60,706 exomes

in the ExAC data set to obtain high-resolution information about strong negative selection4, 59. To

characterize the “null” distribution for the observed number of nonsynonymous variants per gene,

we used a previously estimated context-dependent mutation rate map60 to describe site-specific

mutation rates. This model predicted numbers of rare synonymous variants that were generally

well correlated with the observed data (Supplementary Fig. 5). We then combined these site-

specific mutation rates with the probabilities of strong negative selection under LASSIE to obtain

an expected rate of rare nonsynonymous variants per each gene. Finally, we computed p-values

for the observed numbers of rare (MAF < 0.001) nonsynomous variants per gene with respect to

these expected rates under a Poisson-Binomial model (see Methods). We refer to the genes having

significantly fewer variants than expected as being under enhanced selection, and the genes with

significantly more variants than expected as being under relaxed selection.

Among 11,602 autosomal genes examined, we identified 1,118 genes and 773 genes as being

under significantly enhanced or relaxed selection, respectively (Fig. 4a; FDR rate < 0.001). Inter-

estingly, we found that the genes under enhanced (strong negative) selection were more likely to

be exclusively expressed in the central nervous system (CNS) or associated with autism spectrum

disorder61, 62 (Fig. 4b). These genes were also enriched in Gene Ontology terms and pathways
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associated with the CNS63 (Supplementary Tables 3 & 4). The genes under relaxed selection, by

contrast, tended to be exclusively expressed in liver or skeletal muscle (Fig. 4b) and to be involved

in fundamental metabolic pathways (Supplementary Tables 5 & 6).

Discussion

In this article, we have introduced LASSIE, the first computational method for estimating allele-

specific selection coefficients at individual nucleotides across the human genome. LASSIE unifies

ideas from the literature on variant prioritization and the literature on the bulk distribution of fitness

effects (DFE). Like most methods for DFE inference, LASSIE is based on a generative model for

allele frequencies, which can be fitted to the data by maximum likelihood without the need for

labeled training data. At the same time, the LASSIE model is explicitly conditioned on a rich set

of genomic features similar to those considered by variant prioritization methods. Using a flexible

neural-network design, LASSIE pools polymorphism data across sites having similar genomic

features to obtain improved estimates of selection coefficients. We have used LASSIE to generate

a map of |s| for all possible single nucleotide variants in human protein-coding genes (available as

a UCSC Genome Browser track: http://compgen.cshl.edu/LASSIE/), based on 51 high-coverage

Yoruba genomes and 33 predictive genomic features.

For reasons of efficiency, we chose to approximate the full DFE using a mixture model, with

components corresponding to neutral drift, weak negative, and strong negative selection. This

strategy allows the model to be rapidly fitted to genome-wide data, but results in a rather coarse-

grained estimate of the DFE. In our formulation, this approach ignores positive selection, which
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we have previously shown is difficult to detect in this setting9. Importantly, this strategy is also lim-

ited in its ability to make distinctions among large values of |s|, because estimates are effectively

truncated at the value for the “strong” mixture component, |s| = 5.9× 10−4. As a result, LASSIE

appears to substantially underestimate |s| for nonsense mutations, for which the true value may

be as much as two orders of magnitude larger64. A related problem is that our analysis is based

on only 51 genome sequences, whereas more precise estimates will depend on much larger data

sets (ref. 64 considered >60,000 exomes). In principle, our framework could be extended to in-

fer full continuous distributions of s from larger data sets, but such an extension would require a

number of technical improvements, including relaxation of the infinite-sites assumption underly-

ing our model for the site frequency spectrum, accurately accounting for the effects of very recent

explosive population growth4, 65, and further improvements to computational efficiency.

Strikingly, we find that about 30% of synonymous mutations are under negative selection.

Selection on synonymous mutations appears to be almost exclusively weak, rather than strong,

suggesting a limited impact on disease. Nevertheless, weak selection will tend to prohibit the

fixation of synonymous alleles and will reduce synonymous substitution rates. Indeed, at a se-

lection coefficient of s = −1.3 × 10−4 (our estimate for the corresponding mixture component),

nearly all selected synonymous mutations would eventually be lost, rather than fixed, causing the

observed synonymous substitution rate to be reduced by almost 30% relative to the neutral rate.

