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ABSTRACT 14 

Cyclins associate with CDK1 to generate the M-phase-promoting factor (MPF) 15 

essential for progression through mitosis and meiosis. Previous studies concluded that 16 

CCNB2 is dispensable for cell cycle progression. Given our findings of high translation 17 

rates of CcnB2 mRNA in prophase-arrested oocytes, we have reevaluated its role during 18 

meiosis. CcnB2-/- oocytes undergo delayed germinal vesicle breakdown followed by a 19 

defective M-phase due to reduced pre-MPF activity. This disrupted maturation is 20 

associated with compromised CcnB1 and Mos mRNA translation and delayed spindle 21 

assembly. Given these defects, a significant population of oocytes fail to complete 22 

meiosis I because SAC remains activated and APC function is inhibited. In vivo, CCNB2 23 

depletion leads to decreased oocyte developmental competence, compromised 24 

fecundity, and premature ovarian failure. These findings demonstrate that CCNB2 is 25 

required to assemble sufficient pre-MPF for timely meiosis reentry and progression. 26 

Although endogenous cyclins cannot compensate, overexpression of CCNB1 rescues the 27 

meiotic phenotypes, demonstrating similar molecular properties but divergent modes of 28 

regulation of these cyclins.  29 
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INTRODUCTION 30 

Successful completion of the two meiotic cell divisions is essential for gamete 31 

development and fertility. Fully-grown oocyte reentry into meiosis requires assembly of 32 

the M-phase-promoting factor (MPF) and activation of its kinase activity (Adhikari and Liu, 33 

2014). This complex subsequently phosphorylates a large number of protein substrates 34 

triggering dissolution of the nuclear membrane, chromosome condensation, and spindle 35 

assembly (Morgan, 2007). Once proper chromosome-to-microtubule attachment is 36 

achieved, rapid inactivation of MPF is necessary for the transition to anaphase. This 37 

inactivation depends on the switch-like activation of anaphase-promoting 38 

complex/cyclosome (APC/C), followed by ubiquitination and degradation of cyclins and, 39 

therefore, inactivation of MPF (Thornton and Toczyski, 2006; Yang and Ferrell, 2013). 40 

Concomitant degradation of securin leads to activation of separase, which cleaves 41 

cohesins, allowing separation of the bivalents in anaphase (Lane et al., 2012). Given the 42 

asymmetrical position of the spindle in oocytes, telophase results in the extrusion of a 43 

small polar body. 44 

The MPF is composed of two classes of molecules that orchestrate progression 45 

through both M-phases of mitosis and meiosis: a family of cyclin-dependent 46 

serine/threonine kinases (CDKs) and their binding partners, cyclins (Morgan, 2007). 47 

While there are three M-phase CcnB mRNAs present in mammals (B1, B2, and B3), most 48 

of the molecular properties of the CDK1/CCNB complex are based on observations of the 49 

CDK1/CCNB1 heterodimer. However, other cyclins, like CCNB2, also interact with CDK1, 50 

activating their phosphotransferase activity (Jackman et al., 1995). CCNB1 and B2 are 51 

thought to be localized in different subcellular compartments (Jackman et al., 1995). 52 

While CCNB1 is either soluble or interacts with microtubules, CCNB2 is associated with 53 

the cellular membrane. During mitosis, CCNB1 translocates into the nucleus while 54 

CCNB2 remains sequestered in the cytoplasm (Jackman et al., 1995). 55 

Although all three cyclin mRNAs are detected in mouse oocytes, the CCNB1/CDK1 56 

complex is generally regarded as the major driver of meiosis progression. Little is known 57 

about the role of CCNB3 during oocyte maturation with the exception of one report that 58 

suggests its requirement in meiosis I (Zhang et al., 2015). Conversely, CCNB2 is thought 59 

to be dispensable for mitosis progression. Early attempts to define CCNB2 function either 60 
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by genetic inactivation of the gene or by knockdown with antisense RNAs have not 61 

produced overt phenotypes; this has led to the conclusion that CCNB2 is dispensable for 62 

either mitosis and meiosis, possibly due to compensation by CCNB1 (Brandeis et al., 63 

1998; Ledan et al., 2001). However, recent evidence reproposes an independent function 64 

for CCNB2 during the mouse meiotic divisions. During experiments investigating the 65 

function of the spindle component NDC80/HEC1 during meiotic prophase, it has been 66 

proposed that CCNB2 stability is dependent on association with HEC1 (Gui and Homer, 67 

2013). Additionally, knockdown of CCNB2 with morpholino oligonucleotides (MO) 68 

markedly decreased meiotic reentry in mouse oocytes (Gui and Homer, 2013). Similar 69 

findings have been reported in a very recent study investigating CCNB1 function in 70 

oocytes (Li et al., 2018). New data from our laboratory has demonstrated that the rate of 71 

translation of the two major CCNBs, B1 and B2, is regulated in a distinct fashion during 72 

meiotic prophase (Han et al., 2017). CcnB1 mRNA is expressed with three distinct 73 

3’UTRs of different lengths; while translation of the two longer mRNA variants is 74 

repressed in meiotic prophase, a third, short variant is constitutively translated (Yang et 75 

al., 2017). CCNB1 protein is detectable in meiotic prophase albeit at levels that are low 76 

compared to M-phase. During prometaphase, the translation of the two longer variants is 77 

activated and drives the large accumulation of the CCNB1 protein (Yang et al., 2017). 78 

Although the two CcnB2 mRNA variants are also detected, the rate of translation of 79 

CcnB2 mRNA is high in prophase I and the protein is readily detectable—a feature 80 

reminiscent of that reported in frog oocytes (Piqué et al., 2008).  81 

The above findings open the possibility that CCNB2 is considerably more abundant 82 

than CCNB1 in prophase I (GV)-arrested oocytes. Prompted by these observations, we 83 

have further investigate the function of CCNB2 during mouse oocyte meiotic progression. 84 

Using previously generated Ccnb2-/- mice (Brandeis et al., 1998), we show that oocytes 85 

deficient in CCNB2 are developmentally compromised, as documented by the subfertility 86 

of these mice. This sub-fertility phenotype is due to inefficient oocyte reentry and 87 

progression through the meiotic cell cycle with blocks at different stages of meiosis. Thus, 88 

we conclude that CCNB2 plays a significant role during mouse oocyte meiosis, which 89 

cannot be compensated for by endogenous CCNB1. 90 

    91 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 12, 2018. ; https://doi.org/10.1101/441352doi: bioRxiv preprint 

https://doi.org/10.1101/441352
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

  92 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 12, 2018. ; https://doi.org/10.1101/441352doi: bioRxiv preprint 

https://doi.org/10.1101/441352
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

RESULTS 93 

Contrasting CcnB1 and CcnB2 mRNA translation rates define the pattern of expression 94 

of the two cyclins at the prophase I to metaphase I transition 95 

We have previously reported that the patterns of ribosome loading onto the CcnB1 96 

and CcnB2 mRNAs in fully-grown mouse oocytes are considerably different (Han et al., 97 

2017). Here, we confirmed and extended this initial observation with a detailed time 98 

course experiment monitoring ribosome loading onto the two mRNAs in GV oocytes and 99 

during progression through metaphase I (MI) (Fig. 1, A and B). The overall mRNA levels 100 

for the two cyclins are comparable (Input, Fig. 1, A and B). However, while little ribosome 101 

loading onto CcnB1 mRNA is detected in GV oocytes, ribosome loading onto CcnB2 102 

mRNA is considerably higher. These indirect measurements of translation are 103 

corroborated by mining data sets assessing poly(A)-tail length of mRNAs in GV oocytes 104 

