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Abstract 
Schizophrenia (SCZ) is a severe, highly heterogeneous psychiatric disorder with varied clinical 
presentations. The polygenic genetic architecture of SCZ makes identification of causal variants daunting. 
Gene expression analyses have shown that SCZ may result in part from transcriptional dysregulation of a 
number of genes. However, most of these studies took the commonly used approach—differential gene 
expression analysis, assuming people with SCZ are a homogenous group, all with similar expression 
levels for any given gene. Here we show that the overall gene expression variability in SCZ is higher than 
that in an unaffected control (CTL) group. Specifically, we applied the test for equality of variances to the 
normalized expression data generated by the CommonMind Consortium (CMC) and identified 87 genes 
with significantly higher expression variances in the SCZ group than the CTL group. One of the genes 
with differential variability, VEGFA, encodes a vascular endothelial growth factor, supporting a vascular-
ischemic etiology of SCZ. We also applied a Mahalanobis distance-based test for multivariate 
homogeneity of group dispersions to gene sets and identified 19 functional gene sets with higher 
expression variability in the SCZ group than the CTL group. Several of these gene sets are involved in 
brain development (e.g., development of cerebellar cortex, cerebellar Purkinje cell layer and 
neuromuscular junction), supporting that structural and functional changes in the cortex cause SCZ. 
Finally, using expression variability QTL (evQTL) analysis, we show that common genetic variants 
contribute to the increased expression variability in SCZ. Our results reveal that SCZ brains are 
characterized by overdispersed gene expression, resulting from dysregulated expression of functional 
gene sets pertaining to brain development, necrotic cell death, folic acid metabolism, and several other 
biological processes. Using SCZ as a model of complex genetic disorders with a heterogeneous etiology, 
our study provides a new conceptual framework for variability-centric analyses. Such a framework is 
likely to be important in the era of personalized medicine. (313 words) 

Introduction 
Schizophrenia (SCZ), one of the most severe psychiatric disorders, affects about 1% of the general 
population (Knapp et al. 2004; Saha et al. 2005; McGrath et al. 2008). The disorder manifests itself in 
many different forms and includes both positive behaviors (e.g., delusions, hallucinations, and 
disorganized speech) and negative behaviors (e.g., absence of reaction, loss of interest in everyday 
activities, and lack of feeling or emotion). SCZ affects patients differently—people with the disorder vary 
widely in their symptoms, course of illness and treatment response (Picardi et al. 2012). A reliable clinical 
typology of SCZ has proved difficult to develop (Kay and Sevy 1990; Andreasen et al. 1997; Budde et al. 
2018). Assessment of clinical outcomes in SCZ is challenging (Andreasen et al. 2005; McGrath 2008). 
Patients diagnosed with SCZ can be classified into those with and without neurodevelopmental 
impairment (Murray et al. 1992; Kaymaz and van Os 2009; Demjaha et al. 2012). The former category is 
likely to be due to the impact of risk alleles, copy number variants (CNVs), or early environmental insults 
such as hypoxic damage to the hippocampus. The latter is more likely to be due to affective 
dysregulation. Detailed neuroimaging and many measures of psychological variables can also be used to 
classify SCZ patients into distinct subgroups (Karlsgodt et al. 2010; MacCabe et al. 2012; Arnedo et al. 
2015; Cernis et al. 2015). The existence of multiple ways to classify SCZ underscores the marked 
between-patient variability and within-category heterogeneity associated with the disorder. Thus, SCZ is a 
highly heterogeneous group of disorders rather than a single disease (Lasalvia et al. 2015; Sommer and 
Carpenter 2016; van Os 2016). 

Although SCZ was described more than 100 years ago, the exact etiology and genetic mechanism of SCZ 
are still unclear. With an upper bound estimate of heritability of 80% (Hilker et al. 2018), the risk of SCZ 
is clearly under the substantial genetic influence. Numerous common single nucleotide polymorphisms 
(SNPs) (Schizophrenia Psychiatric Genome-Wide Association Study 2011; Ripke et al. 2013; 
Schizophrenia Working Group of the Psychiatric Genomics 2014) and CNVs (International 
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Schizophrenia 2008; Stefansson et al. 2008; Walsh et al. 2008; Xu et al. 2008) have been identified to be 
associated with the SCZ risk. Nevertheless, like many other complex diseases, SCZ has a polygenic 
architecture (Schizophrenia Psychiatric Genome-Wide Association Study 2011; Sullivan et al. 2012; 
Schizophrenia Working Group of the Psychiatric Genomics 2014) and is influenced by environmental 
factors (Karlsgodt et al. 2010), making it difficult to pinpoint causal mutations. 

Gene expression data of SCZ patients has been collected and integrated into analyses (Fillman et al. 2013; 
Sanders et al. 2013; Fromer et al. 2016; Gusev et al. 2018; Pardinas et al. 2018), in order to improve 
mechanistic interpretations of risk alleles or directly identify dysregulated genes in relevant tissues. Most 
studies of SCZ transcriptome adopt the method of differential expression (DE) aimed at the identification 
of genes expressed significantly higher or lower in SCZ patients than unaffected controls (CTL). 
However, given the fact that SCZ is highly heterogeneous, we argue that it may not be sufficient to treat 
SCZ patients as a homogenous group of individuals and expect gene expression in all SCZ samples, 
compared to CTL samples, is consistently up- or down-regulated. Indeed, a robust overlap between sets of 
DE genes identified in different SCZ transcriptome studies has not been observed. Many of the 
statistically significant DE genes cannot be individually connected with any of the current 
pathophysiological hypotheses of the disease either. 

