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Abstract 
Background: Neural oscillations are often quantified as average power relative to a cognitive, 
perceptual, and/or behavioral task. This is commonly done using Fourier-based techniques, 
such as Welch’s method for estimating the power spectral density, and/or by estimating 
narrowband oscillatory power across trials, conditions, and/or groups. The core assumption 
underlying these approaches is that the mean is an appropriate measure of central tendency. 
Despite the importance of this assumption, it has not been rigorously tested. 
 
New method: We introduce extensions of common approaches that are better suited for the 
physiological reality of how neural oscillations often manifest: as nonstationary, high-power 
bursts, rather than sustained rhythms. Log-transforming, or taking the median power, 
significantly reduces erroneously inflated power estimates. 
 
Results: Analyzing 101 participants’ worth of human electrophysiology, totaling 3,560 channels 
and over 40 hours data, we show that, in all cases examined, spectral power is not Gaussian 
distributed. This is true even when oscillations are prominent and sustained, such as visual 
cortical alpha. Power across time, at every frequency, is characterized by a substantial long tail, 
which implies that estimates of average power are skewed toward large, infrequent high-power 
oscillatory bursts. 
 
Comparison with existing methods: In a simulated event-related experiment we show how 
introducing just a few high-power oscillatory bursts, as seen in real data, can, perhaps 
erroneously, cause significant differences between conditions using traditional methods. These 
erroneous effects are substantially reduced with our new methods. 
 
Conclusions: These results call into question the validity of common statistical practices in 
neural oscillation research. 

Highlights 
• Analyses of oscillatory power often assume power is normally distributed. 
• Analyzing >40 hours of human M/EEG and ECoG, we show that in all cases it is not. 
• This effect is demonstrated in simple simulation of an event-related task. 
• Overinflated power estimates are reduced via log-transformation or median power. 
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Intro 
Spectral analysis is an indispensable tool for many cognitive, systems, and clinical 
neuroscientists. It is used to characterize oscillations in meso- and macro-scale field potential 
data ranging from invasive local field potential (LFP) and electrocorticography (ECoG) to non-
invasive electro- and magnetoencephalography (EEG and MEG). In particular, fixed bands of 
oscillatory power are often used to predict behavioral or disease conditions. For example, delta 
(1-4 Hz) power correlates with different stages of sleep (Amzica and Steriade, 1998); alpha (8-
12 Hz) power decreases topographically during visual attention (Palva and Palva, 2007; Voytek 
et al., 2017); beta (15-30 Hz) power is pathologically strong during the progression of 
Parkinson’s disease (Alonso-Frech, 2006; McCarthy et al., 2011). Power in these bands can be 
assessed via the power spectral density (PSD), which is typically calculated using Welch’s 
method (Voytek et al., 2010), which estimates the power at any frequency as the arithmetic 
mean of many windowed Fourier decompositions across time, or across experimental trials of 
the same condition (Welch, 1967). A related approach is the event-related spectral response, 
where spectral power at each frequency is averaged across trials for each time point, which 
contains not one, but two spectral power estimates based on the arithmetic mean: 1) across 
trials, and, 2) across time (Makeig, 1993). More sophisticated methods such as wavelet filtering 
or multitaper analysis use different windowing methods and convolution kernels (Bruns, 2004), 
but the final step frequently involves averaging over time. These averages are then statistically 
compared across different experimental conditions to establish whether there is a significant 
power difference between them.  
 
The methods described above are used in nearly every study looking at oscillatory power 
changes. Welch’s method has a long history in science and engineering applications, with 
nearly 7000 citations, according to Google Scholar, at the time of this writing. An important 
assumption of Welch’s method, and averaging in the frequency domain in general, is that the 
noise at any single frequency is symmetrically or Gaussian distributed and stationary. This 
assumption must be held for the arithmetic mean to be a reliable measure of central tendency. If 
this assumption is violated, the estimate is severely skewed by relatively few outliers. 
 
There are strong hints in the existing literature that power is not Gaussian distributed. First, 
spectral power follows a 1/f (power law-like) distribution across frequencies (Freeman and Zhai, 
2009; Miller et al., 2009; Baranauskas et al., 2012; He, 2014; Podvalny et al., 2015; Gao, 2016; 
Gao et al., 2017; Haller et al., 2018) despite recording modality (Voytek et al., 2010, 2015). 
Second, from a physiological perspective, it is clear that firing rate, dendritic connections, 
synaptic weights, and other parameters are distributed according to the log-normal, gamma, or 
other long-tailed distributions (Buzsáki and Mizuseki, 2014). Given that these are the 
parameters responsible for generating LFPs, and that the power spectrum is 1/f, we 
hypothesize that oscillatory power is long-tailed, rather than symmetric or Gaussian. The 
assumption that spectral power of neurophysiological signals is Gaussian distributed across 
time has never been explicitly examined. Testing this is critical, as any study in which the 
arithmetic mean is used will have a poor estimate of the true central tendency. To demonstrate 
by way of a simple analogy: if there are 9 people in a room with an average net worth of 
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$50,000, and a billionaire walks into the room, it does not seem terribly “average” to say that the 
average net worth of the 10 people in the room is now $100,045,000. 
 