(Morgan et al., 2017). The CcnB2 mRNA has a significantly longer poly(A)-tail as 105 

compared to CcnB1 (Fig. 1 C); increased poly(A)-tail length has been associated with an 106 

increased rate of translation (Reyes and Ross, 2016). 107 

During meiotic progression, little or no changes in ribosome loading onto the 108 

CcnB2 mRNA were detected up to MI, whereas major changes in CcnB1 association with 109 

ribosomes take place during MI (Fig. 1 A). This differential pattern of translation is in good 110 

accordance with data from previous experiments using luciferase reporters tagged with 111 

the 3’UTRs of the two mRNAs (Han et al., 2017). We also have shown that alternate 112 

polyadenylation signal usage (APA) plays a major role in defining the 3’UTR length and 113 

translation rate of CcnB1 mRNA (Yang et al., 2017). Since the CcnB2 mRNA 3’UTR also 114 

contains an internal polyadenylation signal, we compared the translation rate of the two 115 

3’UTR variants. CcnB1 3’UTR short and long constructs were used as a control. The rates 116 

of translation of the two CcnB2 3’UTR reporters are comparable in GV oocytes (Fig. 1 D) 117 

and do not change significantly during oocyte maturation. However, the rate of translation 118 

driven by the long CcnB1 3’UTR is considerably lower than that of either CcnB2 3’UTRs 119 

(Fig. 1 D). Only the rate of translation of the short CcnB1 3’UTR approximates those of 120 

CcnB2 3’UTR. These findings consolidate the concept that rates of translation of the two 121 

cyclin mRNAs are significantly different. Since previous experiments indicate comparable 122 

degradation rates of the two proteins in GV (Han et al., 2017), we hypothesize that 123 
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CCNB2 accumulates in GV-arrested oocytes at higher levels than CCNB1. During oocyte 124 

maturation, CCNB1 accumulation increases while CCNB2 remains relatively unchanged, 125 

opening the possibility of a shift in the stoichiometry of CCNB/CDK1 complex. 126 

 127 

CcnB2-/- female mice display defects in fecundity 128 

Together with a previous report (Gui and Homer, 2013), the above findings are at odds 129 

with the widely held notion that CCNB2 is dispensable for oocyte maturation. Therefore, 130 

we have re-evaluated the fertility phenotype of the previously generated CcnB2-/- mice 131 

(Brandeis et al., 1998). 132 

While both CcnB2+/- and CcnB2-/- mice are fertile and produce pups, CcnB2-/- mice 133 

show compromised fecundity (Fig. 2 A). This phenotype is not due to embryonic lethality 134 

of the CcnB2-/- pups since there is no statistically significant deviation from the expected 135 

Mendelian ratio when heterozygous males and females were mated—suggesting that 136 

CCNB2 is dispensable for embryo development (Fig. S1 A). Furthermore, CcnB2-/- 137 

females generate fewer pups even when crossed with wild type (WT) males, indicating 138 

that the sub-fertility is associated with the female. CcnB2-/- females gave birth to fewer 139 

pups (reduced litter size) and fecundity declined rapidly with age, suggesting premature 140 

ovarian failure (Fig. 2 A and Fig. S1, B and C). This fecundity phenotype may be caused 141 

by delayed puberty and/or ovarian or oocyte dysfunction. Delayed puberty is ruled out as 142 

the pregnancy rates of mated CcnB2-/- females did not improve over a period of nine 143 

months. Furthermore, the age at first pregnancy of CcnB2+/+ and CcnB2-/- females are 144 

comparable (Fig. S1 D). Consistent with the original report (Brandeis et al., 1998), while 145 

CcnB2+/- pups are indistinguishable from the CcnB2+/+ littermates, the CcnB2-/- pups were 146 

significantly smaller, weighing an average 1.4 ± 0.35 g less than the CcnB2+/+ siblings 147 

(Fig. 2 B). The adult ovarian morphology of the CcnB2-/- mice is unremarkable, with all 148 

the follicle developmental stages and corpora lutea present (Fig. 2 C). To further assess 149 

ovarian function and monitor follicle maturation/ovulation potential, pre-pubertal females 150 

were injected with PMSG followed by hCG, a regimen which induces ovulation. Slightly 151 

fewer oocytes were retrieved from CcnB2-/- females, while oocyte diameters are identical 152 

between CcnB2+/+ and CcnB2-/-  females (Supplemental Fig. S1, E and F). 153 

Timing of oocyte maturation is aberrant in CcnB2-/- oocytes 154 
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Western blot analysis of CcnB2+/- and CcnB2-/- oocyte extracts reveal a gene dose-155 

dependent decrease of CCNB2 protein (Fig. 3 A). Loss of CCNB2 does not affect CDK1 156 

protein levels, indicating no effect on either synthesis or stability of the kinase moiety. 157 

Recently, it was reported that oocyte-specific knockout of CCNB1 results in the 158 

overexpression of CCNB2 (Li et al., 2018); however, in CcnB2-/- oocytes, the level of 159 

CCNB1 is not obviously altered (Fig. S2 A). To understand the extent by which CDK1 160 

activity depends on CCNB2, we measured the CDK1 kinase activity using two 161 

independent strategies. In the first paradigm, extracts from CcnB2+/+ and CcnB2-/- oocytes 162 

were incubated with a CDK1 substrate (GST-PP1) and phosphorylation was measured 163 

by phosphosite-specific antibodies (pT320-PP1) (Daldello et al., 2015; Lewis et al., 2013). 164 

There is a highly significant decrease in CDK1 activity in extracts from CcnB2-/- oocytes 165 

(Fig. 3, B and C). MPF activity was also measured in whole oocytes using a previously 166 

described CDK1-FRET reporter assay (Gavet and Pines, 2010a; Gavet and Pines, 167 

2010b). In GV-arrested CcnB2-/- oocytes, FRET signal is decreased as compared to 168 

maturing CcnB2+/+ oocytes (Fig. S2 B).  169 

Given that the above data are consistent with decreased pre-MPF activity, we 170 

investigated whether spontaneous maturation is affected in CcnB2-/- oocytes. While 171 

CcnB2+/+ and CcnB2+/- oocytes resume meiosis in a highly synchronous manner (GVBD 172 

time= 1.5 ±1.1 hrs and 1.8 ±1.1 hrs, respectively), meiotic reentry of CcnB2-/- oocytes is 173 

significantly delayed (GVBD time= 4.3 ±3.7 hrs). A more detailed analysis of the 174 

maturation time course shows the presence of two subpopulations of CcnB2-/- oocytes. 175 

The first population resumes meiosis within the first four hours post-Cilostamide release, 176 

though the GVBD time is still delayed compared to CcnB2+/+ oocytes. The second 177 

population resumes meiosis in a stochastic manner, with oocytes undergoing GVBD even 178 

after 16 hours post-Cilostamide release (Fig. 3 D and Fig. S2 C). Furthermore, the time 179 

of GVBD in CcnB2-/- oocytes is inversely correlated with CDK1 activity of the same 180 

oocytes at GV (Fig. S2 D), but there is no correlation between GVBD time and oocyte 181 

diameter (Fig. S2 E). If a decreased MPF activity were solely responsible for delayed 182 

meiosis resumption in these oocytes, the overexpression of cyclins should rescue the 183 

phenotype. Indeed, overexpression of CcnB1-mCherry in CcnB2-/- oocytes restores the 184 

