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Abstract 

 

Within a fraction of a second of viewing a face, we have already determined its gender, age and 

identity. A full understanding of this remarkable feat will require a characterization of the 

computational steps it entails, along with the representations extracted at each. Here we used 

magnetencephalography to ask which properties of a face are extracted when, and how early in 

processing these computations are affected by face familiarity. Subjects viewed images of 

familiar and unfamiliar faces varying orthogonally in gender and age. Using representational 

similarity analysis, we found that gender and age information emerged significantly earlier than 

identity information, followed by a late signature of familiarity. Importantly, gender and identity 

representations were enhanced for familiar faces early during processing. These findings start 

to reveal the sequence of processing steps entailed in face perception in humans, and suggest 

that early stages of face processing are tuned to familiar face features. 

 

Introduction 

 

A brief glimpse at a face quickly reveals rich multidimensional information about the person in 

front of us. How is this impressive computational feat accomplished? A key property of a 

complex computation is that it proceeds via stages and hence unfolds over time. Thus, knowing 

which information is extracted when is of the essence for understanding the computations 

underlying face perception. Surprisingly, it remains unknown 1) when after stimulus onset 

information about different face dimensions, such as gender, age, or identity, are extracted, and 
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2) how early these computations are affected by the familiarity of the face. Here we use 

magnetencephalography (MEG) to answer these questions. 

While extensive prior evidence indicates that humans detect and recognize faces very 

rapidly 1-3, much less is known about the precise temporal dynamics of extraction of information 

about different dimensions of face information. One possibility is that different dimensions of 

face information are extracted at different stages of processing. For example, gender 

information might be extracted before identity information, following a coarse-to-fine trajectory 
1,4. Alternatively, different face dimensions could be processed at the same time, suggesting 

greater interdependence of their processing 5,6. Resolving the time course by which information 

about gender, age, and identity emerge will importantly constrain computational models of face 

perception. 

Our second question is whether these face dimensions are processed differently for 

familiar versus unfamiliar faces, and if so how early familiarity affects processing. A striking yet 

unexplained finding about face perception is that familiar faces are processed more robustly and 

efficiently than unfamiliar faces 7. But the neural mechanisms underlying this effect remain 

unknown. According to one hypothesis, visual experience with specific faces tunes the bottom-

up processing filters for face features, thereby enhancing representations of familiar faces 8. 

This hypothesis predicts that familiarity should enhance face representations early in 

processing, at the same time when those representations are first being extracted. Alternatively 

(or in addition 9), familiarity effects in face processing could arise via activation of associated 

person knowledge and memories, which would then enhance perceptual representations in a 

top-down manner 10,11. This hypothesis predicts that familiarity should enhance face 

representations at some point after those representations are first extracted. Determining which 

(or both) of these accounts is correct will provide an important step towards understanding the 

neural mechanisms underlying the behavioral familiarity enhancement effect, and will further 

inform more general and long-standing questions of how specific prior experience affects the 

processing of objects 12-14. 

To determine how face processing unfolds over time, we applied multivariate analysis 

methods to MEG data from subjects viewing images of familiar and unfamiliar celebrities who 

varied orthogonally in gender and age. We used representational similarity analysis (RSA) to 

reveal the temporal dynamics of the representation of gender, age, and identity for familiar and 

unfamiliar faces. We reasoned that a bottom-up account of familiarity effects would predict an 

early enhancement for familiar faces, whereas a top-down account of familiarity effects would 

involve later processing stages. 
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Results 

 

We recorded MEG data from 16 subjects while viewing five images of each of eight familiar

(American) and eight unfamiliar (German) celebrities and monitoring for consecutive repetitions

of identical images (i.e., 1-back task; Fig. 1a). Celebrities varied orthogonally in gender and age.

Images for each identity were chosen to incorporate natural variability in various dimensions,

such as pose, hair style, eye gaze or lightning. Subjects viewed 28 repetitions of each of 80 face

stimuli, each presented for 200 ms in individual trials. To reveal the time course of face

processing, we performed multivariate pattern analysis on the MEG signals in a time-resolved

manner (Fig. 1b) 15,16. We first extracted a set of principal components (PCs) for each subject,

based on MEG responses across sensors, trials, timepoints (-100 to 800 ms with respect to

image onset; 1 ms resolution) and conditions. Then, using the resulting PCs, we trained and

tested support vector machines (SVM) on every pair of stimuli for each time point. Dissimilarity

for each pair of stimuli was computed as five-fold cross-validated decoding accuracy, resulting

in one 80 x 80 MEG representational dissimilarity matrix (RDM) per subject and time point. 
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Figure 1 | Task and multivariate MEG analyses. (a) Subjects viewed 80 images of faces while 

performing a 1-back task on the image. Each image was presented for 200 ms, followed by a variable 