This projection is consistent with a number of previous analyses of human and other mammalian

data47–52, which have observed reductions of∼20–40% in substitution rates or nucleotide diversity

at synonymous sites. Overall, it appears that negative selection on synonymous mutations is far
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more common than once believed, even in humans, with important implications for the widespread

practice of using synonymous sites to estimate the neutral substitution rate.

The value of evolutionary methods for disease prediction ultimately depends on the degree to

which natural selection correlates with disease risk. While many disease-associated variants show

signatures of selection, it stands to reason that some will not, for example, because they are asso-

ciated with late-onset diseases or diseases whose prevalence is strongly associated with features of

modern life. Conversely, many potential variants that show signatures of selection will not relate to

disease, for example, because they are strongly deleterious at embryonic or even pre-fertilization

(e.g., in sperm competition) stages and never appear in patients; because they are deleterious only

in the presence of a no-longer-existing genetic background; or because they reduce fitness without

disrupting normal health (as through sexual selection). Nevertheless, the relationship between nat-

ural selection and Mendelian disease is sufficiently strong that evolutionary methods are fairly ef-

fective at identifying pathological variants in databases such as ClinVar, with LASSIE performing

as well or better, in our experiments, than any other available computational method—including

well-established methods such as PolyPhen-2 and SIFT. Interestingly, LASSIE also significantly

outperformed other methods in the prioritization of nonsynonymous cancer-driver mutations, de-

spite not being designed for the unique features of somatic evolution.

We found that recently published measures of the functional impact of point mutations in

BRCA1 based on saturation genome editing (SGE)57 correlated fairly well with LASSIE’s measure

of natural selection, both across all mutations and for the subset in ClinVar (Fig. 3c). Nevertheless,

an expected 44% of variants considered “functional” (i.e., non-disrupting) by SGE were estimated
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by LASSIE to be under strong negative selection and 9% of “non-functional” mutations were

estimated to be under only weak selection. These discordances could in part reflect the influence

of natural selection in other cell types or conditions, or limitations of the assay as a measure of

disease importance. In any case, they suggest—based on this one gene, cell type, and functional

assay—that while there is a strong positive correlation between signatures of natural selection and

disease impact, there are nevertheless many exceptions to this general correspondence.

While evolutionary methods clearly have value in predicting Mendelian disease variants, it

is less clear that they will be useful for identifying causal variants for complex diseases or other

complex traits, many of which segregate at high frequencies, making them unlikely to be under

detectable negative selection. Indeed, we found that none of the variant prioritization methods we

tested performed well in common variant prediction (Fig. 3e). Interestingly, however, LASSIE and

other evolution-based methods performed much better for rare variants associated with complex

traits (Fig. 3d), presumably because rare variants tend to have larger effect sizes and experience

stronger negative selection. Indeed, recent studies have shown that the effect sizes of GWAS

variants are negatively correlated with allele frequencies and allele ages66, 67. Together, these ob-

servations suggest that evolution-based methods may have an under-appreciated potential for the

identification of rare variants associated with complex traits.

We were able to obtain reasonable estimates of allele-specific selection coefficients by pool-

ing data across many genes, thereby “shrinking” estimates toward their average values given the

genomic features. As in all such shrinkage strategies, however, the decreased variance in the esti-

mates comes at the cost of increased bias, which will be most evident for genes that are atypical
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in some way. We attempted to turn this limitation into a strength by using it to reveal classes

of genes that showed unusually large or small numbers of variants relative to the LASSIE pre-

dictions, corresponding to “enhanced” or “relaxed” strong negative selection. Interestingly, we

found that genes under “enhanced” selection are enriched for brain-specific expression and an

association with autism spectrum disorder (ASD). This observation is consistent with a reported

enrichment for likely gene-disrupting de novo mutations in ASD-affected probands relative to unaf-

fected siblings, suggesting the existence of ∼400 ASD-associated genes under particularly strong

selection68–71. Separately, conventional variant-effect predictors have been reported to perform

poorly for neurodevelopmental diseases, while gene-level estimates of natural selection—such as

pLI and RVIS—perform considerably better59, 72, 73, perhaps because the relevant genes are not

extraordinarily conserved across species but are under very strong selection in humans. Our find-

ings help to put these observations in an evolutionary context, and suggest that extensions of our

methods that unify variant- and gene-level measures of selection could be particularly useful for

neurodevelopmental diseases.
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URLs. LASSIE program, https://github.com/CshlSiepelLab/LASSIE/;