GVBD time to that of CcnB2+/+ oocytes (Fig. 3E), and oocytes expressing higher levels of 185 
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CCNB1 undergo GVBD earlier (Fig. S2 F). Of note, CCNB1-mCherry, but also CCNB2-186 

mCherry, translocate into the nucleus with the same kinetics (Fig. S2 G).  These findings 187 

strongly support the hypothesis that CCNB2 protein accumulation in prophase I is 188 

required to generate sufficient CDK activity for timely reentry into meiosis, and that 189 

oocytes with lower pre-MPF activity resume meiosis in a delayed fashion.  190 

PKA inactivation-dependent events are intact whereas CDK1-dependent events are 191 

disrupted in CcnB2-/- oocytes 192 

In order to further define the molecular defects associated with CCNB2 depletion in 193 

the oocyte during the G2/M transition, we examined the timing of CDC25B translocation. 194 

We have previously shown that in mouse oocytes, CDC25B import into the nucleus is 195 

one of the first detectable events following the decrease in cAMP, the signal that 196 

maintains oocyte meiotic arrest (Oh et al., 2010). Therefore, we injected oocytes with 197 

CDC25B-(phosphatase dead)-YFP to follow the kinetics of CDC25B translocation in intact 198 

oocytes (Fig. 4 A). All CcnB2+/+ oocytes mature in a synchronous manner (Fig. S3 A) and 199 

the YFP-tagged CDC25B signal is detected in the nucleus at as early as 15 mins post-200 

Cilostamide release (Fig. S3 B). However, there are two populations of CcnB2-/- oocytes 201 

(early GVBD and late GVBD) (Fig. S3 E). CDC25B translocation in both CcnB2+/+ and 202 

CcnB2-/- oocytes continues until the oocytes undergo GVBD, at which point CDC25B 203 

diffuses throughout the cytoplasm (Fig. 4 A). No significant difference in CDC25B 204 

translocation rate are found between CcnB2+/+ oocytes and the two CcnB2-/- populations 205 

(Fig. 4 C). However, since GVBD time is delayed in CcnB2-/- oocytes, CDC25B 206 

accumulation in the nucleus continues for longer periods of time, resulting in higher 207 

CDC25B reporter signal in the nucleus (Fig. S3 C). This difference in the CDC25B 208 

nuclear/cytoplasmic ratio is not due to differences in the amount of reporter expressed 209 

(Fig. S3 D). These measurements document that CDC25B translocation occurs normally 210 

in CcnB2-/- oocytes and that the rate of import is not affected by the decrease in MPF 211 

activity. Moreover, they indicate that PKA downregulation occurs normally in the CcnB2-212 

/- oocytes. Remarkably, these findings also demonstrate that CDC25B translocation alone 213 

was not sufficient to trigger GVBD in the CcnB2-/- oocytes.   214 

CDC25B translocation is followed by CCNB1 import into the nucleus and WEE1B 215 

export out of the nucleus preceding GVBD (Oh et al., 2010). Effects on CCNB1 import 216 
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could not be measured in CcnB2-/- oocytes because of its rescuing effect (see below). 217 

However, YFP-tagged WEE1B export from the nucleus occurs over a wide range of time, 218 

consistent with the variable timing of GVBD (Fig. 4 B). CcnB2-/- oocytes show significantly 219 

decreased WEE1B translocation rates as compared to CcnB2+/+ oocytes (Fig. 4 D); 220 

WEE1B translocation rate is inversely correlated to GVBD time (Fig. S3 F). We have 221 

previously demonstrated that WEE1B export is dependent on CDK1 activity (Oh et al., 222 

2010); therefore, the decreased WEE1B export rate observed in CcnB2-/- oocytes 223 

indicates slower CDK1 activation. Furthermore, we tracked CDK1 activation in live 224 

oocytes using a FRET approach to confirm that the speed of CDK1 activation is reduced 225 

in CcnB2-/- oocytes. The speed of CDK1 activation, measured by the Hill slope of FRET 226 

activation before GVBD, is significantly decreased in CcnB2+/- and CcnB2-/- oocytes (Fig. 227 

S3, G and H). These results indicate that, in the absence of CCNB2, CDK1 activation is 228 

no longer switch-like but becomes gradual, resulting in inefficient WEE1B export and 229 

delayed GVBD.  230 

Translation of key cell cycle components is defective in CcnB2-/- oocytes  231 

Consistent with findings in Xenopus oocytes, we have previously shown that, at 232 

least in part, the translational program in mouse oocytes is dependent on CDK1 activity 233 

(Ballantyne et al., 1997; Han et al., 2017). Since CDK1 activation is likely defective in 234 

CcnB2-/- oocytes, we tested whether CDK1-dependent translation would also be affected 235 

in these oocytes. Oocytes were co-injected with mRNA coding for mCherry (loading 236 

control) and an YFP reporter fused to either CcnB1-long 3’UTR or Mos 3’UTR. The 237 

accumulation of YFP and mCherry for individual oocytes was recorded throughout meiotic 238 

maturation and signals were expressed as ratios of YFP/mCherry (Fig. S4). The rates of 239 

translation were calculated for before (0-2 hrs) and after (4-8 hrs) GVBD for YFP-CcnB1-240 

long 3’UTR (Fig. 5 A) and YFP-Mos 3’UTR (Fig. 5 B). As previously shown, the translation 241 

of both YFP-CcnB1-long 3’UTR and YFP-Mos 3’UTR increases during meiosis in 242 

CcnB2+/+ oocytes. In the absence of CCNB2, the translational activation varies widely 243 

with a population of oocytes showing a protein synthesis pattern similar to that of CcnB2+/+ 244 

oocytes and a population in which translation activation is absent or reduced for both 245 

reporters (Fig. 5 A). 246 
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 It is well established that spindle formation requires protein synthesis and, in 247 

particular, the accumulation of CCNB1, which is necessary to increase MPF activity 248 

(Davydenko et al., 2013; Hampl and Eppig, 1995; Winston, 1997). Since we have shown 249 

that CcnB2-/- oocytes have less pre-MPF activity (Fig. 3 B-C) and that the rates of YFP-250 

CCNB1-long 3’UTR accumulation are decreased (Fig. 5 A), we predicted a delay in the 251 

time of spindle formation in CcnB2-/- oocytes. CcnB2+/+ and CcnB2-/- oocytes were 252 

maturated in vitro and fixed eight hours after meiotic resumption and the spindle was 253 

visualized via β-tubulin staining. While more than 80 percent of CcnB2+/+ oocytes have a 254 

MI bipolar spindle, 60 percent of the CcnB2-/- oocytes display no or early spindle (Fig. 5 255 

C). Together, these findings support a role of CCNB2 in CDK1-dependent translation of 256 

CCNB1 and MOS and the timely assembly of MI spindle. 257 

 258 

Delayed MI/anaphase I transition in CcnB2-/- oocytes is associated with defective APC 259 

activity and persistent activation of the SAC    260 

To define whether additional defects in meiotic progression are associated with 261 

CCNB2 depletion, we examined the ability of CcnB2-/- oocytes to complete meiosis I. First 262 

polar body extrusion (PBE I) is both significantly delayed and decreased in these oocytes 263 

(Fig 6 A). In addition, only 30 percent of the CcnB2-/- oocytes reach MII with a well formed 264 

spindle and aligned metaphase chromosomes, while the rest of the CcnB2-/- oocytes are 265 

arrested in MI or at telophase I (Fig. 6, B and C). This phenotype is not due to unfavorable 266 

in vitro culture conditions because the same analysis of in vivo ovulated oocytes also 267 

clearly shows compromised progression to MII in CcnB2-/- oocytes (Fig. S5 A).  268 