[800 – 1000 ms] interstimulus interval (ISI). (b) MEG analyses were performed in a time-resolved manner 

on principal components extracted from all MEG sensors, separately for each subject (see Methods). For 

each time point t, we extracted the pattern of response across PCs for each condition and each trial and 

performed pairwise cross-validated SVM classification. The resulting decoding accuracy values resulted 

in a 80 x 80 representational dissimilarity matrix (RDM) for each time point. (c) To perform 

representational similarity analysis (RSA), we constructed model RDMs for each face dimension (1 

corresponding to “between” and 0 corresponding to “within” category, respectively).  

 

Behavioral performance during MEG task. To ensure that subjects maintained attention and 

processed the presented images throughout the course of the experiment, we asked them to 

perform a one-back task, pressing a button when the identical image (not identity) was repeated 

consecutively. Subjects were highly sensitive to an image repetition (mean sensitivity index d’ � 

SEM: 4.28 � 0.16) and responded quickly (mean response time � SEM: 458 � 10 ms after 

target stimulus onset). To test whether subjects processed familiar faces more efficiently than 

unfamiliar faces, we compared the responses to familiar versus unfamiliar images. While 

subjects’ sensitivity did not differ between familiar and unfamiliar face images (p = 0.67; two-

sided signed-rank test), subjects responded significantly faster to familiar than to unfamiliar 

faces (p = 0.021, familiar: 454 � 11 ms, unfamiliar: 462 � 9 ms). These behavioral results 

confirm that the processing of familiar faces is enhanced compared to unfamiliar faces, even 

when the task requires only image-level (not identity-level) processing. 

 

Time course of face image decoding. To determine when neural representations can first 

discriminate any visual information, we computed the average across all pairwise decoding 

accuracy values, separately at each time point. This analysis yielded a time course of neural 

image decoding accuracy (Fig. 2a). Individual images could be discriminated by visual 

representations early (decoding first reached significance at 46 ms), reached a peak at 103 ms 

(73.3% mean decoding accuracy) and remained significantly above chance until 706 ms after 

stimulus onset (p < 0.05; cluster-corrected sign permutation test). This time course is highly 

similar to the course of image decoding reported in previous MEG studies 15-17  and shows how 

neural responses are resolved at the level of individual face images. To test how persistent 

neural responses to face image representations were, we further performed temporal 

generalization analysis (see Supplementary Information).  
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Figure 2 | Decoding of face images and dimensions from MEG signals. (a) Time course of image

decoding where 0 indicates image onset (n = 16). (b) Time course of partial Spearman correlations

between MEG RDMs and model RDMs (see Fig. 1c) for gender (red), age (green), identity (blue) and

familiarity (orange), partialling out all other models and low-level features (see Methods). Lines below

plots indicate significant times using cluster-based sign permutation test (cluster-defining threshold p <

0.05, and corrected significance level p < 0.05). (c) Onset and (d) peak latencies for decoding of images,

gender, age and identity. Error bars indicate bootstrapped 95% confidence intervals. Stars above bars

indicate significant differences across conditions (one-sample two-sided bootstrap test, **: p < 0.01; *: p <

0.05; FDR-corrected). 

 

Early representations of face dimensions revealed by RSA. To determine when neural

representations discriminated face dimensions at higher categorization levels (e.g., gender) or

even at the level of identity or familiarity, we created a model RDM (e.g., “1” for between and “0”

for within gender stimulus pairs) for every face dimension (i.e., gender, age, identity and

familiarity; Fig. 1c). Because some face dimensions (e.g., gender) might be associated with

differences in low-level image properties (e.g., long hair versus short hair for female and male,

respectively), we further created a low-level feature RDM based on an early layer of a deep,
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convolutional neural network trained on faces (i.e., VGG-face; see Methods for details and for 

comparison to other low-level feature models). For every face dimension, we computed partial 

Spearman correlations between corresponding model and MEG RDMs at every time point and 

for each subject, while partialling out all other model RDMs and the low-level feature model (Fig. 