LASSIE browser track, http://compgen.cshl.edu/LASSIE/;

UCSC Genome Browser, http://genome.ucsc.edu/;

dbNSFP database, https://sites.google.com/site/jpopgen/dbNSFP/;

SNVBox database, http://karchinlab.org/apps/appSnvBox.html;

CADD database, https://cadd.gs.washington.edu/;

SIFT database, http://sift.bii.a-star.edu.sg/;

PolyPhen-2 database, http://genetics.bwh.harvard.edu/pph2/;

Eigen database, http://www.columbia.edu/∼ii2135/eigen.html;

1000 Genomes project, http://www.internationalgenome.org/;

Roadmap Epigenomics project, http://www.roadmapepigenomics.org/;

SPIDEX database, http://www.openbioinformatics.org/annovar/spidex download form.php.
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Online Methods

Genomic features. For predictive genomic features, we used predefined variant categories indi-

cating the impact of each mutation on the encoded protein, sequence conservation scores, protein

structural features, splicing scores, and RNA-seq signals (Supplementary Table 1). The variant

categories were defined by three indicator variables for whether or not a variant was nonsynony-

mous, nonsense (stop-gained), or stop-lost in dbNSFP74. The conservation scores include scores

derived from both protein and multi-species genomic alignments. The protein sequence conserva-

tion scores included SIFT11, LRT75, Mutation Assessor76, PROVEAN77, SLR78, Grantham79, PSIC

scores from PolyPhen-2 (ref. 21), and HMMEntropy scores from SNV-Box45. The nucleotide se-

quence conservation scores included phyloP scores8 derived from vertebrate, mammalian, and

primate whole-genome alignments from the UCSC Genome Browser80. The protein structural

features were obtained from SNV-Box and included predicted secondary structures, and contribu-

tions to protein stability, B-factors, and relative solvent accessibilities45. We also obtained splicing

scores and RNA-seq signals from the non-commercial version of SPIDEX and the Roadmap Epige-

nomics Project, respectively81, 82. All features were based on the hg19 (GRCH37) assembly of the

human genome.

Polymorphism data. We obtained 51 high-coverage Yoruba genome sequences from the 1000

Genomes project1. To reduce technical errors due to alignment and genotype calling, we applied

several filters similar to those used in refs. 33 & 83. These filters eliminated multi-allelic nucleotide

sites, simple repeats, transposons, and recent segmental duplicates. Following the same references,
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we masked all CpG dinucleotides present in either the reference genome or alternative alleles.

We also obtained the distributions of ancestral alleles in the human-chimp most recent common

ancestor from these same previous studies. In this case, we integrated over these distributions when

inferring the global demographic model and mixture model for selection, but then conditioned on

the most likely ancestral alelle in the mixture density network for simplicity and efficiency.

Demographic model and exome-wide distribution of selection coefficients. To obtain sites

largely free from selection, we began with the putatively neutral regions defined for INSIGHT33, 83.

Briefly these regions are defined by excluding all coding exons, conserved noncoding elements,

and their close flanking regions. We intersected these regions with the 2-kb flanking regions of

all coding exons in the Consensus CDS database84 to obtain a subset of putatively neutral sites

proximal to coding exons and therefore approximately matched to them in terms of influence from

selection from linked sites. We fitted a three-epoch demographic model to the site-frequency spec-

trum in these exon-proximal “neutral” regions, using Poisson Random Field (PRF) theory for

inference (see Supplementary Note for details).

