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Abstract Aboveground plant efficiency has improved significantly in7

recent years, and the improvement has led to a steady increase in global food8

production. The improvement of belowground plant efficiency has potential to9

further increase food production. However, belowground plant roots are harder10

to study, due to inherent challenges presented by root phenotyping. Several11

tools for identifying root anatomical features in root cross-section images12

have been proposed. However, the existing tools are not fully automated and13

require significant human effort to produce accurate results. To address this14

limitation, we use a fully automated approach, specifically, the Faster Region-15

based Convolutional Neural Network (Faster R-CNN), to identify anatomical16

traits in root cross-section images. By training Faster R-CNN models on17
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root cross-section images, we can detect objects such as root, stele and late18

metaxylem, and predict rectangular bounding boxes around such objects.19

Subsequently, the bounding boxes can be used to estimate the root diameter,20

stele diameter, late metaxylem number, and average diameter. Experimental21

evaluation using standard object detection metrics, such as intersection-over-22

union and mean average precision, has shown that the Faster R-CNN models23

trained on rice root cross-section images can accurately detect root, stele24

and late metaxylem objects. Furthermore, the results have shown that the25

measurements estimated based on predicted bounding boxes have small root26

mean square error when compared with the corresponding ground truth values,27

suggesting that Faster R-CNN can be used to accurately detect anatomical28

features. A webserver for performing root anatomy using the Faster R-CNN29

models trained on rice images is available at https://rootanatomy.org, together30

with a link to a GitHub repository that contains a copy of the Faster R-CNN31

code. The labeled images used for training and evaluating the Faster R-CNN32

models are also available from the GitHub repository.33

Keywords: Image Analysis, Deep Learning, Object Detection, Faster34

R-CNN, Root Anatomy35
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1. Introduction36

The crop scientific community has made significant strides in increasing37

global food production through advances in genetics and management, with38

majority of the progress achieved by improving aboveground plant efficiency39

[1, 2, 3]. The belowground plant roots, which provide water and nutrients40

for plant growth, are relatively less investigated. This is primarily because of41

the difficulty in accessing the roots, and the complexity of phenotyping root42

biology and function [4, 5]. Hence, root potential has largely been untapped43

in crop improvement programs [4, 5]. Over the past decade, different root44

phenotyping approaches have been developed for studying root architecture,45

including basket method for root angle [6], rhizotron method for tracking root46

branching, architecture and growth dynamics [7], shovelomics, a.k.a., root47

crown phenotyping [8], among others. Recent advances in magnetic resonance48

imaging and X-ray computed tomography detection systems have provided49

the opportunity to investigate root growth dynamics in intact plants at high50

temporal frequency [9, 10, 11, 12, 13]. However, each of these techniques51

comes with a range of inherent biases or limitations (such as artificial plant52

growth conditions), with none of the techniques currently available clearly53

standing out as a promising “blanket fit” approach [14, 15, 16]. Recent non-54

3

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 20, 2019. ; https://doi.org/10.1101/442244doi: bioRxiv preprint 

https://doi.org/10.1101/442244


destructive technologies, such as X-ray computed tomography, are extremely55

expensive, and thus beyond the reach of common crop improvement programs,56

in addition to not having the bandwidth to capture large genetic diversity.57

Machine learning is an area of artificial intelligence, focused on models58

that can automatically infer patterns from existing data, without human59

intervention [17]. In supervised machine learning, data in the form of training60

instances are provided as input, and the models learn patterns that can be61

used to make predictions on new unseen data. Machine learning approaches62

have been used successfully to address a wide variety of bioinformatics and63

computational biology problems relevant to crop sciences, including prediction64

of gene functions in plants [18], discovery of single nucleotide polymorphisms65

(SNP) in plyploid plants [19], subcellular localization [20], genomic selection66

for plant breeding [21], high-throughput plant phenotyping based on image67

analysis [22], prediction of biomass [23]. Furthermore, applications of advanced68