2b). We found that visual MEG representations were able to discriminate faces by age 

(significant time points: 60 – 208, 214 – 368 ms), gender (72 – 608, 630 – 705 ms) and specific 

identity (91 – 437 ms; all cluster-corrected sign permutation tests; cluster-defining threshold p < 

0.05; and corrected significant level p < 0.05;). Age and gender information were extracted first 

from MEG representations, and arose around 20 ms earlier than identity information (Fig. 2c; p 

< 0.05; one-sample two-sided bootstrap test, FDR-corrected). This finding suggests that coarse 

distinctions between faces in categorical dimensions are extracted before finer distinctions on 

an identity level; in line with a coarse-to-fine processing of face dimensions 1,4. Importantly, age, 

gender and identity dimensions were discriminated significantly later than individual images (p < 

0.01) suggesting that these facial dimensions emerged early but later during processing than 

low-level image discrimination. Interestingly, we found that neural representation of gender and 

identity peaked at similar latencies ~125 ms after stimulus onset (Fig. 2d). This finding suggests 

that, while peak latencies often vary for different types of object categories 16 (presumably 

processed in different spatial locations), different dimensions of the same category (here faces) 

can peak at similar times. 

We further found that MEG representations separated familiar from unfamiliar identities 

at much later latencies (403 – 457, 482 – 573 ms; cluster-corrected sign permutation test, 

cluster-defining threshold p < 0.05, and corrected significance level p < 0.05) than perceptual 

categories such as gender or age, and after specific identity information is extracted (all p < 

0.01; one-sample two-sided bootstrap test, FDR-corrected). This finding indicates that a late 

signature of generic familiarity can be read out from MEG signals, long after image-invariant 

identity information is extracted. The basis of this familiarity signature is not clear, and could 

reflect the activation of memories associated with a given familiar individual, an emotional 

response to a familiar face, or a generic familiarity response. 

 

Familiarity enhances face information at early stages. Behavioral evidence shows that 

familiar faces are processed more robust than unfamiliar faces, but it is unknown how early in 

processing this occurs. To answer this question, we conducted the same RSA analysis as 

above, but did so separately for familiar and unfamiliar faces (Fig. 3a). Note that this separation 

reduces the data available for each analysis fourfold, thus reducing the signal to noise ratio 
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(SNR). Despite this reduction, MEG representations still discriminated familiar faces by gender 

(Fig. 3b; 71 – 206, 226 – 492 ms), age (Fig. 3c; 92 – 200, 220 – 271 ms) and identity (Fig. 3d; 

96 – 168, 252 – 406, 447– 516, 519 – 570 ms; cluster-corrected sign permutation test, cluster-

defining threshold p < 0.05, and corrected significance level p < 0.05). In contrast, neural 

representations of unfamiliar faces were less pronounced but could still be discriminated by 

gender (Fig. 3b; 102 – 415, 488 – 560 ms) and age (Fig. 3c; 70 – 137, 241 – 397 ms; cluster-

corrected sign permutation test, cluster-defining threshold p < 0.05, and corrected significance 

level p < 0.05), and were no longer discriminable by identity (Fig. 3d). Crucially, we found that 

the encoding of gender and identity, but not age, was significantly enhanced for familiar 

compared to unfamiliar faces (Fig. 3b, 3d, black lines in plots; cluster-corrected sign permutation 

test, cluster-defining threshold p < 0.05, and corrected significance level p < 0.05). These 

enhancements occurred early with respect to the onset of gender and identity encoding (gender: 

66 ms – 142 ms (onset 71 ms); identity: 106 – 159 ms (onset 96 ms)). Overall, familiarity 

enhancement arose early during processing, suggesting that early stages of visual processing 

are tuned to familiar face features. However, we cannot fully exclude the contribution of fast 

feedback processes even at these early stages (c.f. 17, who report recurrent neural processes at 

early stages). 
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Figure 3 | Effect of familiarity on face representations. (a) We conducted separate RSA analyses for

familiar and unfamiliar faces. Note that this reduces the amount of data fourfold. (b-d) Time course of

partial Spearman correlations between MEG RDMs and gender (b), age (c) and identity (d) separated for

familiar and unfamiliar faces, partialling out other models and low-level features (see Methods). Colored

lines below plots indicate significant times, and black lines indicate significant difference between

conditions both using cluster-based sign permutation test (cluster-defining threshold p < 0.05, and

corrected significance level p < 0.05). 

 

MEG responses are correlated with behavior. Not all information that can be read out from

brain activity is used by the brain to guide behavior 18,19. Is the face information we report here

related to behavior? To find out, fourteen of the sixteen subjects participated in a behavioral

multi-arrangement paradigm (see Methods) after the MEG experiment to assess their perceived

dissimilarity between the face stimuli. We correlated the resulting behavioral RDM of each

subject with the MEG RDMs for each time point for that subject, while partialling out low-level

stimulus features. The resulting correlation time courses revealed a significant partial correlation

between MEG and behavior (Fig. 4a; 85 – 274, 294 – 420 ms after stimulus onset; cluster-

corrected sign permutation test, cluster-defining threshold p < 0.05, and corrected significance
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level p < 0.05) with a peak at 123 ms (partial Spearman’s partial ρ: 0.06) after stimulus onset.