A compromised MI/anaphase I transition may result from defects in the activation 269 

of the APC/CDC20 complex, which promotes the degradation of securin and cyclins. To 270 

assess this possibility, oocytes were injected with Securin-YFP mRNA to monitor the 271 

kinetics of APC activation in live oocytes. Securin degradation is temporally delayed and 272 

inefficient in CcnB2-/- oocytes (Fig. 6 D). The rate of securin degradation was calculated 273 

between six and 10 hours after GVBD and CcnB2-/- oocytes display a 50 percent 274 

decrease in degradation rates (Fig. S5 B).  275 

It has been reported that CDK1 activates APC directly and indirectly (Adhikari et 276 

al., 2014; Golan et al., 2002; Lahav-Baratz et al., 1995; Qiao et al., 2016; Yang and 277 
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Ferrell, 2013), and this activity is critical for satisfaction of the spindle assembly 278 

checkpoint (SAC) (Lara-Gonzalez et al., 2012). Using a FRET probe, we measured 279 

changes in CDK1 activity of single oocytes between two and six hours after GVBD. 280 

CcnB2-/- oocytes that extrude the first polar body have increased CDK1 activity similar to 281 

that of CcnB2+/+ oocytes, while CDK1 activation is decreased in CcnB2-/- oocytes unable 282 

to complete meiosis I (Fig. S5 C).  Moreover, APC activation is rescued by overexpression 283 

of CCNB1 in CcnB2-/- oocytes (Fig. 6 E, Fig. S5 D).  284 

Since a population of CcnB2-/- oocytes is unable to complete meiosis I, we 285 

investigated if the inability to progress to anaphase I may be due to the presence of 286 

unattached chromosomes and an active SAC. MAD2 co-localization with the kinetochore, 287 

as visualized by CREST antibody, has been used as an tool to measure SAC activation 288 

(Collins et al., 2015; Gui and Homer, 2012). CcnB2+/+ and CcnB2-/- oocytes were fixed at 289 

either seven or 24 hours post-meiotic resumption and MAD2/CREST ratios were 290 

measured. CcnB2+/+ oocytes display low MAD2 signals on the kinetochores at both times, 291 

indicating that the SAC had been satisfied (Fig. 7, A and B).  Pharmacological 292 

depolymerization of the spindle with Nocodazole strongly activates the SAC in CcnB2+/+ 293 

oocytes, and MAD2 localizes on the spindle at most of the kinetochores (Fig. 7, A and B). 294 

CcnB2-/- oocytes that reach MII display MAD2 levels on the kinetochores that are 295 

comparable to that of CcnB2+/+ oocytes arrested in MII (Fig. 7, A and B). Conversely, 296 

CcnB2-/- oocytes unable to complete meiosis I after 24 hours display significantly higher 297 

levels of MAD2 on the kinetochores than CcnB2+/+ MI oocytes (Fig. 7, A and B). This 298 

finding suggests that the MI-arrested CcnB2-/- oocytes do not transition to anaphase I 299 

because SAC is still active. It is known that oocytes can tolerate some unattached 300 

kinetochores and still proceed to anaphase I (Lane et al., 2012); therefore an additional 301 

experiment was performed to confirm that an active SAC is indeed the cause of the MI 302 

arrest in CcnB2-/-oocytes. Inhibition of MPS1 with Reversine is known to prevent MAD2 303 

localization on the kinetochores and suppresses the activity of SAC (Tipton et al., 2013). 304 

The length of meiosis I was measured as the time interval between GVBD and PBE I (Fig. 305 

7 C). Meiosis lasts longer in CcnB2-/- oocytes than in CcnB2+/+ oocytes (WT: 8.25 ±2.5 306 

hrs; KO: 11.7 ±3.0 hrs). Pharmacological SAC inhibition shortens meiosis I in both 307 

CcnB2+/+ (5.6 ±0.8 hrs) and CcnB2-/- (5.3 ±1.1 hrs) oocytes, and virtually all the oocytes 308 
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complete meiosis I with comparable time courses, regardless of the genotype. Thus, the 309 

persistent SAC activity in CcnB2-/- oocytes is indeed the cause of the delayed in PBE I 310 

timing and/or the arrest in MI. All together, these findings indicate that CcnB2-/- oocytes 311 

are less efficient in satisfying the SAC, leading to defective APC activation and, ultimately, 312 

a delayed or failed to exit from MI. These defects are rescued by overexpression of 313 

CCNB1.  314 

  315 
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DISCUSSION 316 

Our findings conclusively establish that, in the oocyte, CCNB2 plays a critical role 317 

during meiosis I both at the G2/M and the MI/anaphase I transitions — functions that are 318 

not compensated for by endogenous CCNB1. CCNB2 contributes to pre-MPF activity 319 

during prophase and is required to generate sufficient MPF to progress through 320 

maturation in a timely and efficient fashion (Fig. 3). Moreover, loss of CCNB2 is 321 

associated with ovulation of immature oocytes and/or oocytes with compromised 322 

developmental competence, resulting in decreased fecundity in CcnB2-/- females (Fig. 2). 323 

Initial evidence suggests that CcnB2 mRNA is translated at a higher rate than 324 

CcnB1 mRNA in prophase. First, the overall levels of Ccnb2 and Ccnb1 transcripts are 325 

comparable, CcnB2 is translated at a higher rate than CcnB1 in GV-arrested oocytes (Fig. 326 

1, A and B). Second, two CcnB2 and three CcnB1 isoforms with 3’ UTRs of varying 327 

lengths are expressed. While both CcnB2 isoforms are highly translated in prophase, only 328 

the short isoform of CcnB1 is translated at high levels during this time (Fig. 1 D) (Han et 329 

al., 2017; Yang et al., 2017). Third, our previous polysomal array data confirms higher 330 

recruitment of CcnB2 to the polysome as compared to CcnB1 (Han et al., 2017). 331 

Furthermore, we have previously reported similar rates of degradation for the two proteins 332 

in GV oocytes in the presence of cycloheximide (Han et al., 2017). Taken together, these 333 

data indicate that CCNB2 protein is present at higher concentrations than CCNB1 in GV-334 

arrested oocytes, supporting a central role for CCNB2 during meiosis I. 335 

CCNB2 is critical to generate sufficient levels of pre-MPF in the GV oocyte, and by 336 

using both whole cell and in vitro kinase assays, we show that CcnB2-/- oocytes have 337 

decreased CDK1 activity as compared to CcnB2+/+ oocytes (Fig. 3 B, Fig. S2 B). Due to 338 

this decreased pre-MPF activity, conversion of pre-MPF to MPF is also affected. This was 339 

confirmed by measuring MPF activation via a FRET probe (Fig. S3, G and H) and by 340 

observing the export kinetics of WEE1B from the nucleus, an event shown to be CDK1 341 

dependent (Fig. 4 B) (Oh et al., 2010). CDK1 activation in CcnB2-/- oocytes no longer 342 

displays a switch-like property as in CcnB2+/+, but rather increases slowly over a long 343 

period of time. As a consequence of this gradual increase, GVBD becomes an inefficient 344 

process, becoming error-prone (Fig. 3 D). Thus, a subset of CcnB2-/- oocytes are unable 345 

to transition from prophase I to MI even after prolonged culture times. 346 
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Previous attempts to deplete oocytes of CCNB2 with MO indicate an 80 percent 347 

decrease in meiotic reentry three hours post-IBMX release (Gui and Homer, 2013). This 348 

finding led the authors to conclude that CCNB2-depleted oocytes do not reenter meiosis. 349 