We then estimated the bulk distribution of selection coefficients in coding regions under a

three-component mixture model, with components for neutral evolution (s0 = 0), weak negative

selection (s1 < 0), and strong negative selection (s2 < s1). This model is defined by the selec-

tion coefficients {s0, s1, s2} and three corresponding mixture coefficients, {w0, w1, w2}, where wi

represents the probability that each mutation belongs to component i of the model. The free pa-

rameters {s1, s2, w0, w1, w2} were estimated by maximum likelihood, subject to the constraints

that w0 + w1 + w2 = 1, {w0, w1, w2} ≥ 0, with s0 = 0 held fixed (Supplementary Note).
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Training the mixture density model. We trained the mixture density network for inference of

allele-specific selection coefficients using mini-batch gradient descent. Data for chromosome 1

was used for testing, data for chromosome 2 was used for validation, and data from the remaining

chromosomes was used for training, except for the sex chromosomes (X & Y), which were ex-

cluded due to their atypical patterns of mutation and selection, as in previous work. The batch-size

was set to 100 nucleotides and the training data were shuffled prior to processing. After each epoch

of training, we evaluated the model on the validation set (chromosome 2) and stopped training if

the loss (negative log likelihood) did not decrease after five successive epochs (early stopping). Fi-

nally, we selected the set of parameters estimated in the epoch with the lowest validation loss. After

training, we assigned each potential coding mutation its expected selection coefficient s under the

site- and allele-specific distribution defined by the mixture density network, that is, with,

s = Pneutrals0 + Pweaks1 + Pstrongs2

= Pweaks1 + Pstrongs2, (1)

(see Fig. 1c). By construction, s ≤ 0, so we generally summarize these estimates using |s|, which

can be interpreted as a measure of the strength of negative selection. Despite that chromosome X

was excluded from the training set, we did generate predictions for this chromosome because it

contains many disease variants.

Comparison with other variant prioritization methods. For comparison with LASSIE, we

downloaded precomputed CADD (v1.3; ref. 29), PolyPhen-2 (v2.2.2; ref. 21), SIFT (released in

August 2011; ref. 11), Eigen (v1.0; ref. 54), and mammalian phyloP (phyloP46way; ref. 8) scores

from their source websites. For all comparisons, we only included variants which were scored by
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all methods. We visualized the receiver operating characteristic (ROC) curves and calculated the

areas under the receiver operating characteristic curve (AUC) using the ROCR package in R85.

For the evaluation of Mendelian disease variants, we obtained pathogenic and benign vari-

ants from the ClinVar website55 in March 2017. Variants annotated as “pathogenic” or “likely

pathogenic” were considered “true” disease variants, whereas those annotated as “benign” or

“likely benign” were employed as negative controls (ClinVar release in March 2017; ref. 55).

Notably, several of the evaluated methods utilized common SNPs or known pathogenic variants

in training, which could result in overestimation of their performance. Therefore, we removed all

ClinVar variants also in the 1000 Genomes project (phase 3; ref. 1) or the training set of PolyPhen-

2. The numbers of positive and negative control variants were balanced by random sampling

without replacement. Because true pathological variants are sparse, this matching scheme will

tend to result in an over-estimate of the true absolute AUC, but our focus in this article is on the

relative performance of the different predictors.

For the evaluation of cancer-driver mutations, we obtained pan-cancer somatic mutations and

hotspots of nonsynonymous mutations from ref. 56. We defined cancer genes to be protein-coding

genes containing at least one mutational hotspot, cancer-driver mutations to be somatic mutations

overlapping mutational hotspots, and passenger mutations to be singleton mutations within cancer

genes but not overlapping mutational hotspots. As above, we filtered out all somatic mutations

overlapping 1000 Genomes Project variants or the training set of PolyPhen-2, and matched the

numbers of cancer diver mutations and passenger mutations by random sampling without replace-

ment.
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For the evaluation of nonsynonymous variants associated with complex traits or diseases, we

obtained GWAS variants from the GWAS Catalog58 (downloaded in November 2017) and identi-

fied subsets of rare variants (MAF < 0.01) and common variants (MAF > 0.05). We used nonsyn-

onymous variants from the 1000 Genomes Project as negative controls. After observing that the

GWAS variants tended to have higher MAFs than these controls, we matched the distributions of

MAFs for the two sets and then randomly sampled negative examples matched in both number and

MAF to the GWAS variants, repeating the sampling 100 times to quantify uncertainty.