To assess how much of the explainable MEG variance was captured by behavior, we further

computed an estimate of the noise ceiling (gray shaded area in Fig. 4a) given the variability

across the restricted set of fourteen subjects (gray shaded area in Fig. 4a). While the correlation

between behavior and MEG reveals the shared variance between both modalities, it does not

indicate how much each of the face dimensions contributes to this shared variance. To answer

this question, we conducted a model-based commonality analysis (Fig. 4b; see Methods). This

approach is based on variance partitioning and identifies the variance uniquely shared between

MEG and behavior and a given model RDM (e.g., the gender model), termed commonality

coefficients. We restricted this analysis to the time window during which we found significant

correlations between MEG and behavior (i.e., 85 – 420 ms after stimulus onset; note the

changed x-axis in Fig. 4b). Given the late correlation with the MEG data and the familiarity

model (see Fig. 2b), we did not include the familiarity model in this analysis. We found that

gender, age and identity each uniquely contributed to the shared variance (commonality

coefficients are shown in Fig. 4b). We further show the explained variance between MEG and

behavior as reference (gray line in Fig. 4b). Note that commonality coefficients reported with this

kind of analysis are often significant but very small 20. Together, we found that behavior was

predictive for MEG responses and that the shared variance predominantly reflected gender

information, followed by age and then identity, though all three were significant. 

 

Figure 4 | MEG and behavioral RDM comparisons. (a) Time course of correlation (partial Spearman,

partialling out low-level features) between behavioral and MEG RDMs (n = 14). Gray-shaded area

indicates estimated noise ceiling based on the variability across subjects. (b) Model-based commonality

analysis showing the portion of shared variance between MEG and behavior (gray line) uniquely

explained by gender (i.e., commonality coefficient; red), age (green) and identity (blue). Note that this
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analysis was restricted to the time window of the significant correlation between MEG and behavior (as 

shown in a). Colored lines below plots indicate significant times using cluster-based sign permutation test 

(cluster-defining threshold p < 0.05, and corrected significance level p < 0.05). 

 

Discussion 

 

This study answers two fundamental questions about the time course of face processing in 

humans. First, we find that extraction of information about gender and age begins after image-

level decoding but before extraction of identity information. Second, we show that familiarity of 

the face enhances representations of gender and identity very early in processing. These two 

previously unanswered questions reveal the temporal dynamics underlying face processing and 

provide powerful constraints on computational models of face perception. Next we relate these 

findings to prior work in monkeys and humans, as well as computational models of face 

perception. 

While a few prior studies have investigated the time course of face perception using 

multivariate pattern analyses in humans 21-24, our work goes beyond previous findings in two 

important respects. First, previous studies have focused on a single facial dimension (e.g., 

identity 22-24; viewpoint 21), and hence could not address the relative timing of extraction of 

multiple dimensions of face perception. To our knowledge, only one prior study 23 investigated 

the representation of identity within and across gender, and reported no difference in onset 

latencies. Their analysis, however, included identity differences in the gender comparison (only 

two identities per gender) whereas we investigated gender information unconfounded from 

identity (i.e., by partialling out the identity model). While these prior studies also find very early 

decoding of face identity information, consistent with our results, they do not reveal the relative 

timing of extraction of different dimensions from faces. 

Second, and most importantly, our study is the first to reveal how and when familiarity 

affects the representations of different face dimensions. The neural mechanisms underlying the 

powerful behavioral differences between the perception of familiar versus unfamiliar faces 7,25 

have remained an important unsolved mystery. In particular, is the familiarity enhancement 

effect due to tuning of bottom-up perceptual filters, or to top-down feedback 8,9,11? Previous 

studies could not address this question as they used only unfamiliar face images 22-24, indirect 

analyses of steady-state visual evoked responses 26 or functional magnetic resonance imaging 

with low temporal resolution 27-31 . Our finding that identity and gender information are 

significantly enhanced for familiar faces, very early on in processing, and virtually as early as 
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this information becomes available, provides a possible neural mechanism for the strong 

behavioral enhancement in perception of familiar versus unfamiliar faces. Namely, our results 

suggest that familiarity affects face perception by altering feed-forward face processing, not 

exclusively through feedback from later stages after the personal identity of a face has been 

extracted. 