deep neural networks to challenging problems in crop analysis have led to69

state-of-the-art results that outperform the results of traditional machine70

learning and image analysis techniques approaches as reviewed in [24].71

Most relevant to this work, machine learning, in general, and deep neural72

networks (a.k.a., deep learning), in particular, are expanding the ability to73
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accurately predict a plant phenotype [25, 26, 27, 28, 29, 30, 31, 32, 33]. These74

technological advances have enabled researchers to capture a wide range of75

genetic diversity, a task which has been hardly possible in the past, given76

the amount of time and effort involved in manual analysis. Several recent77

studies have used deep learning approaches for identifying and quantifying78

aboveground plant traits, such as the number of leaves in rosette plants, based79

on high-resolution RBF images [29, 30, 31]. Other investigations have focused80

on identifying plant diseases [34] or on stress phenotyping [26].81

Furthermore, several prior studies have focused on data-driven approaches82

and tools for belowground plant phenotyping, including identifying and quan-83

tifying root morphological parameters, such as changes in root architecture,84

or branching and growth [35, 36, 37, 38]. Such approaches rely on standard85

image analysis techniques as opposed to state-of-the-art deep learning.86

Both root morphological and anatomical traits are important in relation87

to the efficiency of soil moisture absorption by the root system. Large genetic88

variation in root related traits has positioned rice to uptake water and increase89

yields under a range of ecological conditions, including flooded and dryland90

conditions [39]. Root anatomical traits such as nodal root diameter (RD) [40],91

late metaxylem diameter (LMXD) and number (LMXN) [41, 42, 43], and stele92
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diameter (SD) and its proportion to root diameter (SD:RD) [44] have been93

proposed as key traits for optimized acquisition of water and productivity94

under water-limited conditions [40]. Thin SD:RD has been used as a surrogate95

measure of cortex tissue area/width, which helps in the improvement of water96

flow and retention in vascular tissue [45, 44]. Late metaxylem number and97

diameter along the root influence the hydraulic conductivity [41, 44]. These98

parameters mentioned above help to determine effective water use throughout99

the crop growth period [46, 43].100

Innovations in image acquisition technologies have made it possible to101

gather relatively large sets of root cross-section images, enabling studies on102

root anatomy. Several approaches and tools for quantifying root anatomical103

variation based on cross-section images have been proposed in recent years104

[47, 48, 49]. However, the existing tools are only partially automated, as105

they require user input and fine-tuning of the parameters for each specific106

image or for a batch of images. Fully automated tools exist for the analysis of107

hypocotyl cross-sections (i.e., the region in between seed leaves and roots) in108

the context of secondary growth [50, 51], but they are not directly applicable109

to the analysis of root cross-section images. Thus, there is a pressing need110

for automated root cross-section image analysis tools that can be used to111
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perform root anatomy at a low cost.112

To address this limitation, we have taken advantage of recent advances in113

deep learning and image analysis, and used a state-of-the-art, fully-automated114

deep learning approach, the Faster R-CNN network [52], to identify and115

quantify root anatomical parameters indicative of physiological and genetic116

responses of root anatomical plasticity in field crops. Specifically, as a proof-117

of-concept, we have focused on the following parameters: root diameter (RD),118

stele diameter (SD), late metaxylem diameter (LMXD) and late metaxylem119

number (LMXN), which were found important in relation to water-deficit120

stress in our prior work [44, 53]. A graphical illustration of these parameters121

is shown in Figure 1.122

The existing Faster R-CNN model was trained on rice root cross-section123

images. The trained model was used to detect objects of interest in a root124

cross-section image (i.e., root, stele and late metaxylem), together with their125

corresponding bounding boxes. Subsequently, the bounding boxes were used126

to estimate anatomical parameters such as RD, SD, LMXD, LMXN. The127

Faster R-CNN model generalizes well to unseen images, thus eliminating the128

need for the end-user to hand-draw a stele border or manually choose or129

correct the metaxylem cells, tasks that are time-consuming, and also prone130
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Figure 1: Root anatomical traits. (Top) Root cross-section with highlighted root diameter
and stele. Image taken at 50x magnification. (Bottom) Enlarged stele with highlighted
stele diameter, and late metaxylem diameter. The late metaxylem number is also a trait of
interest. The image was taken at 100x magnification.