Here, we consider a complementary alternative that disease-relevant genes are expressed more variably in 
SCZ patients than CTL individuals and therefore lead to an ‘overdispersion’ in gene expression in SCZ. 
The rationale behind our argument is that SCZ patients are a heterogeneous group of individuals—it is not 
simply that they share few or no symptoms in common (Andreasen 1999); rather, etiologically, every 
SCZ patient is ‘ill’ in his or her own way. This can be summarized into the ‘Anna Karenina principle’ for 
SCZ, in which gene expression of affected individuals varies more than that of healthy individuals, 
matching with Leo Tolstoy’s dictum that ‘happy families are all alike; each unhappy family is unhappy in 
its own way.’ We set out to test the hypothesis that overdispersed gene expression in SCZ is a common 
and important consequence of transcriptional dysregulation. The phenomenon should be more 
pronounced for genes and pathways that underlie SCZ pathogenesis. The pattern is easily missed or 
discarded by common workflows, e.g., those implemented in the DE analysis.  

The structure of this paper is as follows. First, we represent the results of our differential variability (DV) 
analysis on single genes, showing an overwhelming pattern of increased variability at the single-gene 
level associated with SCZ. Second, we develop a multivariate DV analysis and apply it to predefined gene 
sets. We show that a number of gene sets with SCZ related functions have higher expression variability in 
SCZ. Third, we examine the contribution of common genetic variants to the expression variability. We 
compare the relative contributions of these variants in SCZ with that in CTL. To the best of our 
knowledge, this is the first time this new variability-centric analytical framework has been applied in 
SCZ. We conclude by providing interpretation of our results in the context of gene discovery and 
implications in the personalized intervention of SCZ. 

Results 
Overdispersed expression in single genes 
We obtained the normalized gene expression data from the CommonMind Consortium (CMC) study 
(Fromer et al. 2016). The data was generated by using RNA sequencing (RNA-seq) from the dorsolateral 
prefrontal cortex of people with SCZ and unaffected controls (CTL). We extracted the protein-coding 
gene expression data for 212 SCZ and 214 CTL samples, all derived from individuals with European 
ancestry. All analyses of our study were done with this data set. We focused on autosomal protein-coding 
genes. For each gene, we used the Brown–Forsythe (B–F) test (Brown and Forsythe 1974) to determine 
whether there is a significant difference in group variances between SCZ and CTL. 
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We identified 88 of so-called differentially variable (DV) genes at 5% false discovery rate (FDR) level. 
Among them, 87 show greater expression variances in SCZ than CTL; only one gene (TAMM41) shows a 
smaller variance in SCZ (Supplementary Table S1). Thus, at the single-gene level, more dispersed gene 
expression is an overwhelming feature of SCZ. This pattern is robust against ‘global outliers.’ That is, the 
pattern is not due to the existence of few outlying individuals with extreme expression values in a large 
number of genes. To illustrate this, we selected representative DV genes and plotted their expression 
values across CTL and SCZ samples (Supplementary Fig. S1). The expression profiles indicate that 
there are no SCZ outliers, whose expression is consistently high or low across multiple genes. Also, using 
one of the DV genes, ZBTB24, as an example, we intentionally removed two SCZ samples with the 
highest and lowest expression to assess the impact of the two outliers on the significance of statistical test 
for the DV gene detection. The removal of these two extreme samples has almost no influence on the 
significance level of B–F test (Supplementary Fig. S2). These results suggest that increased gene 
expression variability in SCZ is not driven by a small number of SCZ samples with extremely high or low 
expression levels. Instead the pattern is due to a systematic overdispersion of gene expression among all 
SCZ samples. 

SCZ DV genes are involved in a variety of biochemical pathways and diverse cellular functions. For 
instance, BDNF is a member of the neurotrophin family of growth factors related to the canonical nerve 
growth factor; NECTIN2 encodes a single-pass type I membrane glycoprotein implicated in Alzheimer’s 
disease; AIF1 encodes allograft inflammatory factor found in activated macrophages in tissues with 
inflammation. Furthermore, genetic variants located in or near HPS5, STAR, TMEM125, RPN2, and 
DNAH1 have been found to be associated with SCZ (Wang et al. 2010; Shi et al. 2011; Goes et al. 2015; 
Autism Spectrum Disorders Working Group of The Psychiatric Genomics 2017; Lencer et al. 2017). 