How do our findings relate to prior findings on the spatial organization of face processing 

in the brain? In our study, we consider whole-brain information and do not restrict the time 

course to certain spatial locations given the low spatial resolution of MEG. Despite the lack of 

spatial resolution, the finding that gender and age were extracted before identity information 

suggests that these aspects of face perception are processed at different stages of face 

processing. Evidence from fMRI is equivocal about where specific face dimensions such as 

gender 32,33 or identity 34-36 information is represented in the brain. Given the fleeting presence of 

face dimensions in our MEG data, it is possible that fMRI misses some of this information due to 

its low temporal resolution. Interestingly, previous studies found that people with developmental 

prosopagnosia, who have trouble recognizing faces, have no impairments in gender processing, 

suggesting that these two facial dimensions might be processed in distinct neural areas, 

potentially in parallel 37,38. In contrast, behavioral studies showed that gender processing 

influences face identification 6. Our results reconcile these two findings by suggesting that 

gender and age are processed earlier in the processing hierarchy, at stages possibly less 

affected by prosopagnosia, yet able to influence subsequent identity processing in typical 

subjects 6. Taken together, it remains unclear where face dimensions, such as gender, age or 

identity, under investigation in this study are represented in the brain. In future, this question 

might be answered by combining MEG with fMRI using a “fusion” approach 16,17 to link our 

finding to regions in the brain. 

While human neuroimaging techniques are mainly limited to either high temporal or high 

spatial resolution, neurophysiological recordings in non-human primates provide an ideal 

opportunity to simultaneously measure face representations with high temporal and spatial 

resolution. Indeed, the macaque face perception system is similar 39,40  and possibly 

homologous 41 to the human face processing system. Neurophysiological studies with non-

human primates find that categorical distinctions between faces and other categories develop 

earlier than face identity information 40,42, but it is still unknown when other face dimensions, 

such as gender or age, emerge. Consistent with human MEG data 21, facial representations in 

macaques were also found to gradually build up and become more invariant to viewpoint at 

successive processing stages, measured both spatially and temporally 39,43, again showing the 
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usefulness of the macaque’s face perception system as a model to study human face 

perception. With regard to familiarity, our findings are in line with a recent study in macaques 

reporting early quantitative differences and late qualitative differences in processing of familiar 

versus unfamiliar faces 44.  However, the paradigms and stimuli that have been used so far in 

humans and macaque studies are too different to provide a precise correspondence between 

species.  

Our findings place important constraints on computational models of face perception and 

further suggest new hypotheses to probe in such models. Recently, deep convolutional neural 

networks (CNNs), have provided successful models of object and scene perception in humans 

and macaques 45-47. However, it remains unclear how useful CNNs are as model for human face 

processing. In future work, it will be interesting to test how well different computational models 

can explain our findings. In particular, the fact that we found little temporal cross-decoding (see 

Supplementary Information) suggests that a sequence of non-linear operations are performed 

on the representations of each face dimension. Comparisons of our data to different 

computational models might shed light on the operations and transformations performed at 

different stages of face processing in humans, as has been successfully done for facial 

viewpoint decoding in macaques 48. Another important implication of our data is that early 

stages of face processing are apparently tuned to familiar faces, a phenomenon that could also 

be tested in computational models. Analyzing these questions could provide a path toward the 

development of a computationally precise, image-computable model of face processing in 

humans.  

While the results presented here further our understanding of human face processing 

dynamics, they also have several limitations. First, our decision to use natural image in this 

study for ecological validity may introduce greater low-level image confounds compared to 

highly controlled, artificial face stimuli. Although we partialled out low-level features as 

measured by an early layer of a CNN trained on faces (a conservative choice, given that this 

model had the greatest overall correlation with the MEG data), we cannot be sure that all low-

level features have been captured by this model. Second, by investigating the onset of 

extraction of several face dimensions, we cannot draw conclusions about when the processing 

is completed, because the earliest latency of significant decoding reflects an upper bound for 

the beginning of the process. In fact, the correlations with gender, age and identity were 

relatively sustained until at least 400 ms after stimulus onset. Third, the mere existence of 

representations revealed by multivariate pattern analysis does not in itself imply that these 

representations are relevant to behavior 18,19. Here, we correlated MEG to behavioral similarity 
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of our subjects and found that all face dimensions explained unique variance between MEG and 

behavior. While this is an important step towards linking MEG representations with behavior, 

more direct links such as correlates to online behavior during MEG recording would provide 

stronger evidence. However, our results do make testable predictions about human face 

processing behavior. For example, in line with our results, studies investigating the speed of 

human categorization behavior have shown that identity decisions were made faster than 

familiarity decisions 1 and that gender decision occurred faster for familiar than unfamiliar faces 
49. Our results go beyond these findings to predict that behavioral discriminations of gender (and 

age, if tested in a binary fashion) should be made faster than discriminations of identity. 