In this study, we examined the distribution of spectral power in a large range of human 
electrophysiology recordings (EEG/MEG/ECoG). To be as comprehensive as possible, the 
datasets we analyze are heterogeneous in terms of sampling rate, experimental condition, 
participant age, and various other parameters (Table 1). We first show that the distribution of 
neural recording power across time, in every frequency bin, is significantly skewed, non-
Gaussian, and better approximated by a gamma distribution across all participants and 
recording modalities (Fig. 2). We then show, within participants, that this skewness holds true 
for all modalities, and across all brain regions (Fig. 3). Finally, we show, in simulation, how 
averaging power across trials, when power in those trials are gamma-distributed, can lead to 
inflated significance (Fig. 4). 
 
These results show that averaging oscillatory power estimates, using common methods, results 
in poor estimates of central tendency that are significantly inflated by the rare, high-power 
events that dominate electrophysiological recordings. That is, our results call into question the 
validity of any study which attribute their results to changes in the PSD as measured using 
Welch’s method and/or the arithmetic mean of trial or group-averaged spectral profiles. We 
conclude with several possible recommendations for future studies examining average spectral 
power. 

Methods and Data 
Data 
To study the distribution of spectral power in multiple recording modalities, we first create a 
database of power spectra using the data specified in Table 1. EEG data is provided by the 
Kutas Lab at UC San Diego (unpublished); MEG data are CTF MEG from the OMEGA open 
database (Niso et al., 2016), and ECoG data are from Johns Hopkins and UC San Francisco. 
For the MEG data, every eighth MEG sensor was chosen to reduce total data size, giving a final 
set of 34 channels per subject. All participants gave informed consent approved by the 
Institutional Review Boards at the respective recording institutions. 
 
We examine the distribution of spectral power at all frequencies 1-25 Hz and report on three 
specific frequencies—6, 12, 20 Hz—corresponding to three common, canonical oscillatory 
bands of theta, alpha, and beta respectively.  
 

 # of 
Participants 

# of 
Electrodes 

# of 
Windows 

Original Sampling 
Rate 

Pre-Processed? Task 

EEG 48 (16 Young, 
16 Middle-
aged, 16 Old) 

16 513-1719 250 Hz Minimal (only invalid 
channels thrown out) 

Visual and 
Auditory 

MEG 20 (Age 18- 34 50-124 2400 Hz Yes  Rest 
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40) (e.g., signal-source 
projection to remove 
eye blinks and 
heartbeat artifact) 

ECoG 33 64-142 103-480 1000 Hz Minimal (only invalid 
channels thrown out) 

Visual, 
Auditory, and 
Rest 

 
Table 1 | Description of analyzed datasets. 

Fourier Power Distributions 
The database-creation workflow and analysis pipeline are outlined in Fig. 1. First, all data is 
down-sampled to 250 Hz. Next, each channel, for each participant, is broken up into non-
overlapping 5-second windows and Fourier transformed. Then all Fourier coefficients are 
aggregated, for each channel and participant, resulting in a distribution of power values for each 
frequency. Distribution of power, at specific frequencies, is then analyzed across all participants, 
in aggregate (Fig. 2) and individually (Fig. 3). 

 
Figure 1 | Analysis pipeline. EEG, MEG, and ECoG time series from multiple participants and electrodes are 
processed via short-time window Fourier transform (F(ω)). Squared magnitude of the Fourier coefficients are stored 
in a database of power values, from which we query by aggregating across different dimensions (e.g., participant or 
electrode). The resulting aggregated histograms represent distribution of power in neural recordings at frequencies 
up to 25Hz, exemplified in Figures 2 and 3, which are subsequently fit with gamma distributions to measure 
skewness. 

Simulation 
We simulate 100 trials of data, where each trial has a brown noise background signal (f-2) of 
equal power. Brown noise is simulated by convolving a sequence of numbers drawn from a 
normal distribution with an exponentially decaying filter. The oscillatory component is simulated 
as a Gaussian-modulated sinusoid, with squared amplitudes drawn from an exponential 
distribution to match empirical data, which is added to the brown noise signal. Finally, the 100 
trials are sorted by ascending oscillatory power, and the 5 lowest and 5 highest powered trials 
are plotted in Fig. 4A (left, baseline). In the ‘burst’ conditions (Fig. 4A, right), the oscillatory 
signal of the trial with the highest amplitude is multiplied by 4, simulating a rare and high-
amplitude signal; the rest of the trials are otherwise kept identical. Subsequently, we perform the 
above replacement procedure for the N highest-powered trials to determine the minimum 
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number of trials required to produce a statistically significant difference under Student’s t-test 
(p<0.05). Note that the assumptions of normality for the t-test are explicitly broken in these 
simulated data, emulating the violations we demonstrate in real data and emphasizing how 
these violations cause inflated significance. 