To validate our results, we used an independent expression data set, which was synthesized from several 
microarray data sets across multiple studies of neuropsychiatric disorders (Gandal et al. 2018). We 
applied the same detecting procedure (i.e., B–F test with 5% FDR) to this data set, and identified 11 genes 
with higher expression variance in SCZ than CTL, with no genes showing the opposite pattern 
(Supplementary Table S2). VEGFA is the only gene that was identified using both the CMC and 
microarray data sets (Fig. 1A, B). The gene encodes vascular endothelial growth factor (VEGF), which is 
a signal protein that stimulates vasculogenesis and angiogenesis (Misiak et al. 2018), playing an 
important role in neurogenesis, neuronal differentiation, and neuroprotection and regeneration of central 
nervous system (CNS) cells (Jin et al. 2002; Sun et al. 2003; Howell and Armstrong 2017). 
Overdispersed expression in gene sets 
Next, we extend our test for difference in gene expression variances to higher dimensions. To do so, we 
turned our focus from single genes to gene sets. We adapted the procedure, proposed by Anderson (2006), 
for analyzing multivariate homogeneity of group dispersions. The procedure is a multivariate analog of 
Levene’s test for homogeneity of variances and has been widely used in ecology, e.g., in defining the 
variability in species composition. The modification we made was to use Mahalanobis distance (MD) to 
replace Euclidian distance originally used in the procedure (see Methods for details). This modification is 
essential to account for collinearity in gene set expression (Zeng et al. 2015; Brinkmeyer-Langford et al. 
2016). We applied our MD-based, extended procedure to gene sets, derived from GO ontologies of 
biological process and molecular function. We identified 19 gene sets with greater multivariate expression 
variance in SCZ, all with a nominal p-value < 0.05 (Table 1). Among these gene sets, four are related to 
brain development: (1) cerebellar cortex formation, (2) cerebellar cortex morphogenesis, (3) cerebellar 
Purkinje cell layer development, and (4) neuromuscular junction development. The first three sets share 
12 common genes: AGTPBP1, ATP2B2, ATP7A, CACNA1A, CEND1, DLL1, FAIM2, HERC1, LDB1, 
LHX1, LHX5 and RORA; the last gene set shares no gene with any of the first three. These results suggest 
that SCZ brains are characterized by abnormally high expression variance in brain development genes. 
This finding is consistent with the general consensus of that SCZ is a brain disorder with structural and 
functional changes in the cortex and the connections between different cortical regions (Karlsgodt et al. 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 13, 2018. ; https://doi.org/10.1101/441527doi: bioRxiv preprint 

https://doi.org/10.1101/441527
http://creativecommons.org/licenses/by/4.0/


5 
 

2010; Demjaha et al. 2012; Kelly et al. 2018). In addition to these four gene sets pertaining to brain 
development, several other gene sets unrelated to the CNS, but likely to be implicated in SCZ are 
highlighted here. These include necrotic cell death (Jarskog et al. 2005; Catts and Weickert 2012), 
regulation of endoplasmic reticulum unfolded protein response (Wang and Kaufman 2012), and folic 
acid-containing compound metabolic process (Saedisomeolia et al. 2011; Roffman et al. 2013; Brown 
and Roffman 2014). For each significant gene set, we use the method of Garthwaite–Koch partition to 
estimate the relative contribution of each gene in the gene set to MD (Garthwaite and Koch 2016). We 
present top five genes that contribute most to MD for each gene sets in Table 1. 

To illustration the overdispersion pattern of gene expression in SCZ, we used the gene set of cerebellar 
cortex morphogenesis as an example (Fig. 2). We extracted the expression data of 23 genes in the gene 
set, pooled SCZ with CTL samples, and performed principal component (PC) analysis. On the first and 
second PC space, SCZ samples are more dispersedly distributed than CTL samples (Fig. 2A, B and C). 
Accordingly, the variance in MD of individual SCZ samples to the centroid is significantly greater than 
that of CTL samples (Fig. 2D). 

We also identified five gene sets showing the opposite pattern, i.e., smaller expression variance in SCZ 
than CTL. Among these five, two gene sets contain largely overlapped genes encoding proteins of the 
survival motor neuron (SMN) complex, which plays a role in neuronal migration and differentiation 
(Giavazzi et al. 2006), with a potential role in SCZ (Comley et al. 2016; McLaughlin et al. 2017). One 
gene set consists of genes that encode synaptic cell adhesion proteins, interacting with neurexins, which is 
essential for brain function (Missler et al. 2012). 

Statistical power analysis 
We used computer simulations to conduct a power analysis for our extension of Anderson’s procedure. 
The simulations were done with combinations of a series of sample size and varying levels of variance 
difference between case and control groups (see Methods for details). We considered a balanced design 
with the sample size of case group equals to that of the control group. The result of the power analysis 
shows that the power of our extended test starts to increase when the sample size per group is over 800 
(Supplementary Fig. S3). The test becomes highly sensitive when the sample size per group reaches 
1000—in this case, when variances of two groups differ by two-fold, the statistical power of our test can 
reach 80%. The power analysis suggests that the sample size we used in real data analysis (212 and 214 
for SCZ and CTL, respectively) is too small to produce any meaningful results, based on the data 
generation algorithm we used for the simulations. On the other hand, our power analysis suggests that the 
results we obtained in real data analysis (Table 1), albeit none of the gene sets survived the multiple test 
correction, are unexpected by chance. We are inclined to think that it was that the overdispersion pattern 
in multivariate gene expression in SCZ itself is strong enough to be captured by our test even with limited 
numbers of samples. 