In sum, our findings of how face processing unfolds over time in humans show that the 

extraction of face dimensions follow a coarse-to-fine time trajectory and support the hypothesis 

that the face processing system is tuned to familiar face features in a bottom-up manner. These 

findings inform broader questions about how prior experience affects processing of other stimuli 

beyond faces, such as object shapes 12-14, offer powerful constraints on computational models of 

face perception, and provide new predictions to be tested in future work.  

 

Material and Methods 

 

Participants. Twenty-one healthy volunteers with normal or corrected-to-normal vision 

participated in the study. Five subjects were excluded before data analysis due to at least one of 

the following exclusion criteria: excessive motion during the recording, behavioral performance 

below two standard deviations of the mean, or incomplete recordings due to technical issues. 

Data from 16 subjects (eight female; mean age 25.9, SD = 4.33) remained for the MEG 

analysis. The chosen sample size was based on previous studies using multivariate decoding of 

EEG/MEG data 16,17,23. Fourteen of these 16 subjects additionally participated in an online 

behavioral follow-up experiment. All subjects provided informed, written consent prior to the 

experiment. The Massachusetts Institute of Technology (MIT) Committee on the Use of Humans 

as Experimental Subjects approved the experimental protocol (COUHES No 1606622600) and 

the study was conducted according to the Declaration of Helsinki. 

 

Experimental design and stimuli. To investigate the temporal dynamics of face processing, 

subjects viewed face images of different identities while monitoring for consecutive repetitions of 

identical images (i.e., 1-back task; Fig. 1a) in the MEG. We chose eight “familiar” (i.e., famous 

actors in the US) and eight “unfamiliar” (i.e., German actors) celebrities as identities, which 
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varied orthogonally in gender and age, such that half were female and half were male and half 

of them were “young” (i.e., maximum age was 36 years) and half were “old” (i.e., minimum age 

was 59 years). 

To ensure that all subjects were familiar with the “familiar” identities, subjects completed 

an online screening task prior to the study. In this screening, we presented them with one image 

for each of the 16 identities (different from the images used in the MEG study) and asked if they 

were familiar with the person shown. Only subjects who recognized each of the eight familiar 

identities (e.g., by giving their names or contexts in which they remembered the person) were 

included in the study.  

Final stimuli used in the MEG study consisted of five gray-scale images of each of the 16 

identities for a total of 80 stimuli. For each identity, we selected five images from the internet 

which varied in several aspects, such as expression (at least two smiling and two neutral facial 

expressions), eye gaze (one averted to the left, one averted to the right, two directed gaze and 

one gaze aligned with rotated head), pose (one with head slightly rotated to the side), lightning, 

hair, etc. We then standardized all images to a template by rotating, scaling and cropping them 

based on the position of the nose tip, the mouth center and both eyes and saved them as gray-

scale images.  

During the MEG experiment, subjects viewed trials of face images (Fig. 1a). Each trial 

started with the presentation of a face image for 0.2 s followed by a 0.8 - 1 s interstimulus 

interval (ISI; uniformly sampled between 0.8 and 1 s) during which a gray screen was 

presented. Subjects were instructed to respond via button press to a consecutive repetition of 

an identical image during image presentation or during ITI. To avoid artifacts due to eye 

movements or blinking, subjects were instructed to fixate a black fixation cross in the upper 

center of the screen during image presentation (i.e., presented between the tip of the nose and 

the eyes of a face) and ISI. They were further asked to blink at the same time when giving a 

button response, as these trials were not included in the data analysis.  

Subjects viewed 28 blocks of trials in which each of the 80 images was presented once 

randomly interleaved with 20 task trials (1-back task) for a total of 100 trials per block. Task 

trials were pseudo-randomized such that each of the 80 images was additionally shown seven 

times as task trial for a total of 35 presentations. The experiment lasted around 70 minutes.  

 

MEG recording and preprocessing. MEG data were collected using a 306-channel Elekta 

Triux system with a 1000 Hz sampling rate, and were filtered online between 0.01 and 330 Hz. 