Our data, instead, show that meiotic reentry is delayed, but not abolished. A possible 350 

explanation of these distinct outcomes is the distinct effects of acute and chronic depletion 351 

of CCNB2 (El-Brolosy and Stainier, 2017). It should be pointed out that in the study of Gui 352 

and Homer, only the first three hours of meiotic resumption were reported, and therefore, 353 

any further delay in maturation may have been overlooked. Similarly, Li et al. observed a 354 

decrease in meiotic maturation in CcnB2-/- oocytes. Again, only the first three hours of 355 

maturation were reported. Therefore, neither studies explored CCNB2 function beyond 356 

the G2/M transition.  357 

In our study, we have further surveyed the role of CCNB2 throughout meiotic 358 

maturation and have detected additional phenotypes. Indeed, depletion of CCNB2 359 

disrupts the increase in CDK1 activity that normally occurs during prometaphase (Fig. S5 360 

C). This defective CDK1 activation may be dependent on both direct effects due to the 361 

absence of CDK1/CCNB2 complex and indirect effects on the activity of CDK1 in complex 362 

with CCNB1. This is predicted by the decreased rate of CcnB1 mRNA translation in a 363 

subset of CcnB2-/- oocytes (Fig. 5). Additionally, the decreased translation of Mos mRNA 364 

likely affects the positive feedback between the ERK pathway and MPF (Nebreda and 365 

Ferby, 2000)(Fig. 5).     366 

Deficient CDK1 activity in MI has several consequences. There is a delay in 367 

spindle assembly (Fig. 5C), which recapitulates previous experiments using 368 

pharmacological inhibition of CDK1 (Davydenko et al., 2013). Similarly, SAC inactivation 369 

is incomplete in the CcnB2-/- oocytes leading to defective APC activation. Indeed, stable 370 

microtubule attachments to the kinetochores have been shown to depend on the increase 371 

in CDK1 activity (Davydenko et al., 2013). In agreement with these findings, disruption of 372 

CDK1 activity via depletion of CCNB2 results in persistent MAD2 loading onto the 373 

kinetochores (Fig. 7 B). Inhibition of the checkpoint with Reversine restores the oocyte 374 

ability to progress to anaphase (Fig. 7 C). Downstream of SAC satisfaction is the 375 

activation of APC/C. Our data indicate that, without CCNB2, there is a major delay in APC 376 

activation as measured by securin degradation (Fig. 6 D). In CcnB2-/- oocytes, APC 377 
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activation is not switch-like as in CcnB2+/+ oocytes, but instead, prolonged and gradual—378 

in agreement with the idea that an threshold of CDK1 activity is required for full APC 379 

activation (Yang and Ferrell, 2013). Thus, in CcnB2-/- oocytes, the switch-like entry into 380 

and exit from meiosis I is disrupted, resulting in non-synchronous, delayed, and 381 

sometimes failed G2/M and MI/anaphase I transitions.  382 

In summary, our findings establish a unique function for CCNB2 during mouse 383 

oocyte meiosis that cannot be compensated for by endogenous levels of CCNB1. We 384 

show, however, that overexpression of exogenous CCNB1 completely rescues the effect 385 

of CCNB2 depletion both during the GV/MI (Fig. 3 E) and the MI/anaphase I transitions 386 

(Fig. 6 E). In a reciprocal study using CcnB1-/- mice, endogenous CCNB2 alone is able to 387 

drive oocyte progression through meiosis I, but the oocytes could not progress to MII. 388 

However, overexpression of exogenous CCNB2 rescues the MII entry (Li et al., 2018, 2). 389 

Taken together, these two complementary studies indicate that the two cyclin proteins 390 

have overlapping function at the molecular level. The difference in ability of exogenous 391 

and endogenous proteins to rescue meiosis progression is likely due to the constitutive 392 

overexpression of the exogenous protein, while expression of the endogenous protein is 393 

under the temporal control of the oocyte translational program. Indeed, we have 394 

previously shown that the translation of CcnB2 and CcnB1 mRNAs is markedly different; 395 

CcnB2 is constitutively translated in GV and MI, but decreased in MII, whereas the 396 

recruitment of CcnB2 mRNA to the polysome increases at MI and further increases at MII 397 

(Fig. 1) (Han et al., 2017). Translation of endogenous CcnB2 decreases in MII explaining 398 

its inability to compensate for the absence of CCNB1 at this stage. These findings 399 

emphasize the importance of the post-transcriptional program in regulating meiotic 400 

divisions. Indeed, the distinct temporal translational control of these two related genes 401 

dictate the appropriate cyclin levels to orchestrate faithful progression through meiosis.  402 

Given our findings, we propose that the CCNB2-depleted oocytes may be used as 403 

a model for defective CDK1 activation throughout meiosis, a condition that may be a 404 

significant cause of meiotic maturation block and infertility in humans. 405 

 406 
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Figure legends 413 

Fig. 1. Translation of CcnB1 and CcnB2 mRNAs is differentially regulated during 414 

meiotic maturation in mouse oocytes 415 

A-B) RNA-Seq was performed using mRNA extracts of cell lysate (total mRNA) or mRNA 416 

extracts after immunoprecipitation of HA-tagged ribosomes (ribosome-bound mRNA) 417 

from oocytes arrested in prophase with Cilostamide (time 0) or collected 2, 4, 6, and 8 hrs 418 

after meiosis resumption. Counts per million (CPM) mapped reads are reported for CcnB1 419 

(A) and CcnB2 (B); average CPMs of two independent biological replicates with range 420 

are reported. C) Poly(A) tail lengths of the CcnB1 and CcnB2 mRNAs in GV oocytes. The 421 

data were mined from PMID: 28792939 and are reported as binned values up to 80 (A) 422 

nucleotides. D) Rates of translation of CcnB1 and CcnB2 mRNA variants in prophase I. 423 

Oocytes were injected with 1:1 mix of YFP-oligo-adenylated 3’UTR (CcnB2-short, CcnB2-424 

long, CcnB1-short, or CcnB1-long) and polyadenylated mCherry. Rate of translation in 425 

GV-arrested oocytes were calculated with a 3 hr window at a sampling rate of 15 mins. 426 

T-tests were performed for statistical significance; “ns”: not significant, “***”: p< 0.0001. 427 

Fig. 2. Compromised fecundity of the CcnB2-/- mice 428 

A) Cumulative number of pups per female derived from different mating schemes. Mating 429 

schemes and number of pairs were as follows: +/+♂ × +/+♀, n= 20; +/-♂ × +/-♀, n= 35; -430 

/-♂ × -/-♀, n= 6; +/+♂ × -/-♀, n= 6. T-tests were performed between +/-♂ × +/-♀ and -/-♂ 431 

× -/-♀ (red asterisks) or +/- ♂ × +/-♀  and +/+ ♂ × -/-♀ (blue asterisks); “**”: p< 0.01, “***”: 432 

p< 0.001. Breeding was initiated when the mice reached four weeks of age. B) Pup body 433 

weights from +/-♂ × +/-♀ matings were recorded 21 days after birth. The weight of each 434 

mouse was normalized for the average weight of the litter and plotted according to their 435 

genotype. T-tests were performed for statistical significance; “ns”: not significant, “***”: p< 436 

0.0002. C) Representative 8.0 μm histological H&E staining sections of ovaries from 437 

CcnB2+/+ and CcnB2-/- mice. 438 

Fig. 3. Aberrant timing of meiotic resumption in oocyte depleted of CCNB2 is due 439 

to defective pre-MPF  440 

A) Western blot analysis of extracts from 150 oocytes from CcnB2+/+, +/-, and -/- mice. B) 441 