Common genetic variants contribute to dispersed gene expression in SCZ 
To assess the contribution of genetic variants to the gene expression dispersion in SCZ, we conducted an 
expression variability QTL (evQTL) mapping analysis. An evQTL is a SNP polymorphism whose 
genotypes are associated with different group variance in gene expression (Hulse and Cai 2013; Wang et 
al. 2014b). In this case-control study setting, we were more interested in SNPs with different effects on 
SCZ and CTL, and thus we set out to identify SCZ-specific evQTLs. We tested all common SNPs 
segregating in SCZ and CTL, i.e., minor allele frequency (MAF) > 0.15 in both populations, to identify 
those with genotypes associated with gene expression variance in SCZ (p < 1e-7, B–F test) but not in 
CTL (p > 0.05, B–F test, Fig. 3A). We identified 2,503 SCZ-specific evQTLs involving 1,453 distinct 
autosomal protein-coding genes (Supplementary Table S3, see Supplementary Fig. S3 for more 
examples). For comparison, we used the same procedure and p-value cutoffs to identify CTL-specific 
evQTLs with SCZ samples as the background group. We identified 2,076 CTL-specific evQTLs 
involving 1,277 genes. Although the number of CTL-specific evQTLs is comparable to that of SCZ-
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specific evQTLs, a q-q plot shows that the overall statistical significance is much stronger for SCZ-
specific evQTLs, especially for those highly significant ones (Fig. 3B). We plotted the links between 
these highly significant evQTLs (p<1e-9) with their target genes for both SCZ and CTL results. Most of 
these relationships are trans-acting and more SCZ-specific evQTLs connect with target genes and form a 
denser picture than CTL-specific ones do (Fig. 3C). 

Discussion 
Our analysis focuses on the differences in expression variances between groups. The DV approach we 
adopted here could be rooted in the theory of dynamics of correlation and variance in systems under the 
load of environmental factors (Gorban et al. 2009). For heterogonous disorders like SCZ, we show that 
the DV approach is powerful in identifying significant genes and characterizing biological pathways and 
processes critical to the disorder. DV approach is complementary to the more commonly used DE 
method. So far, identified DE genes between SCZ and CTL show a tremendous functional diversity and 
often fail to form supported, functionally interpretable gene sets or pathways, which is not unexpected 
under the assumption of substantial heterogeneity in SCZ pathophysiology (Sanders et al. 2013).  

Overdispersion is the term we borrow from statistics to describe the presence of greater variability 
(statistical dispersion) in gene expression data in SCZ than would be expected based on that in CTL. The 
overdispersion pattern we observed in SCZ is in line with the fact that clinical heterogeneity amongst 
people diagnosed with SCZ is high, which has hampered the development of individual treatment and 
research into new treatment strategies. We assume that key pathways underlying SCZ risk are disrupted 
via many different causes—genetic, epigenetic, and environmental. The consequence of these disruptions 
is collectively reflected as dysregulated gene expression, which is in turn characterized by an increased 
level of group dispersions (variances). Thus, the degree of gene expression dispersion is an excellent 
predictor of functional disruptions. Even if the illness of SCZ in every affected individual arises from a 
different specific cause, each will nonetheless share disruption of related key biological processes. 
Through assessing the expression dispersion in genes, we identify the related pathways dysregulated in 
patients affected by SCZ. 

In this study, VEGFA, the gene encoding vascular endothelial growth factor, stands out as the most 
significant single DV gene, cross-validated with two independent expression data sets. The discovery of 
this significant gene is consistent with accumulating evidence indicating that SCZ is accompanied by 
abnormal vascularization (Hanson and Gottesman 2005; Moises et al. 2015; Misiak et al. 2018). The role 
of VEGF in causing neurovascular dysfunction has been known to be correlated with hypoxia-ischemia 
insults during early life and is strongly associated with cognitive dysfunction (Howell and Armstrong 
2017; Misiak et al. 2018). Clinical studies examining peripheral VEGF levels in SCZ versus CTL have 
yielded conflicting results. While some studies found elevated serum VEGF concentrations in individuals 
with SCZ (Pillai et al. 2016; Balotsev et al. 2017), others revealed no significant difference (Di Nicola et 
al. 2013; Murphy et al. 2014; Haring et al. 2015; Lizano et al. 2016), or lower concentrations (Lee et al. 
2015; Xiao et al. 2018). The extremely high between-individual variability in VEGFA expression may 
explain such conflicting findings, although the effect of antipsychotic agents on plasma VEGF level 
cannot be ruled out [(Pillai and Mahadik 2006; Lee et al. 2015) cf.  (Haring et al. 2015)]. 