to noise and errors.131

To summarize, our main contributions are as follows:132

• We have used the Faster R-CNN network trained on root cross-section133

images to detect root, stele and late metaxylem objects, and their134

corresponding bounding boxes.135

• We have investigated the Faster R-CNN model with respect to the136

number of instances needed to accurately detect objects of interest, and137

their corresponding bounding boxes.138
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• We have evaluated the ability of the predicted bounding boxes to139

produce accurate estimates for anatomical properties, and performed140

error analysis to identify sources of errors.141

• We have identified advantages and disadvantages of Faster R-CNN142

approach for root anatomy by comparison with existing approaches for143

this task.144

2. Materials and Methods145

While there are many anatomical traits that can be identified, and mea-146

sured or counted (e.g., RootScan outputs more than 20 anatomical parame-147

ters), as a proof-of-concept, we have focused on measuring the root diameter148

(RD), stele diameter (SD), and late metaxylem diameter (LMXD), and count-149

ing the number of late metaxylem inside the stele (LMXN). Our choice was150

motivated by studies by Kadam et al. [44, 53], who showed the importance151

of these traits in relation to water-deficit stress, and provided the ground152

truth dataset for our study. The tasks that we target can be achieved with153

modern object detection techniques, such as Faster R-CNN, as described154

below. In addition to the traits of interest (RD, SD, LMXD and LMXN),155

other traits can be estimated based on the objects detected with our trained156
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Faster R-CNN models (e.g., stele area, average area of the late metaxylem).157

Furthermore, Faster R-CNN or Mask R-CNN models [54] can be trained to158

detect other objects, such as aerenchym and protoxylem objects, and their159

parameters, if data annotated with such objects becomes available.160

2.1. Overview of the Approach161

We have used Faster R-CNN [52], a state-of-the-art network for object162

detection, to detect objects of interest (i.e., root, stele, late metaxylem), and163

subsequently mark each object with a bounding box. More precisely, we164

have trained a Faster R-CNN model to identify the root and stele within a165

cross-section image, and another Faster R-CNN model to identify the late166

metaxylem within the stele region of a cross-section. Given the bounding167

box of an object, identified by the Faster R-CNN models trained on root168

cross-section images, we have calculated its diameter by averaging the width169

and height of the bounding box. The count of late metaxylem was obtained170

by counting the number of late metaxylem objects detected by the Faster171

R-CNN network.172

The Faster R-CNN model architecture is shown in Figure 2. As can be seen,173

the Faster R-CNN has two main components. The first component consists174

of a Region Proposal Network (RPN), which identifies Regions of Interest175
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Figure 2: Faster R-CNN model architecture [52], which has two main components: 1)
a region proposal network (RPN), which identifies regions that may contain objects of
interest and their approximate location; and 2) a Fast R-CNN network, which classifies
objects as root or stele, and refines their location, defined using bounding boxes. The two
components share the convolutional layers of the pre-trained VGG-16 [55].