The position of the head was tracked during MEG recording based on a set of five head position 
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indicator coils placed on particular landmarks on the head. We preprocessed the raw data with 

Maxfilter software (Elekta, Stockholm) to remove head motion and to denoise the data using 

spatiotemporal filters. We then used Brainstorm (version 3.4 50) to extract trials from -200 to 800 

ms with respect to image onset. In Brainstorm, every trial was baseline-corrected by removing 

the mean activation from each MEG sensor between -200 ms and stimulus onset and principal 

component analysis was used to remove eye blink artifacts which were automatically detected 

from frontal sensor MEG data. We used a 6000 fT peak-to-peak rejection threshold to discard 

bad trials, imported the remaining trials in Matlab (version 2016a; The Mathworks, Natick, MA) 

and smoothed them with a 30 Hz low-pass filter. To further decrease noise and to reduce 

computational costs, for each subject we concatenated data of each MEG sensor over time and 

applied principal component analysis to the MEG sensor data (keeping all components that 

explained 99.99% of the variance in the data). This step reduced the set of features from 306 

MEG sensors to around 70 principal components per subject and we conducted all further 

analysis on this reduced set. We then baseline-corrected every trial by removing the mean 

activation between -200 ms and stimulus onset from each principal component. These principal 

component scores for each trial and each time point were used for the subsequent analyses. 

 

MEG multivariate pattern analysis. We used multivariate pattern analysis to extract temporal 

information about the face stimuli from the MEG data (Fig. 2). To obtain a similarity measure for 

each pair of stimuli, we used cross-validated pairwise classification accuracy of linear support 

vector machines (SVM; libsvm 51). Classification analysis was performed separately for each 

subject in a time-resolved manner (i.e., independently for each time point). A pattern in the 

analysis consisted of the principal component scores for one trial and one condition at a given 

time point. In the first step, we sub-averaged all trials of one condition by randomly assigning 

each trial to one of five splits and averaging the trials in each split (~5-7 trials per split when 

considering bad trials). We then divided the groups into training and testing data randomly 

selecting one group for testing and the remaining groups for training (i.e., five-fold cross-

validation). We then conducted a binary classification of all 3170 pairwise comparisons (i.e., 

80x79/2 combinations) between conditions. This classification procedure was repeated 100 

times. The average decoding accuracies over repetitions served as value in the 80 x 80 

decoding matrix, termed representational dissimilarity matrix (RDM). This RDM is symmetric 

and the diagonal is undefined. The entire procedure resulted in one MEG RDM for each subject 

and time point. 
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To get a measure of how well each face stimulus can be discriminated from all other 

images in the MEG (i.e., image decoding), we averaged all pairwise decoding accuracies in the 

lower triangular of each RDM. This resulted in one average decoding accuracy value per 

subject and time point. The time course of image decoding further serves as benchmark of time 

course of low-level image processing in the MEG data. To investigate how persistent neural 

responses were to face images, we further extended the SVM decoding procedure with a 

temporal generalization approach 16,52,53. Details and results of this analysis can be found in the 

Supplementary Information. 

 

Representational similarity analysis. To analyze the representation of face dimensions in the 

MEG data, we used representational similarity analysis (RSA). We created model RDMs for 

each face dimension which were 80 x 80 binary matrices where “1” corresponded to a between 

category stimulus comparison (e.g., male vs female for the gender model) and “0“ to a within 

category stimulus comparison (e.g., female vs female). This procedure resulted in four face 

models corresponding to the familiarity, gender, age and identity dimensions of our stimuli. To 

compute correlations between each model and the MEG data, we extracted the lower off-

diagonal of each of these matrixes as vectors. For each model and subject, we computed the 

partial coefficients (Spearman correlation) between the model and the MEG RDM at each time 

point partialling out all other face models. This step was crucial because some of the models are 

correlated (e.g., between identity comparisons comprised between gender comparisons) and 

partialling out the other models thus allowed us to disentangle contributions of the models from 

each other.  

To further exclude the contribution of low-level features of our stimuli to the results, we 

additionally partialled out a low-level feature model. This low-level feature model was computed 

by extracting features for each of the 80 stimuli from the second convolutional layer of a deep, 

convolutional artificial neural network (CNN) trained on thousands of face images (VGG-face 54). 

We used 1 – Pearson correlation as a measure of dissimilarity between the CNN units of each 

pair of stimuli, resulting in a 80 x 80 RDM based on low-level image features. Note that we also 

compared other models of low-level features (e.g., HMAX C2 55,56, Gist 57, pixel-based 

similarity), which produced similar results; we report here the VGG-face model because it 

reached the maximum correlation with the MEG data and hence explains the most data (as 

accountable by low-level features).  

We investigated the effect of familiarity on face processing by dividing the MEG and 

model RDMs into within familiar and within unfamiliar RDMs, respectively. Each of these RDMs 
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was a 40 x 40 RDM constituting of only familiar or only unfamiliar face images. We then 

performed the same analysis as for the full set of stimuli (see above). To further test differences 

between familiar and unfamiliar face processing, we subtracted the time courses of correlation 

for unfamiliar faces from the time courses obtained for familiar faces for each subject and 

statistically compared these difference time courses to zero (see Statistical inference below).  