One of the contributions of this study is to develop the homogeneity test of multivariate dispersions 
further using an MD-based extension. The initially proposed procedure by Anderson (2006) is flexible 
enough to allow any distance measure to be adapted. We have previously used a slightly different 
implementation of the test to identify dysregulated gene sets in autism spectrum disorder (Guan et al. 
2016; Guan et al. 2018). Other implementations include the one based on the means of within-group 
distances, which does not require group center calculations to obtain the distance statistic (Gijbels and 
Omelka 2013) and the one to compare k populations based on Fréchet variance for general metric space 
valued data objects, with emphasis on comparing means and variances (Dubey and Müller 2017). The 
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most important feature shared by these tests is their capability of capturing the between-group difference 
in multivariate covariance of variables. Our method, when applied to gene sets, has approved to be useful 
in identifying functionally meaningful gene sets. Our results reveal that transcriptional dysregulation in 
genes responsible for brain development is significantly implicated in SCZ, which is in line with the 
consensus of SCZ being a brain disorder (Karlsgodt et al. 2010; Demjaha et al. 2012; Kelly et al. 2018). 
Our analysis with gene sets also supplies new insights into other mechanisms that may not have been 
implicated in SCZ. These include cell death, folic acid metabolism, and metalloexopeptidase activity. We 
also report the opposite pattern detected in several gene sets, for which expression variability is reduced 
rather than elevated in SCZ. 

In the final section of our analysis, we explore that relationship between genetic variants and expression 
variability. We are among the earliest adopting the ‘vQTL’ strategy (Ronnegard and Valdar 2011) and 
have applied it to gene expression data (Hulse and Cai 2013; Brown et al. 2014). In humans, we have 
identified a significant number of evQTLs (Wang et al. 2014a; Yang et al. 2016). In this study, we 
emphasize the difference in the statistical significance of evQTLs in SCZ and CTL. We show that 
evQTLs with higher statistical significance are preferably present in SCZ, suggesting that genetic variants 
may play a more important role in shaping the gene expression variability in SCZ than in CTL. It is not 
clear though whether these common genetic variants exert destabilizing function on their own or act 
through interacting with each other (Yang et al. 2016). Nevertheless, these results have clinical 
implications. For example, CALM1–rs2123259 (GT) and HTR1A–rs12440923 (TC) are two identified 
SCZ-specific evQTLs (Supplementary Table S3). CALM1 encodes for calmodulin 1 and HTR1A, 
serotonin 1A receptor (or 5-HT1A receptor). Both gene products are targets of antipsychotic drugs. For 
example, aripiprazole is a partial agonist at the 5-HT1A receptor; chlorpromazine binds to calmodulin to 
exert an inhibitory effect (Marshak et al. 1985) and exhibited antagonist activity at serotonin 1A receptors 
(Newman-Tancredi et al. 1998). According to the evQTL pattern, the expression level of CALM1 in SCZ 
patients with TT genotype at rs2123259 (chr15:87257140_hg19) is highly variable from patient to 
patient, and the same as for the HTR1A expression in patients with CC genotype at rs12440923 
(chr15:93164993_hg19). This information ought to be taken into account in antipsychotic medication 
administration.  

Several caveats exist in our study. We could not recover most of our results using the independent 
expression data set, which is based on microarray technology. This discrepancy might be attributed to the 
lack of dynamic range of the microarray data compared to the data generated by using RNA-seq. We also 
note that our DV analysis for both single gene and gene set settings are sensitive to the procedure and 
method used for processing and normalizing input expression matrix. In this regard, we recognize that the 
CMC data set has been appropriately processed and carefully normalized, allowing the subtle patterns in 
residual expression data to be revealed in our analysis. This, of course, sets a high bar for future large-
scale SCZ transcriptome projects. 

In conclusion, we establish a new analytical method, based on statistical tests for homogeneity in group 
variances, to reveal overdispersed gene expression in SCZ, which is associated with the heterogeneous 
nature of this disorder characterized by varying clinic presentations and individualized symptoms. We 
show our method contributes to the discovery of genetic underpinnings of SCZ that are notoriously 
difficult to determine. We identify single genes as well as gene sets showing greater gene expression 
variability in SCZ patients but not in unaffected controls. Functional interpretation of these genes points 
us to dysregulation of brain function pertaining to a number of new mechanisms. Our evQTL analysis 
reveals the contribution of common genetic variants to expression variability in SCZ. We anticipate our 
study inspires new conceptual development toward variability-centric analyses in the era of personalized 
medicine. 
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Materials and Methods 
Data sets 
We obtained the gene-level expression data generated by the CommonMind Consortium (CMC) study 
(Fromer et al. 2016). The expression matrix was derived from the raw read count matrix through a series 
of normalization and adjustment. Briefly, 16,423 genes with at least one CPM (read counts per million 
total reads) in at least 50% of the individuals were retained and processed. The initial normalization was 
done using voom (Law et al. 2014). Weighted linear regression was then performed for each gene to 
control for known covariates. The data was further adjusted for hidden variables detected by surrogate 
variable analysis [see (Fromer et al. 2016) for details]. We downloaded the processed data matrix, which 
was the one used for eQTL identification in the original CMC study (Fromer et al. 2016), from the web 
page at https://www.synapse.org/#!Synapse:syn5609491 with the file name ‘CMC_MSSM-Penn-
Pitt_DLPFC_mRNA_IlluminaHiSeq2500_gene-adjustedSVA-dataNormalization-noAncestry-
adjustedLogCPM’. From this downloaded data matrix, we extracted data generated from European 
ancestry individuals, including 212 SCZ and 214 CTL samples. We used this European data set 
throughout all subsequent analyses. In addition to the CMC data, an independent, microarray-based gene 
expression data, collected by a study of multiple psychiatric disorders (Gandal et al. 2018), was obtained. 
From this microarray data set, we extracted expression data for 139 SCZ and 266 CTL samples. 