Identification of genes under enhanced or relaxed selection. Our model for the expected rates

of ultra-rare (MAF < 0.001) variants in the ExAC data4 depended critically on an accurate mu-

tation model. Our mutation model was based on precomputed context-dependent mutation rates

from the website of the Genome of the Netherlands60, 86. Because of differences in sample size,

we expected that the local mutation rates in the ExAC data would be proportional, but not equal,

to the rates estimated from the Genomes of the Netherlands data. Therefore, to recalibrate the

local mutation rates, we fitted a simple logistic regression model for the entire genome based on

the numbers of ultra-rare synonymous variants in the ExAC data set, assuming that the impact of

natural selection on these variants should be minimal. (Note that our finding that few synonymous

mutations are under strong negative selection, Fig. 2b, supports this assumption.) Specifically, the

logistic regression assumes,

log

(
pi

1− pi

)
= a log(di) + b log(µi) + c, (2)

where pi denotes the probability of observing a rare synonymous mutation i, di is the sequenc-

ing coverage at the corresponding position (which varies considerably in the ExAC data), and µi
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is the corresponding mutation rate estimated by the Genomes of the Netherlands. We validated

the mutational model by comparing the observed number of synonymous mutations with the ex-

pected number predicted by the mutational model for each gene. We removed short genes (with

<200 potential synonymous mutations) and genes for which the mutational model seemed to be

misspecified (FDR rate ≤ 0.2) from further consideration.

Based on this recalibrated mutation model, we defined a null model for the number of non-

synonymous mutations per gene given the site- and allele-specific selection coefficients estimated

by LASSIE. First, we calculated qi, the expected probability of observing a nonsynonymous mu-

tation i, as

qi = h(w2,i)pi, (3)

where pi is the probability of mutation i under the neutral mutational model, w2,i is the probability

that mutation i is under strong selection as estimated by LASSIE, and h(·) is a mapping from

the probabilities of strong selection to relative rates of the nonsynonymous mutation in the ExAC

data. To estimate h(·), we grouped all potential nonsynonymous mutations into 1000 equal-width

bins based on w2,i and then estimated h(·) for each selection bin by calculating the ratio of the

observed to the expected numbers of nonsynonymous mutations. We then calculated qi for each

nonsynonymous mutation i and used qi to parameterize a Poisson-Binomial distribution describing

the null distribution of the number of nonsynonymous mutations for each gene. The probability

mass function of the Poisson-Binomial model for a single gene is given by,

P(K = k) =
∑
O∈Fk

∏
i∈O

qi
∏
i/∈O

(1− qi), (4)

where k is the observed number of nonsynonymous mutations in the gene and Fk is the set of all
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possible arrangements of k nonsynonymous mutations. Genes under enhanced or relaxed selec-

tions were identified by two separate one-tail tests based on this Poisson-Binomial distribution.

Gene enrichment analysis. The enrichment analysis of tissue-specific expression was based on

annotated tissue-specific genes from the Human Protein Atlas61. Only tissues having more than 50

tissue-specific genes were included. The analysis of autism spectrum disorder (ASD) was based on

ASD-related genes from the SFARI Gene database62. In both cases, significant enrichments were

determined using Fisher’s exact test. For the analysis of functional categories, we used PANTHER

to investigate the enrichment of both Gene Ontology Slim categories and Reactome pathways63, 87.

Code availability. The source code for LASSIE is available on GitHub under the simplified BSD

license (http://github.com/CshlSiepelLab/LASSIE/).