Kinase assays were performed using increasing numbers of oocytes from CcnB2+/+ (+/+) 442 

or CcnB2-/- (-/-) mice and a GST-pp1 fragment as a substrate. Levels of T320 PP1 443 
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phosphorylation were detected using a specific antibody (pT320-pp1). The level of total 444 

substrate loaded was evaluated by Ponceau S staining (Total-pp1). C) Quantification of 445 

six independent kinase assays. pT320-pp1/Total-pp1 ratios from CcnB2-/- oocytes were 446 

expressed as fold changes over their matched CcnB2+/+ controls. A t-test was performed 447 

to determine statistical significance; “***”: p= 0.0007. D) Time of GVBD was determined 448 

through brightfield images acquired every 15 mins for 24 hrs. Results from four 449 

independent experiments are included. Median times of GVBD with interquartile range 450 

are reported (mean GVBD time: CcnB2+/+= (1.35 ± 0.06 hrs), CcnB2+/-= (1.76 ± 0.10 hrs), 451 

CcnB2-/-= (4.41 ± 0.24 hrs). A non-parametric Mann-Whitney test was performed to 452 

evaluate statistical significance; “***”: p< 0.0001. E) Oocytes were injected with mRNA 453 

encoding CcnB1-mCherry and, after 3h incubation, were released in Cilostamide-free 454 

medium. GVBD time and statistical significance were determined as in D); “ns”: not 455 

significant. 456 

Fig. 4. Although CDC25 translocation to the nucleus is unaffected, WEE1B export 457 

from the nucleus is delayed in CcnB2-/- oocytes 458 

Oocytes were injected with inactive Cdc25B-YFP (A) or Wee1B-YFP (B) and, after 459 

overnight incubation, were released in Cilostamide-free medium. Brightfield and YFP 460 

images were acquired every 5 mins for 20 hrs. Oocytes from CcnB2-/- mice were divided 461 

into two groups according to their GVBD time; 0-4 hrs: “early GVBD” and ≥4 hrs: “late 462 

GVBD.” A-B) Representative pictures of an oocyte from CcnB2+/+, CcnB2-/- (early GVBD), 463 

and CcnB2-/- (late GVBD) are reported. The red box marks the time of GVBD. C) Rates 464 

of CDC25-YFP or (D) WEE1B-YFP translocation were calculated from each single oocyte 465 

as the slope of the linear regression of the Nuclear/Cytoplasmic ratios. Rates were 466 

expressed as medians with interquartile range. T-tests were performed to assess 467 

statistical significance; “ns”: not significant. “***”: p< 0.0001 468 

Fig. 5. MI spindle formation and activation of CcnB1 and Mos translation are 469 

disrupted in CcnB2-/- out mice 470 

A-B) Oocytes were injected with a 1:1 mix of mCherry-polyadenylated and either YFP-471 

CcnB1-long 3’UTR (A) or YFP-Mos 3’UTR (B). After overnight incubation, oocytes were 472 

release in Cilostamide-free medium, and brightfield, YFP, and mCherry images were 473 

acquired every 15 mins for 25 hrs. YFP signals were normalized by plateaued mCherry 474 
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signals (YFP/mCherry). The normalized rate of YFP accumulation was calculated before 475 

(0-2 hrs) and after (4-6 hrs) GVBD for each singles oocyte. Rates were plotted as the 476 

median (red) and interquartile range. T-tests were used to evaluate statistical 477 

significance; “**”: p= 0.0058, “***”: p< 0.0001. C) Oocytes were released in Cilostamide-478 

free medium and fixed 8 hrs after meiotic resumption. The spindle and the chromatin were 479 

visualized with β-tubulin 488 antibody, and DAPI, respectively. Representative pictures 480 

are shown for oocytes arrested in prophase I, GVBD without a spindle, early spindle, and 481 

bipolar MI spindle. Oocytes were scored for maturation stage and plotted as percentage 482 

of oocytes at each stage. Number of oocytes in each group is reported.  483 

Fig. 6. A population of CcnB2-/- oocytes fails to complete meiosis I because of 484 

altered APC activation 485 

Oocytes were released in Cilostamide-free medium and brightfield images were captured 486 

every 15 mins. A) The cumulative times of PBE were plotted and t-tests between Ccnb2+/+ 487 

and CcnB2-/- oocytes performed (red asterisks); “*”: p< 0.05, “**”: p< 0.01. B-C) Oocytes 488 

were released in Cilostamide-free medium and were fixed after 24 hrs. The spindle and 489 

the chromatin were visualized with β-tubulin 488 antibody, and DAPI, respectively. B) 490 

Representative pictures are shown for oocytes arrested in prophase I, MI, telophase I, 491 

and MII. C) Oocytes were scored for maturation stage (reported in panel B) and plotted 492 

as percentage of oocytes at each stage. D) Oocytes were injected with mRNA encoding 493 

the APC substrate Securin-YFP and, after 17 hrs incubation, released in Cilostamide-free 494 

medium. Securin-YFP level was measured every 15 mins. E) Oocytes were injected with 495 

mRNA encoding for CcnB1-mCherry and, after 3 hrs incubation, released in Cilostamide-496 

free medium. CCNB1-YFP levels were measured every 15 mins. 497 

 498 

Fig. 7. A population of CcnB2-/- oocytes arrests in MI because of persistent SAC 499 

activity 500 

 A-B) Oocytes were released in Cilostamide-free medium and fixed at indicated times. 501 

Where specified, oocytes were treated with Nocodazole 15 mins before fixation. MAD2, 502 

CREST, and chromatin were visualized with specific antibodies and DAPI, respectively. 503 

A) Representative pictures are shown for each condition. B) The amount of MAD2 504 

localized at each single kinetochore was quantified by measuring the ratio between MAD2 505 
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and CREST. Number of kinetochore analyzed is reported below each scatter plot. T-tests 506 

were used to evaluate statistical significance; ns: “not significant,” “***”: p< 0.0001. G) 507 

Oocytes were released in the absence or presence of 100 nM Reversine. Time of GVBD 508 

and PBE was determined through brightfield images acquired every 15 mins for 24 hrs. 509 

The length of meiosis I was calculated as the time between GVBD and PBE.  510 

  511 
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Materials and methods 512 

Mice, oocyte collection, and microinjection 513 

All experimental procedures involving mouse were approved by the Institutional 514 

Animal Care and Use Committee of UCSF (Protocol: AN101432). C57BL/6 female mice 515 

(21-24 days) were primed with 5 units of PMSG and were sacrificed 44-48 hours later to 516 

collect GV-arrested oocytes. For collection of MII-arrested oocytes, females were primed 517 

with 5 units of PMS, after 48 hrs, injected with hCG, and after 13 hrs, sacrificed for egg 518 

retrieval. Cumulus-enclosed oocytes from antral follicles were isolated, and mechanically 519 

denuded in HEPES modified Minimum Essential Medium Eagle (Sigma-Aldrich, M2645) 520 

supplemented with 1µM Cilostamide (Calbiochem, 231085). When specified, oocytes 521 

were microinjected with 5-10 pl of mRNA. Oocytes were then cultured at 37°C with 5% 522 

CO2 in MEM-α medium (Gibco, 12561-056) supplemented with 0.2 mM sodium pyruvate, 523 

75 µg/ml penicillin, 10 µg/ml streptomycin, 3 mg/ml bovine serum albumin (BSA), and 1 524 