Test for homogeneity of expression variances of single genes 
Brown–Forsythe (B–F) test was applied to each gene to test for the significant difference in expression 
variance between SCZ and CTL subjects. B–F test is a statistical analysis related to Levene’s test—both 
are tests for homogeneity of variance. B–F test involves determining an absolute deviation score from 
group medians, while Levene’s test from group means. After running the B–F test for all individual 
genes, we used the Benjamini–Hochberg (B–H) procedure (Benjamini and Hochberg 1995) to control the 
FDR of hypothesis tests. 

Test for multivariate homogeneity of expression variances of gene sets 
Anderson (2006) proposed a distance‐based test of homogeneity of multivariate dispersions for a one‐way 
ANOVA design (Anderson 2006). To identify gene sets with differential multivariate expression 
variability between SCZ and CTL, we adopted the ‘Anderson06’ test and applied it to functional gene 
sets. These functional gene sets are predefined in the MSigDB v5.2 (Liberzon et al. 2015). We selected 
those defined with GO ontologies of biological process and molecular function. For a given gene set, we 
measured multivariate expression dispersion (variance) of genes in SCZ and CTL separately. We 
calculated Mahalanobis distance (MD) of each SCZ and CTL individuals to their group centroids in the 
multivariate space. Compared to the Euclidean distance used in the original Anderson06 test, MD is a 
more appropriate distance metric for gene set expression, because expression levels of different genes in a 
gene set are likely to be correlated (Zeng et al. 2015; Brinkmeyer-Langford et al. 2016). To test if the 
dispersions (variances) of SCZ and CTL groups are different, MDs of group members to the group 
centroid were subject to ANOVA (Anderson 2006). To determine which genes in a gene set have the 
most influence on the MD, we used the method proposed by Garthwaite and Koch (2016).  

Power analysis of MD-based Anderson06 test 
We conducted simulations to evaluate the power of the MD-based Anderson06 test. We fixed the size of 
the input gene set at 23, based on the number of genes in the actual gene set of 
GO_CEREBELLAR_CORTEX_MORPHOGENESIS (Table 1). We also fixed the covariance matrices, Σ0 
and Σ1 of the input gene set for CTL and SCZ samples, respectively, using the values calculated from the 
actual expression data of the gene set. We varied values of two parameters: (1) the sample size per group, 
and (2) 𝛼𝛼, a factor multiplied to Σ1to increase multivariate variability, and assessed the power as a 
function of these two parameters. We set the sample size of the SCZ group equals to that of the CTL 
group. We assume that the gene expression levels of the gene set obey a multivariate normal distribution 
(MVN). The simulations were done as follows: 
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Step 1: We calculated the mean vector 𝜇𝜇0 and covariance matrix Σ0 from the expression values of the real 
gene set in CTL, and 𝜇𝜇1 and Σ1 in SCZ. 

Step 2: We generated the simulated expression data of CTL samples from 𝑀𝑀𝑀𝑀𝑀𝑀(𝜇𝜇0,Σ0). We generated 
the expression data of SCZ samples from 𝑀𝑀𝑀𝑀𝑀𝑀(𝜇𝜇1, (1 + 𝑒𝑒𝑙𝑙)Σ1), where 𝑙𝑙 obeys uniform distribution 
(0,𝛼𝛼). 

Step 3: We set 𝛼𝛼 = 1, 1.2,⋯ , 5 and the sample size 𝑛𝑛 = 100, 200,⋯ , 2000. For each pair of the two 
parameters, we simulated expression data matrix X1 for SCZ. Accordingly, we simulated expression 
matrix X0 for CTL. For samples in the data X1, we calculated their MD to the group centroid and 
obtained the vector D1 for SCZ. In the same way, we obtained the vector D0 for CTL. We used ANOVA 
to compare the difference between D1 and D0. For each pair of 𝛼𝛼 and 𝑛𝑛, this process was repeated for 100 
times and the number of ANOVA p < 0.01 was recorded as the probability of that the test correctly rejects 
the null hypothesis. 

Identification of SCZ-specific evQTLs 
The genotype data of the SCZ and CTL samples was obtained from the CMC Knowledge Portal web site 
at https://www.synapse.org//#!Synapse:syn3275211. For each SNP, the MAF is calculated for SCZ and 
CTL samples separately. The SNPs with both MAF > 0.15 were retained for the analysis. B–F tests were 
conducted with three genotype groups of each SNP to examine whether there is a significant difference in 
expression variances between any two groups. The B–F test was conducted for SCZ and CTL samples 
separately. The SCZ-specific evQTLs were called when the p<1e-7 in SCZ samples and p>0.05 in CTL 
samples; the CTL-specific evQTLs were called when the p<1e-7 in CTL samples and p>0.05 in SCZ 
samples. SZGR 2.0 (Jia et al. 2017) was used to identify antipsychiatric drugs whose targets are evQTL 
genes. 