Data availability. The LASSIE scores are available as a UCSC Genome Browser track at http:

//compgen.cshl.edu/LASSIE/. Additional data generated during the course of our analyses can be

obtained from the correspondong author [AS] by request.
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Figure 1: Overview of LASSIE. (a) For each potential protein-coding mutation, we collected
33 genomic features likely to be informative about natural selection, including variant categories,
protein and nucleotide conservation scores, and RNA-seq signals (Supplementary Table 1). (b)
A three-epoch demographic model was fitted to the site-frequency spectrum (SFS) for putatively
neutral exon-flanking sequences for 51 high-coverage Yoruba genomes sequences. A mixture
model for neutral evolution (s = 0), weak negative (s = −1.30× 10−4), and strong negative (s =
−5.86× 10−4) selection was then fitted to the SFS for coding sequences (CDS; see Methods). (c)
A mixture density network model defines the probabilities of the three components of the mixture
model (Pneutral, Pweak, and Pstrong) for each possible mutation at each nucleotide site, conditional
on the local genomic features. These probabilities allow the likelihood of the polymorphism data
to be computed under the Poisson Random Field (PRF) model, using diffusion approximation
methods. The parameters of the network are estimated by maximum likelihood, by treating the
(negative) log likelihood as a loss function for the neural network. After training, the weights for
the three mixture components define a coarse-grained distribution of fitness effects for all potential
mutations at each site. This distribution is summarized by a single expected value of |s| for each
mutation.
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Figure 2: Distributions of selection coefficients estimated by LASSIE. (a) Variant-specific selec-
tion coefficients |s| estimated for all potential mutations in a 60-bp region in the CP gene. Non-
reference alleles are distinguished by color and drawn with height proportional to |s|. The y-axis
indicates cumulative |s|. The three nonsynonymous variants indicated at top in red (c.2953A>G,
c.2962G>A, and c.2991T>G) are associated with Mendelian diseases and the synonymous vari-
ant indicated in blue (c.2991T>C) is benign. (b) Estimates of |s| for all potential mutations in
a 72-bp region in the BRCA1 gene. The two nonsynonymous variants indicated at top in red
(c.5053A>G and c.5054C>T) are pathogenic and the two nonsynonymous variants indicated in
blue (c.4991T>C and c.5044G>A) are benign. (c) Distributions of estimated selection coefficients
|s| for nonsense, nonsynonymous, and synonmyous mutations. (d) Distributions of |s| for genes
expressed at low, medium, and high levels, based on tertiles of RNA-seq readcounts from Roadmap
Epigenomics data82, showing a positive correlation between expression level and |s| (Spearman’s
rank correlation coefficient ρ = 0.338; p < 10−15, two-tailed t-test).
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Figure 3: Performance in predicting disease-associated nonsynonymous variants. Performance is
quantified using the area under the receiver operating characteristic curve (AUC) statistic. Results
for LASSIE are compared with those for Eigen54, PolyPhen-221, CADD29, SIFT11, and phyloP8.
(a) Performance for pathogenic variants from ClinVar55. (b) Performance for cancer driver muta-
tions from ref. 56. (c) Distributions of estimated |s| for variants in BRCA1 predicted to be “func-
tional” (FUNC; i.e., nondisruptive), “intermediate” (INT), or “non-functional” (NONFUNC; i.e.,
disruptive) by saturation genome editing57. Colored dots indicate those variants also having expert-
reviewed status in ClinVar (CLINREVSTAT=reviewed by expert panel). (d) Performance for rare
(MAF < 1%) GWAS hits. (e) Performance for common (MAF > 5%) GWAS hits, showing that
all methods have limited power.
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Figure 4: Genes under “enhanced” or “relaxed” selection relative to the exome-wide LASSIE
model. (a) Number of potential missense mutations per gene (x-axis) vs. fold-change of the
observed number of rare missense mutations relative to the number expected under a Poisson-
Binomial null model based on LASSIE (y-axis; see Methods). Each dot represents a single protein-
coding gene. Dots for genes showing significantly more rare variants than expected (“relaxed”;
n = 773) are colored red, whereas those for genes showing significantly fewer rare variants than
expected are colored blue (“enhanced”; n = 1118). (b) Groups of genes enriched for enhanced or
relaxed selection. Dots represent odds ratios of enrichment, with bars indicating 95% confidence
intervals. Genes under enhanced selection tend to be exclusively expressed in the central nervous
system or associated with autism spectrum disorder. In contrast, genes under relaxed selection tend
to be exclusively expressed in liver and skeletal muscle.
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