(i.e., regions that may contain objects of interest), and also their location.176

The second component consists of a Fast R-CNN [56], which classifies the177

identified regions (i.e., objects) into different classes (e.g., root and stele), and178

also refines the location parameters to generate an accurate bounding box for179

each detected object. The two components share the convolutional layers of180

the VGG-16 network [55], which is used as the backbone of the Faster R-CNN181
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model. More details on convolutional neural networks, VGG-16 and Faster182

R-CNN approach, which we used to detect objects and generate bounding183

boxes, are provided below.184

2.1.1. Convolutional Neural Networks and VGG-16185

Convolutional Neural Networks (CNNs) [57] are widely used in image186

analysis. While originally designed for image classification, the features187

extracted by CNNs are informative for other image analysis tasks, including188

object detection. A CNN consists of convolutional layers followed by non-189

linear activations, pooling layers and fully connected layers, as seen in Figure190

3 (which shows a specific CNN architecture called VGG-16 [55]).191

A convolutional layer employs a sliding window approach to apply a set of192

filters (low-dimensional tensors) to the input image. The convolution operation193

captures local dependencies in the original image, and it produces a feature194

map. Different filters produce different feature maps, consisting of different195

features of the original image (e.g., edges, corners, etc.). A convolution layer196

is generally followed by a non-linear activation function, such as the Rectified197

Linear Unit (i.e., ReLU), applied element-wise to generate a rectified feature198

map. The ReLU activation replaces all the negative pixels in a feature map199

with zero values. A pooling layer is used to reduce the dimensionality of200
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Figure 3: VGG-16. The original VGG-16 architecture consists of 13 convolution+ReLU
layers, five pooling layers, and three fully connected layers. A convolution+ReLU layer
produces a feature map, while a pooling layer reduces the dimensionality of the feature
map. The last fully connected layer uses a softmax activation function to predict one of
the 1000 categories. The dimensions corresponding to each layer are also shown.

the rectified feature map. Intuitively, the pooling operation retains the most201

important information in a feature map by taking the maximum or the average202

pixel in each local neighborhood of the feature map. As a consequence, the203

feature map becomes equivariant to scale and translation [58].204

After a sequence of convolutional layers (together with non-linear acti-205

vations) and pooling layers, a CNN has one or more fully connected layers.206

In a fully connected layer, all neurons are connected to all neurons in the207
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subsequent layer. The first fully connected layer is connected to the last208

downsized feature map. The fully connected layers are used to further reduce209

the dimensionality and to capture non-linear dependencies between features210

[58]. The last fully connected layer uses a softmax activation function, and211

has as many output neurons as the number of targeted classes.212

There are several pre-trained CNN architectures available, including VGG-213

16 [55], shown in Figure 3. The VGG-16 network has been shown to give214

very good performance in the ImageNet competition, where the network was215

trained on millions on images with 1000 categories [55]. Furthermore, VGG-16216

was used with good results in the original Faster R-CNN study [52], which217

motivated us to use it also in our study. As can be seen in Figure 3, VGG-16218

has 13 convolutional+ReLU layers, 5 pooling layers, and 3 fully connected219

layers. The dimensions corresponding to each layer are also shown in Figure220

3.221

2.1.2. Region Proposal Network (RPN)222

As mentioned above, the region proposal network identifies regions that223

could potentially contain objects of interest, based on the last feature map224

of the pre-trained convolutional neural network that is part of the model, in225

our case VGG-16 [55]. More specifically, using a sliding window approach, k226
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regions are generated for each location in the feature map. These regions, are227

represented as boxes called anchors. The anchors are all centered in the middle228

of their corresponding sliding window, and differ in terms of scale and aspect229

ratio [52], to cover a wide variety of objects. The region proposal network is230

trained to classify an anchor (represented as a lower-dimensional vector) as231

containing an object of interest or not (i.e., it outputs an “objectness” score),232

and also to approximate the four coordinates of the object (a.k.a., location233

parameters). The ground truth used to train the model consists of bounding234

boxes provided by human annotators. If an anchor has high overlap with a235

ground truth bounding box, then it is likely that the anchor box includes an236

object of interest, and it is labeled as positive with respect to the object versus237

no object classification task. Similarly, if an anchor has small overlap with a238

ground truth bounding box, it is labeled as negative. Anchors that don’t have239

high or small overlap with a ground truth bounding box are not used to train240

the model. During training, the positive and negative anchors are passed241

as input to two fully connected layers corresponding to the classification of242

anchors as containing object or no object, and to the regression of location243

parameters (i.e., four bounding box coordinates), respectively. Corresponding244

to the k anchors from a location, the RPN network outputs 2k scores and 4k245
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coordinates.246