Software 
Source code to deterministically generate all results and plots in this paper can be found at 
https://github.com/cailab-tamu/scz_ge_dispersion.  
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Figure Legends 
Fig. 1. Expression profiles of VEGFA show more dispersed expression in SCZ than CTL. (A) Normalized 
expression values in 212 CTL and 214 SCZ samples generated by the CMC study. B–F test p-value = 
3.6e-6. (B) Normalized expression values in 266 CTL and 139 SCZ samples as reported in (Gandal et al. 
2018). B–F test p-value = 1.7e-9. 
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Fig. 2. Gene set, cerebellar cortex morphogenesis, show more dispersed expression in SCZ. The PCA 
analysis was performed with the gene set expression matrix of pooled samples that contain all SCZ and 
CTL samples. (A) Distribution of CTL samples on the PCA space defined by the first two PCs. SCZ 
samples are made invisible by plotting in white color; (B) Distribution of SCZ samples with CTL samples 
made invisible. (C) Distribution of all samples in the PCA space. Dashed lines indicate the 99% 
confidence ellipses. (D) Boxplot of MD vectors in SCZ and CTL groups, showing the high within-group 
variance in SCZ. 
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Fig. 3. Genetic variants associated with gene expression variability in SCZ. (A) Two examples of SCZ-
specific evQTLs, showing significant differences in expression variances between genotypes in SCZ but 
not in CTL. P-values of B–F test for three genotype groups in SCZ and CTL, respectively, are given. (B) 
Quantile-quantile plot of p-values for evQTL associations in SCZ (y-axis) against those in CTL (x-axis). 
(C) Difference in density of highly significant evQTL associations between variants and genes in SCZ 
and CTL. 

 

  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 13, 2018. ; https://doi.org/10.1101/441527doi: bioRxiv preprint 

https://doi.org/10.1101/441527
http://creativecommons.org/licenses/by/4.0/


18 
 

Table Legends 
Table 1. Functional gene sets showing differential expression variability between SCZ and CTL. For 
each gene sets, top five genes that contribute most to expression variability are given. Genes highlighted 
with bold font are those known to be implicated in SCZ. 

Supplementary Figure Legends 
Supplementary Fig. S1. Expression profiles for selected genes with expression variance in SCZ is 
significantly different from that in CTL (FDR<0.05). 

Supplementary Figure S2. Removing ‘outlier’ samples in the SCZ group does not cause substantial 
change in the significance level of B–F test. (A) Red arrows indicate the two outliers in the original SCZ 
group that are removed in the secondary analysis. (B). The result of secondary analysis showing the 
significance remains after the two outliers are removed. The overall variance in the SCZ group is 
significantly greater than that in the CTL group. 

Supplementary Figure S3. Statistical power of the MD-based Anderson (2006) test to detect significant 
heterogeneity in multivariate gene expression between two groups. Each contour line depicts the power, 
i.e., the likelihood level (%) that a random data set would yield a chance finding, as a function of the 
sample size per group, and alpha—a factor for introducing variance heterogeneity to one of the groups. 

Supplementary Figure S4. Additional SCZ-specific evQTL examples. 

Supplementary Table Legends. 
Supplementary Table S1. List of 88 differentially variable (DV) genes whose expression variance in 
SCZ is significantly different from that in CTL (FDR<0.05). For each gene, the P-value of Brown–
Forsythe (B-F) test, comparison between expression STD in SCZ and CTL, and gene name, are given. 

Supplementary Table S2. List of 11 differentially variable (DV) genes identified using microarray gene 
expression data set of the study of (Gandal, Haney et al. 2018). For each gene, gene symbol, P-value of 
Brown–Forsythe (B–F) test, and comparison between expression STD in SCZ and CTL, are given. 

Supplementary Table S3. List of 2,530 SCZ-specific evQTLs. Name of the target gene, genomic 
position (hg19) of SNP, p-values of B–F test in CTL and SCZ, are given. 
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Table 1. Functional gene sets showing differential expression variability between SCZ and CTL. For each gene sets, top five genes that 
contribute most to expression variability are given. Genes highlighted with bold font are those known to be implicated in SCZ. 

 Gene Set # of 
genes 

for data 
analysis 

(# of 
genes 

in gene 
set) 

P-
value 

Top 5 genes contribute most to 
the multivariate expression 
variability of the gene set 

 Greater expression variability in SCZ    
1 GO_CEREBELLAR_CORTEX_FORMATION 19 (22) 0.04 WNT7A, HERC1, MTPN, 