µM Cilostamide for 3 hrs or 16 hrs as indicated in the figure legends. 525 

Plasmid construct and mRNA preparation 526 

(C483S)-CDC25B and (K237A)-WEE1B coding sequence were cloned upstream 527 

of the YPet coding sequence. The CCNB1 and CCNB2 open reading frame sequences 528 

were obtained by sequencing oocyte cDNA and cloned upstream of the mCherry coding 529 

sequence. The CcnB1, CcnB2, and Mos 3’UTR sequences were also obtained in the 530 

same manner and cloned downstream of the YPet coding sequence. All constructs were 531 

prepared in the pCDNA 3.1 vector containing a T7 promoter and fidelity was confirmed 532 

by DNA sequencing. mRNA of all the reporters were in vitro transcribed with mMESSAGE 533 

mMACHINE T7 Transcription Kit (Ambion, AM1344); when specified, polyadenylation 534 

was achieved using Poly(A) Tailing Kit (Ambion, AM1350). All the messages were purified 535 

using MEGAclear Kit (Ambion, AM1908). mRNA concentrations were measured by 536 

NanoDrop and message integrity was evaluated by electrophoresis.  537 

Time-lapse microscopy, analysis of protein translocation, and YFP-3’UTR 538 

translation 539 

Time-lapse experiments were performed using a Nikon Eclipse T2000-E equipped 540 

with mobile stage and environmental chamber to 37°C and 5% CO2. Filter set: dichroic 541 

mirror YFP/CFP/mCherry 69008BS; for Ypet channel (Ex: S500/20x 49057 Em: 542 
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D535/30m 47281), mCherry channel (Ex: 580/25x 49829 Em: 632/60m). (C483S)-543 

CDC25B-YFP, (K237A)-WEE1B-YFP, securin-YFP, or CCNB1-mCherry were injected at 544 

300 ng/µL. After injection, oocytes were incubated for 16 hrs to allow expression of the 545 

probes. Ratios of nuclear and total probe were calculated after subtraction of the 546 

background. Rate of translocation were calculated as the slope of the line obtained by 547 

linear regression. YFP-3’UTR reporters we co-injected with polyadenylated mCherry at 548 

12.5 µg/µL each. After injection, oocytes were incubated for 16 hrs to allow expression of 549 

the probes. YFP signals were normalized by the plateaued level of mCherry signal to 550 

control of amount of injection. Rates were calculated with YFP/mCherry ratios as the 551 

slope of the curve obtained by linear regression of the time points indicated. 552 

RiboTag-Immunoprecipitation and RNASeq 553 

Oocytes were collected in minimal volumes (5-10 µl) in 0.1% polyvinylpyrrolidone 554 

(PVP) in DPBS, flash frozen in liquid nitrogen, and stored at -80°C. Samples were thawed, 555 

randomly pooled to yield a total of 200 oocytes per time point per replicate, and 300 µl 556 

supplemented homogenization buffer (sHB) was added to each pooled sample. The 557 

homogenates were then vortexed for 30 secs, flash frozen in liquid nitrogen, and allowed 558 

to thaw at room temperature (RT); this was repeated twice. Finally, the homogenates 559 

were centrifuged for 10 mins at maximum speed at 4°C and the supernatant (IP soup) 560 

was collected in new tubes. Meanwhile, the appropriate volume (50 ul per sample) of 561 

Dynabeads™ Protein G (Invitrogen) was washed three times in 500 µl homogenization 562 

buffer (HB) on a rotor at 4°C for 5 mins per wash. An additional two washes were 563 

performed with 500 ul sHB on a rotor at 4°C for 10 mins per wash. The final wash solution 564 

was removed and the beads were eluted in the original volume of sHB and kept on ice. 565 

20 µl cleaned beads was added to each IP soup to pre-clear on a rotor at 4°C for 1 hr. 566 

The beads were removed via a magnetic rack and 15 µl of IP soup was collected from 567 

each sample in 200 ul of RLT buffer (Qiagen) to serve as the input samples. Input samples 568 

were frozen and kept at -80°C until RNA extraction. 3 ul (3 ug) anti-HA.11 epitope tag 569 

antibody (901501, BioLegend) was added to each of the remaining IP soups and all 570 

samples were incubated on a rotor at 4°C for 4 hrs. 30 ul clean beads were then added 571 

to the samples and incubated overnight on a rotor at 4°C. The beads (now bound by HA-572 

tagged ribosomes and the associated mRNAs) were washed five times in 1 ml of wash 573 
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buffer with 1 M urea (uWB) on a rotor at 4°C for 10 mins per wash. The final uWB wash 574 

was removed and 250 µl RLT buffer was added to each sample and vortexed for 30 secs. 575 

RNA extraction was performed following the Rneasy Plus Micro Kit protocol (Qiagen). 576 

Samples were eluted in 10 µl of RNAse-free water. RNA samples were sent to the 577 

Gladstone Institutes Genomics Core for quality control using Bioanalyzer (Agilent) and 578 

cDNA library preparation with the Ovation RNA-Seq System V2 (NuGen). Samples were 579 

sequenced using the HiSeq400 platform. 580 

Western blot 581 

Oocytes were collected in 0.1% PVP in DPBS and then boiled for 5 min at 95°C in 582 

1x Laemmli Sample Buffer (Bio-Rad) supplemented with with β-mercaptoethanol. Lysates 583 

were resolved in 10% Laemmli gels and transferred onto Supported Nitrocellulose 584 

Membranes. Membranes were incubated in the primary antibody overnight at 4°C; 585 

Antibodies and dilutions used: CCNB2, 1:1,000 (R&D Systems, AF6004); CCNB1, 1:500 586 

(Abcam, ab72); β-actin, 1:1,000 (Abcam, ab8227); CDK1, 1:1,000 (Santa Cruz); CPEB1, 587 

1:1,000 (Abcam, ab73287); T320-pp1, 1:30,000 (Abcam, ab62334); GST, 1:10,000 588 

(Sigma). 589 

Immunofluorescence 590 

Oocytes were fixed in DPBS supplemented with 0.1% Triton X-100 and 2% 591 

formaldehyde (Sigma, 28908) for 30 mins. After three 10 min washes with blocking buffer, 592 

the oocytes were incubated overnight in blocking buffer (1x PBS, 0.3% BSA, 0.01% 593 

Tween), then permeabilized for 15 mins in DPBS supplemented with 0.3% BSA and 0.1% 594 

Triton X-100. After three 10 min washes with blocking buffer, oocytes were incubated for 595 

one hr in primary antibody diluted in blocking buffer. The antibodies used: β-tubulin-488, 596 

1:100 (Cell Signaling Technology, 3623); CREST, 1:200 (ImmunoVision); MAD2, 1:200 597 

(Dr. Rey-Huei Chen, Academia Sinica, Taipei). After three 10 min washes with blocking 598 

biffer, the membrane was incubated for one hr with the appropriate secondary antibody, 599 

1:500 (Alexa-568 goat anti-human; Alexa-488 goat anti-rabbit). Oocytes were washed 600 

again for 10 mins, three times in blocking bugger and mounted with VECTASHIELD 601 

Mounting Medium with DAPI (Vector, H-1200). Pictures were acquired with a confocal 602 

Nikon C1SI equipped with X60 oil immersion lens. 603 

In vitro CDK1 kinase assay 604 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 12, 2018. ; https://doi.org/10.1101/441352doi: bioRxiv preprint 

https://doi.org/10.1101/441352
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

Oocytes were collected in 30 µl of 2X kinase buffer (100 mM Hepes, 30 mM MgCl2, 605 

2 mM EGTA, 10 mM CaCl2, 2 mM DTT, 2 µg/ml Leupeptin, 2 µg/ml Aprotinin, 2 µM 606 

Okadaic Acid). Oocytes were lysed by freezing and thawing in liquid nitrogen two times. 607 

Extracts were incubated at 30°C for 15 mins in presence of 0.1 mM ATP, 10 mM DTT, 2 608 