 

Behavioral similarity experiment. Fourteen of the sixteen subjects additionally performed a 

behavioral multi-arrangement task 58 on the same stimuli on a separate day after the MEG 

experiment. Subjects performed the multi-arrangement experiment online using their own 

computer and by logging into an online platform to run behavioral experiments (www.meadows-

research.com). Subjects had to enter an anonymous, personal code that was provided to them 

via email to start the experiment. In the experiment, all 80 stimuli that the subject had previously 

seen in the experiment were arranged as thumbnails around a white circle in the center of the 

screen. Subjects were instructed to arrange these thumbnails based on their perceived similarity 

(“similar images together, dissimilar images apart”, without explicit instructions on which feature 

to use) by dragging and dropping them in the circle. The experiment terminated automatically 

when a sufficient signal to noise ratio was reached (i.e., evidence weight was set to 0.5). The 

average duration of the experiment was ~70 minutes. After the completion of the experiment, 

the pairwise squared on-screen distances between the arranged thumbnails was computed, 

thus representing a behavioral RDM. For each subject, we extracted the lower off-diagonal data 

from the behavioral RDM and correlated this vector with the corresponding MEG RDMs for each 

time point. To assess the unique contribution of each model to the shared variance between 

MEG and behavioral RDMs, we additionally performed commonality analysis, a variance 

partitioning approach that estimates the shared variance between more than two variables 20, 59. 

Briefly, we computed the variance uniquely contributed from each face model (e.g., gender) by 

calculating two correlation coefficients: First, for each subject, we calculated the partial 

correlation between MEG and behavioral RDMs, while partialling out all models (gender, age, 

identity and low-level feature model). Second, we calculated the partial correlation between 

MEG RDM and behavioral RDM while partialling out all face models and the low-level feature 

model but leaving one face model out (e.g., gender). The difference between these two partial 

correlation coefficients represents the unique variance contributed by that model referred to as 

“commonality coefficient”. This step was repeated for every MEG time point resulting in a 

commonality coefficient time course for each face model. 
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Statistical inference. For all analyses, we used non-parametric statistical tests that do not rely 

on assumptions on the distributions of the data 60,61. For statistical inference of decoding 

accuracy (image decoding) or partial correlation (e.g., model correlation) time series, we 

performed permutation-based cluster-size inference (i.e., a cluster refers to a set of contiguous 

time points). The null hypothesis corresponded to 50% chance level for decoding accuracies, 

and 0 for correlation values or correlation differences. Significant temporal clusters were defined 

as follows. First, we permuted the condition labels of the MEG data by randomly multiplying 

subject responses by +1 or -1 (i.e., sign permutation test). We repeated this procedure 1000 

times resulting in a permutation distribution for every time point. Second, time points that 

exceeded the 95th percentile of the permutation distribution served as cluster-inducing time 

points (i.e., equivalent to p < 0.05; one-sided). Lastly, clusters in time were defined as the 95th 

percentile of the maximum number of contiguous, significant time points across all permutations 

(i.e., equivalent to p < 0.05; one-sided). 

 

Onset and peak latency analysis. To test for statistical differences in onset or peak latencies 

between different face dimensions, we performed bootstrap tests. We bootstrapped the subject-

specific time courses (e.g., measures as decoding accuracy, partial correlation or commonality 

coefficient) 1000 times to obtain an empirical distribution of the onset (i.e., minimum significant 

time point post stimulus onset) and peak latencies (i.e., maximum correlation value between 80 

and 180 ms post stimulus onset). We restricted the time window for the peak analysis to 180 ms 

post stimulus onset, since we were interested in the first peak occurring after stimulus onset, 

unconfounded from later peaks (e.g., due to stimulus offset responses 62). The 2.5th and the 

97.5th percentile of these distributions defined the 95% confidence interval for onset and peak 

latency, respectively. For differences between latencies, we computed 1000 bootstrap samples 

of the difference between two latencies (e.g., onset) resulting in an empirical distribution of 

latency differences. The number of differences that were smaller or larger than zero divided by 

the number of permutations defined the p-value (i.e., two-sided testing). These p-values were 

corrected for multiple comparisons using false discovery rate at a 0.05 level. 

 

Data and code availability. The stimuli used in this study can be downloaded from the Open 

Science Framework (https://osf.io/gk6f5/). Data will be made available upon request. We used 

Elekta MaxFilter software, publically available brain analysis software (Brainstorm) and 

experimental platform (Meadows), the libsvm toolbox and standard Matlab functions for 

analysis.  
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