RORA, MAP2K1 
2 GO_CEREBELLAR_CORTEX_MORPHOGENESIS 23 (30) 0.013 GRID2, HERC1, MTPN, 

WNT7A, MAP2K1 
3 GO_CEREBELLAR_PURKINJE_CELL_LAYER_DEVELOPMENT 20 (24) 0.018 HERC1, RORA, AGTPBP1, 

DLL1, ATP7A 
4 GO_ENTEROENDOCRINE_CELL_DIFFERENTIATION 9 (19) 0.042 SIDT2, PAX6, MEN1, 

NEUROD1, WNT5A 
5 GO_ESTABLISHMENT_OF_MITOTIC_SPINDLE_LOCALIZATION 19 (24) 0.04 EYA1, NDEL1, DYNLT1, 

CLASP1, NDE1 
6 GO_FOLIC_ACID_CONTAINING_COMPOUND_METABOLIC_PROCESS 22 (29) 0.037 SHMT1, DHFR, SARDH, 

FOLH1, TYMS 
7 GO_INSULIN_LIKE_GROWTH_FACTOR_RECEPTOR_SIGNALING_PATHWAY 14 (14) 0.036 GIGYF2, EIF2AK3, GIGYF1, 

CRIM1, IGF1R 
8 GO_METALLOEXOPEPTIDASE_ACTIVITY 25 (53) 0.013 C9orf3, AGBL3, LAP3, 

AGTPBP1, FOLH1 
9 GO_NECROTIC_CELL_DEATH 20 (28) 0.035 PPIF, SIRT2, RIPK1, 

MAP3K5, BIRC2 
10 GO_NEUROMUSCULAR_JUNCTION_DEVELOPMENT 27 (36) 0.022 RER1, ANK3, COL4A5, 

NTRK2, FNTA 
11 GO_PEPTIDYL_CYSTEINE_MODIFICATION 17 (20) 0.034 ZDHHC9, GOLGA7, 

ZDHHC7, MAP6D1, GAPDH 
12 GO_POSITIVE_REGULATION_OF_STRIATED_MUSCLE_CELL_DIFFERENTIATION 24 (52) 0.04 CD53, EP300, DDX39B, 

AKAP6, GREM1 
13 GO_REGULATION_OF_CELLULAR_SENESCENCE 19 (26) 0.039 ABL1, ZNF277, TERF2, 

ARNTL, YPEL3 
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14 GO_REGULATION_OF_ENDOPLASMIC_RETICULUM_UNFOLDED_PROTEIN_RESPONSE 22 (28) 0.007 HSPA1A, TMBIM6, PTPN2, 
BAK1, SDF2 

15 GO_REGULATION_OF_HISTONE_H3_K9_METHYLATION 11 (17) 0.026 SIRT1, SMARCB1, JARID2, 
PIH1D1, DNMT1 

16 GO_REGULATION_OF_LYMPHOCYTE_APOPTOTIC_PROCESS 28 (54) 0.011 HIF1A, PRKCQ, WNT5A, 
GPAM, BCL6 

17 GO_REGULATION_OF_MYOBLAST_DIFFERENTIATION 25 (48) 0.008 CAPN3, MAP3K5, DDIT3, 
CDON, HIF1AN 

18 GO_REGULATION_OF_TRANSCRIPTION_INVOLVED_IN_G1_S_ 
TRANSITION_OF_MITOTIC_CELL_CYCLE 

16 (27) 0.032 CCNA1, KLF11, TYMS, 
DHFR, CDT1 

19 GO_RNA_POLYMERASE_II_ACTIVATING_TRANSCRIPTION_ FACTOR_BINDING 24 (36) 0.028 TP53BP1, SMAD3, HIPK2, 
SETD3, CTNNB1 

 Smaller expression variability in SCZ    
1 GO_NEUREXIN_FAMILY_PROTEIN_BINDING 10 (14) 0.002 LRRTM2, NLGN4Y, CASK, 

SDCBP, NLGN3 
2 GO_PROTEASOME_ACCESSORY_COMPLEX 23 (24) 0.006 PSMD3, PSMD8, PSME1, 

PSMD4, PSMD2 
5 GO_RESPONSE_TO_IRON_ION 23 (35) 0.033 ABAT, TF, BCL2, ACO1, 

GSK3B 
4 GO_SMN_COMPLEX 11 (13) 0.032 SMN2, DDX20, IGHMBP2, 

GEMIN6, GEMIN5 
3 GO_SMN_SM_PROTEIN_COMPLEX 14 (17) 0.015 SNRPD2, SNRPD1, SMN2, 

DDX20, GEMIN5 
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Supplementary Figures. 
Supplementary Figure S1. Expression profiles for selected genes with expression variance in SCZ is 

significantly different from that in CTL (FDR<0.05). 
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Supplementary Figure S2. Removing ‘outlier’ samples in the SCZ group does not cause a substantial 

change in the significance level of B–F test. (A) Red arrows indicate the two outliers in the original SCZ 

group that are removed in the secondary analysis. (B). The result of secondary analysis showing the 

significance remains after the two outliers are removed. The overall variance in the SCZ group is 

significantly greater than that in the CTL group. 

 

 

  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 13, 2018. ; https://doi.org/10.1101/441527doi: bioRxiv preprint 

https://doi.org/10.1101/441527
http://creativecommons.org/licenses/by/4.0/


4 
 

Supplementary Figure S3. Statistical power of the MD-based Anderson (2006) test to detect significant 

heterogeneity in multivariate gene expression between two groups. Each contour line depicts the power, 

i.e., the likelihood level (%) that a random data set would yield a chance finding, as a function of the 

sample size per group, and alpha—a factor for introducing variance heterogeneity to one of the groups. 
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Supplementary Figure S4. Additional SCZ-specific evQTL examples. 
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