µM Okadaic acid, and 2 µg of recombinant peptide PP1-GST as the substrate. PP1-GST 609 

was produced as previously described (Daldello et al., 2015). Reactions were stopped by 610 

adding Laemmli Sample Buffer and boiling at 95°C for 5 mins. CDK1 activity was 611 

measured by quantifying the Western blot signal of phosphorylated T320 of the PP1-GST 612 

substrate. 613 

Data processing, quantification, and statistical analysis 614 

Visual quality checks of RNASeq reads were performed using FastQC and reads 615 

were them trimmed with Trimmomatic. Alignment of the reads to the mouse genome was 616 

performed by Hisat2, .bam files were sorted and indexed using Samtools, and count files 617 

were generated by HTSeq. TMM normalization and the remaining RNASeq statistical 618 

analyses were done through edgeR. MAD2/CREST signals were quantified with Fiji. T-619 

tests and non-parametric Mann-Whitney tests were performed using the GraphPad Prism 620 

7. 621 

 622 

Supplementary methods 623 

FRET experiment 624 

The CDK1 FRET sensor (2327) was a gift from Dr. Jonathon Pines (Addgene, 625 

26064). Oocytes were injected with 5-10 pl of FRET sensor mRNA at 300 ng/µl, and, after 626 

16hrs incubation, fluorescence level was quantified as described in the methods section. 627 

Intensity signals of YFP/YFP, CFP/CFP and CFP/YFP channels were subtracted by the 628 

background. The CFP/YFP channel was corrected for the YFP bleed-through and FRET 629 

was calculated as (CFP/YFP)/(CFP/CFP). 630 

  631 
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Fig. S1 632 

A) Pups from +/-♂ × +/-♀ matings were genotyped and classified according to their 633 

genotype. Thirty-two litters from 12 mating couple were analyzed. B) Number of pups per 634 

litter was recorded. The number of litters analyzed is displayed. T-tests were performed 635 

to evaluate the statistical significance; “ns”: not significant, “**”: p= 0.0014. C) The 636 

frequency of parturition was measured for different mating schemes and expressed as 637 

number of litters per month per female. T-tests were performed; “ns”: not significant, “**”: 638 

p= 0.0022. D) Age at the first litter for different mating schemes. Breeding was initiated 639 

when animals reached four weeks of age. E) Number of oocytes retrieved from the 640 

ampullae per ovary after PMSG and hCG treatment. F) Diameter of the oocytes was 641 

measured by inspecting brightfield recordings.  642 

Fig. S2 643 

A) Western blot analysis of 150 oocytes from CcnB2+/+ and -/- mice. B) Oocytes were 644 

injected with a probe specific for CDK1. After 18 hrs, four frames were recorded in 645 

brightfield, YFP/YFP, CFP/CFP, and CFP/YFP. FRET is expressed as 646 

(CFP/YFP)/(CFP/CFP); “**”: p= 0.001. C) Time of GVBD from Fig. 3 B was replotted as 647 

a histogram to highlight the presence of two different populations in the CcnB2-/- oocytes. 648 

D) The level of FRET in GV-arrested oocytes was correlated the GVBD time of each 649 

oocyte. The Pearson coefficient (p= -0.55) has been calculated with its associated p-650 

value; “**”: p= 0.0013. E) The diameter of CcnB2-/- oocytes was correlated to GVBD time; 651 

“ns”: not significant. F) Level of expression of mCherry-CcnB1 in each oocyte was 652 

correlated with GVBD time. Pearson coefficient (p=-0.53) has been calculated with its 653 

associated p value; “**”: p= 0.0049. D-F) The best-fit line is displayed in red and the 95 654 

percent interval of confidence is represented as dashed lines. 655 

Fig. S3 656 

A) GVBD time of oocytes from Fig. 4, A and C was determined by the inspection of the 657 

brightfield recordings. B) The average of the nuclear/cytoplasmic ratios of CDC25B-YFP 658 

signals that was used to calculate the rates Fig. 4, A and C. are plotted. C) The maximum 659 

nuclear/cytoplasmic ratio of CDC25B-YFP localization of each oocyte was correlated to 660 

the oocyte GVBD time. The best-fit line is displayed in red and the 95 percent interval of 661 

confidence is represented as dashed lines. The Pearson coefficient (p= 0.63) was 662 
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calculated with its associated p-value; “**”: p= 0.0016. D) The level of the CDC25B-YFP 663 

at the start of recording from Fig. 4, A and C was quantified. E) GVBD time of oocytes 664 

from Fig. 4, B and D was determined by inspection of brightfield recordings. F) The rate 665 

of WEE1B-YFP translocation of oocytes from Fig. 4, B and D was correlated to GVBD 666 

time of the oocytes. The best-fit line is displayed in red and the 95 percent interval of 667 

confidence is represented as dashed lines. The Pearson coefficient (p= 0.63) has been 668 

calculated with its associated p-value; “**”: p= 0.0016. G) Ccnb2+/+, +/-, and -/- oocytes 669 

were injected with a CDK1-FRET reporter and, after 16 hrs incubation, released in 670 

Cilostamide-free medium. YFP/YFP, CFP/CFP and CFP/YFP signals were recorded 671 

every 5 mins. Individual FRET time courses were fitted to a sigmoid equation 672 

(𝐹𝑅𝐸𝑇𝑚𝑎𝑥 − 𝐹𝑅𝐸𝑇𝑚𝑖𝑛)
(1 + 10−(𝑡−𝑡0)∗𝐻𝑖𝑙𝑙𝑠𝑙𝑜𝑝𝑒)

⁄  standardized on the individual GVBD 673 

times. Single oocyte time courses are shown as thin lines, while the average of the fitted 674 

curves are shown as bolded lines. H) Hillslopes from G) were plotted with the median and 675 

interquartile ranges. T-tests were used to evaluate statistical significance; “**”: p= 0.0038, 676 

“***”: p< 0.0001. 677 

Fig. S4 678 

Complete single time courses of YFP-CcnB1 3’UTR (Long) (A) and YFP-Mos 3’UTR (B) 679 

used to calculate rates in Fig. 5, A and B, respectively. 680 

Fig. S5 681 

A) Oocytes were retrieved after 13 hrs after hCG injection from the ampulla. Oocytes 682 

were scored based on the categories illustrated in Fig. 6 B. B) The rate of securin 683 

degradation was calculated for each oocyte and plotted as the median with the 25/75 684 

intervals of confidence. T-test were used to evaluate statistical significance; “****”: p= 685 

0.0001. C) Ccnb2+/+ and -/- oocytes were injected with a CDK1-FRET reporter and, after 686 

16 hrs incubation, released in Cilostamide-free medium. YFP/YFP, CFP/CFP, and 687 

CFP/YFP signals were recorded every 15 mins. The rate of change of FRET activity was 688 

calculated as the slope of FRET change with a window between 3-6 hrs after GVBD; “*”: 689 

p= 0.0011. D) The rate of CCNB1 degradation was calculated for each oocyte and plotted 690 

as the median with the 25/75 intervals of confidence. T-test was used to evaluate 691 

statistical significance; “ns”: not significant. 692 
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Fig. 2

A B

-/-+/+C

0 1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

-/-  / -/- 

+/-  / +/- 

**

+/+  / +/+ 

+/+  / -/- 

**

***

***

**

***

***

***
***
***

months after birth

C
u

m
u

la
ti

v
e

 n
u

m
b

e
r 

o
f 

p
u

p
s

+/
+ +/

- -/-
-5

-4

-3

-2

-1

0

1

2

3

4
***

ns

=(1.40.35)g

n=25 n=42 n=19

N
o

rm
a

li
z
e

d
 w

e
ig

h
t

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 12, 2018. ; https://doi.org/10.1101/441352doi: bioRxiv preprint 

https://doi.org/10.1101/441352
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 3
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Fig. 4 CDC25 Translocation
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Supp Fig. 3
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Supp fig. 4
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Supp fig. 5
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