2.1.3. Fast R-CNN247

Anchors for which the RPN network predicts high “objectness” scores248

are passed to the last two layers (corresponding to object classification and249

location parameter refinement, respectively) of a network that resembles250

the original Fast R-CNN network [56], except for how the proposed regions251

are generated. Specifically, in the original Fast R-CNN, the regions were252

generated from the original image using an external region proposal method253

(e.g., selective search).254

As opposed to the original Fast R-CNN [56], in the Fast R-CNN component255

of the Faster R-CNN model, the external region proposal method is replaced by256

an internal RPN trained to identify regions of interest [52]. Highly overlapping257

regions, potentially corresponding to the same object, can be filtered using258

a non-maximum suppression (NMS) threshold. A pooling layer is used to259

extract feature vectors of fixed length for the regions of the interest proposed260

by RPN. Subsequently, the feature vectors are provided as input to two fully261

connected layers, corresponding to the classification of the object detected262

and the regression of its location, respectively.263

The object classification layer in Fast R-CNN uses the softmax activation,264
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while the location regression layer uses linear regression over the coordinates265

defining the location as a bounding box. All parameters of the network are266

trained together using a multi-task loss [56].267

2.1.4. Faster R-CNN Implementation and Training268

The implementation of the original Faster R-CNN model [52], which is269

publicly available at https://github.com/ShaoqingRen/faster rcnn, uses MAT-270

LAB as the programming language, and Caffe (http://caffe.berkeleyvision.org)271

as the backend deep learning framework. Chen and Gupta [59] provided an272

implementation of the Faster R-CNN model, which uses Python as the pro-273

gramming language and TensorFlow (https://www.tensorflow.org) as the274

backend deep learning framework. This implementation, publicly available275

at https://github.com/endernewton/tf-faster-rcnn, allows the user to train276

a model from scratch and also to reuse one of several pre-trained models as277

the backbone of the network. In particular, the user can select the VGG-16278

network, pre-trained on the ImageNet dataset with 1000 categories.279

We used the Python/TensorFlow implementation of the Faster R-CNN280

network, with the pre-trained VGG-16 model as its backbone, and trained281

the network to identify objects such as root, stele and late metaxylem. More282

precisely, the parameters of the VGG-16 convolutional layers, which are shared283
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by the Fast R-CNN and RPN networks in Faster R-CNN, were initialized284

using the pre-trained VGG-16 network. As many image features are highly285

transferable between different datasets, this initialization based on VGG-16286

allowed us to train accurate models from a relatively small number of root287

cross-section labeled images. In our preliminary experimentation, we found288

that it is difficult to accurately detect late metaxylem at the same time with289

root and stele. To address this issue, we trained a Faster R-CNN model to290

detect root and stele from background (i.e., everything else in the image),291

and another Faster R-CNN model to detect late metaxylem from background.292

To achieve this, we changed the output layer of the original Faster R-CNN293

network to reflect our classes (corresponding to the objects detected).294

Given that the RPN and Fast R-CNN networks share 13 convolutional295

layers (initialized based on VGG-16), they were co-trained using an iterative296

process that alternates between fine-tuning the RPN and fine-tuning the Fast297

R-CNN network (with fixed proposed regions produced by RPN) [52]. All298

the model parameters were updated using stochastic gradient descent (SGD).299

2.2. Existing Approaches for Root Anatomy300

There are several approaches and tools for quantifying root anatomical301

variation based on cross-section images [47, 48, 49]. Approaches in this cate-302
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gory can be roughly categorized as manual, semi-automated, and automated303

approaches. Manual analysis of root images relies heavily on subjective as-304

sessments, and is suitable only for low throughput analysis. ImageJ [60] is an305

image analysis tool that has been extensively used to manually identify and306

quantify root anatomical traits [44, 61, 53], given that it enables researchers307

to mark objects of interest and obtain their measurements. In particular, the308

ImageJ software was used to acquire the ground truth (in terms of quantitative309

annotations) for the images used in this study, specifically, RD, SD, LMXD310

and LMXN measurements.311

Semi-automated tools require user feedback to tune parameters for individ-312

ual images in order to get accurate results. RootScan [47] and PHIV-RootCell313

[49] are semi-automated tools that identify and quantify anatomical root traits.314