Results 
The distribution of power values across time, across participants, and across electrodes, are 
never Gaussian distributed, regardless of recoding modality (EEG, MEG, or ECoG). While the 
detailed analyses below focus on the common EEG and MEG oscillatory range (1-25 Hz), the 
same non-Gaussian skew is observed in all frequencies up to our maximum analysis range of 
100 Hz. 

Aggregate analysis of power distribution 
We report that, when aggregating the spectral power of each frequency from all analysis 
windows, electrodes, and participants per data modality, spectral power does not follow a 
Gaussian distribution. Rather, the distribution of power for each frequency is well fit by a gamma 
distribution (Fig. 2). The gamma distribution is described by two parameters—shape and rate—
where the shape parameter is proportional to the overall skewness of the distribution while the 
rate parameter describes the dispersion, or spread, of the data. For a Gaussian distribution, the 
shape parameter is 0.0. 
 
We estimate the gamma parameters of the aggregated data at each frequency between 1-25 
Hz. As seen in Fig. 2, none of the shape parameters are near zero (the skew of a Gaussian 
distribution). Rather, the skew is always positive, with a heavy tail caused by rare, large power 
events that pull the mean away from the median and mode. 
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Figure 2 | Narrowband power distributions (12 and 20 Hz) for all participants, electrodes, and time windows. 
Canonical alpha (12 Hz; first column) and beta (20 Hz; second column) band power in recordings of different 
modalities all show heavily skewed distributions when aggregated across electrodes and participants. Skewness, 
measured as the shape parameter from gamma distribution fits, is non-zero for all frequencies up to 25 Hz (third 
column). 

 

Analysis of power distribution across participants 
To confirm that the skewness of the aggregate spectral power is not due to the skewness of a 
particular participant’s data or from aggregating across participants, we analyze the distribution 
of spectral power per individual participant, while still aggregating spectral power of all 
electrodes and time windows for that particular participant. The skewed distributions are 
observed across all participants. The distribution of spectral power is heavily skewed for each 
individual participant at all frequencies, and also at all frequencies at every electrode. Fig. 3 
illustrates a heavy skew in the 12 Hz frequency band. 
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Figure 3 | Example narrowband power distributions (12 Hz) across one individual participant. Power at 12 Hz 
in all 3 modalities follow skewed distributions, and skewness is non-zero in all EEG electrodes across the scalp for 
the plotted representative participant. Note the skewness is always above 1.0, far from the 0.0 of a Gaussian 
distribution. 

Analysis of power distribution across space 
To confirm that the skewness of spectral power is non-zero across space, we also analyze the 
distribution of spectral power per electrode in EEG recordings, while still aggregating across all 
participants and time windows for the particular electrode. Across all electrodes, a constant 
positive skew is still observed (Fig. 3). The skewness of spectral power at 12 Hz never reaches 
0, no matter where the electrode on the scalp is located. Furthermore, as seen in the left of Fig. 
3, the mean skewness never reaches near zero at any frequency or electrode combination. 

Effect of rare, high power oscillatory events on power averages 
To demonstrate the effect of rare, high power oscillatory events on significance tests between 
simulated conditions, we simulate brown noise (f-2) -distributed time series with 10 Hz 
oscillations of gamma-distributed power (see Methods). We simulate 100 trials using this 
procedure, and copy those 100 trails, producing two identical sets of simulated trials. Because 
of the gamma distribution of power, most oscillations are very weak, with a few that are quite 
powerful (Fig. 4A). 
 
We then artificially increase the amplitude of a single oscillation. Specifically, the highest 
amplitude trial is multiplied by a factor of 4 to simulate a rare, but not implausible, high-
amplitude event, in one of the two previously-identical sets of conditions. Note that the 99 other 
trials in the two sets remain identical. Doing so dramatically increases the average amplitude in 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 22, 2018. ; https://doi.org/10.1101/441626doi: bioRxiv preprint 

https://doi.org/10.1101/441626


 

the oscillatory band when the PSD is estimated as the log10(mean(FFT)) of the time series, as 
per Welch’s method (Fig. 4B, left).  
 
We then repeat this procedure, multiplying the next-highest amplitude trial by a factor of 4. Each 
time we increase the amplitude of a single trial, we compute a Students t-test of significance 
between the two simulated sets of 100 trials, comparing power at 10 Hz. We find that swapping 
just 5 of the 100 trials, using this procedure, results in a statistically significant difference under 
Student’s t-test (p<0.05). 
 
Modifying this slightly to mean(log10 (FFT)) or log10(median(FFT)) largely mitigates this issue 
(Fig. 4B).  
 

 

 
Figure 4 | Effects of a single large-amplitude oscillatory event on Welch’s PSD. A) When the alpha oscillation 
amplitude is quadrupled in the single trial with the highest power, out of 100 simulated trials, Welch’s method 
(arithmetic mean, left) shows a drastic 10 Hz power difference between the two simulated sets of trials. B) In contrast, 
log-transforming first and then taking the mean (middle), or taking the median (right), reduces the undue influence of 
this rare, high-powered oscillation. 
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Discussion 

Implications of non-Gaussian distribution of oscillations 
Our results demonstrate that human EEG, MEG, and ECoG data manifest skewed power 
distributions, which result in biased central tendency estimates when the mean is used. Our 
results imply an inherent statistical flaw in studies where average power is computed across 
time, either from Fourier-based power estimates like above or from convolution-based estimates 
via filtering. Subsequent hypothesis-testing which compares average spectral power estimates 
using common procedures such as t-tests, ANOVA, and other similar null hypothesis statistical 
significance tests that assume Gaussianity, will therefore be flawed. As we demonstrated via 
simulation, increasing the power of just a few simulated trials produces a significant increase in 
estimated mean power. Whether such a rare event—just a few outlier power spectral events— 
are meaningful, from a physiological perspective, is difficult to determine. 

Addressing caveats  
Throughout our analysis we see that electrophysiological activity is not Gaussian distributed. 
Nonetheless, we keep in mind the following caveats. First, it is undeniable that, though we are 
working with over 100 participants worth of data across three different electrophysiological 
recording modalities, including both task and non-task recordings, there could exist a particular 
recording modality or a particular group of participants that exhibit more Gaussian-distributed 
spectral power. However, given the heterogeneity of our data and the consistency across data 
types, it is likely that oscillatory power is not Gaussian distributed. We report that analyses of 
non-human primate LFP data showed similar non-Gaussian distributions of electrophysiological 
power.  
 
Second, as seen in Table 1, the data we analyzed were not all consistently pre-processed. The 
EEG and ECoG data only had minimal pre-processing where only invalid channels of recording 
were thrown out. The MEG were also pre-processed, yet we cannot guarantee that all non-
neural artifacts were removed. It is possible that the pre-processing reduces the variance of 
skew, as seen in Fig. 2, when comparing the distributions of skews of MEG to EEG and ECoG. 
Regardless, in all cases that we have seen so far, we find that an extremely heavy skew is 
present. In no cases is skew near zero. Therefore, we argue that our results are robust: 
common variants of electrophysiological data do not have a Gaussian distribution.  

Alternatives to Welch’s Method 
Methods that assume the arithmetic mean to be a valid measure of central tendency should be 
used only after an appropriate data transform is performed prior to averaging, e.g., computing 
the mean on log-transformed power (Smulders et al., 2018), as illustrated in Fig. 4B. 
Alternatively, one can use a “Median Welch” method, where the median power at each 
frequency is taken, rather than the mean. In comparing traditional Welch’s method to both log-
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transformed and median on simulated data (Fig. 4), we show how Welch’s method is biased by 
the long-tail power values present in the data. 
 
Concretely, the spectral power using Welch’s method increases significantly, even when just a 
few trials of data are amplified. This is because Welch’s method inherently tries to average a 
squared value (power is proportional to amplitude squared). Therefore, unless the intended 
effect is to intentionally amplify the effect of rare oscillatory bursts—which may be a desirable 
trait—we recommend that arithmetic mean-based averaging of spectral power is avoided. We 
recommend alternatives, such a log-transformed or median approaches, that are more resilient 
against the effects of rare events. 
 
A strong implication of our observation, wherein power at all frequencies in electrophysiological 
data is long-tail distributed, is that data are at most times very low power and only in very rare 
instances do high power bursts occur. This is important because many oscillation analysis 
methods also assume stationarity. However, from a cognitive and behavioral standpoint, this is 
particularly interesting given that emerging work is highlighting the potential functional role of 
oscillatory bursts (Feingold et al., 2015; Lundqvist et al., 2016), as opposed to sustained 
oscillations (Peterson and Voytek, 2017). Additionally, because common frequency-domain 
methods conflate higher power oscillations with longer-lasting oscillations (Jones, 2016), it may 
be more appropriate to complement frequency-domain analyses with time-domain approaches 
that can discriminate between those differences (Cole and Voytek, 2018). 
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