RootScan was originally designed for analyzing maize root cross-section im-315

ages. The analysis of each image involves several steps. RootScan starts by316

isolating the cross-section from the background using a global thresholding317

technique [62]. Subsequently, the stele is segmented based on the contrast318

between pixel intensities within and outside the stele. Different cells within319

the stele (e.g., late metaxylem) are classified based on their area according to320

background knowledge on root anatomy for a particular species. RootScan321
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can detect several types of objects (including lucunae, metaxylem and pro-322

toxylem), and also a broad range of parameters for each detected object. After323

each step, the user has to “approve” the automated detection or alternatively324

correct it, before moving to the next step. The tool can be run on a set of325

images in batch mode, but the user still needs to provide input for each step326

of the analysis for each image, as explained above.327

The PHIV-RootCell tool for root anatomy is built using the ImageJ328

software [60], and provides options for selecting regions of interest (ROI) such329

as root, stele, xylem, and for measuring properties of these regions. It was330

designed for analyzing rice root cross-section images. Similar to RootScan,331

domain knowledge is used to identify ROIs. The PHIV-RootCell tool uploads332

and analyzes one image at a time, and does not have an option for batch333

uploading or processing. Furthermore, it requires user’s supervision at each334

segmentation and classification step [49]. For example, it requires the user335

to validate the root selection, stele selection, central metaxylem selection,336

among others.337

As opposed to semi-automated tools that require user feedback, a fully338

automated approach should involve “a single click” and should produce339

accurate results without any human intervention during the testing and340
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evaluation phases. However, human input and supervision in the form of341

background knowledge or labeled training examples may be provided during342

the training phase. In this sense, RootAnalyzer [48] is an automated tool,343

which incorporates background knowledge about root anatomy. The first step344

in RootAnalyzer is aimed at performing image segmentation to distinguish345

between root pixels (corresponding to boundaries of individual root cells) and346

background pixels. To achieve this, RootAnalyzer utilizes a local thresholding347

technique to analyze each pixel’s intensity by comparing it with the mean348

pixel intensity in a small square neighborhood around that pixel (defined by349

a width parameter, W ). Subsequently, RootAnalyzer constructs a difference350

image, and classifies pixels as root or background pixels based on a threshold,351

T , used on the difference image. The next step is focused on detecting352

root cells and closing small leaks in cell boundaries, using an interpolation353

approach. Finally, cells are classified in different categories, such as stele cells,354

cortex cells, epidermal cells, etc. based on size, shape, and position. Two355

thresholds are used to classify cells as small or large: a threshold, As, for small356

cells, and a threshold, Al, for large cells. Furthermore, stele cells are classified357

based on an additional threshold, N , on the maximum distance from a cell358

to any of its nearest neighbor cells. The RootAnalyzer tool can be used for359
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both single image processing and batch processing. Single image processing360

allows the user to adjust and tune parameters, and also to interact with the361

tool at each stage of the segmentation and classification. Batch processing362

requires the user to provide the parameters to be used with a specific batch363

of plant images. Similar to RootScan, RootAnalyzer outputs a table of area364

measurements and counts for regions of interest. This tool was designed for365

wheat and was shown to work also for maize [48].366

2.3. Dataset367

Twenty-five accessions of Oryza species were grown in plastic pots (25368

cm in height; 26 and 20 cm diameter at the top and bottom, respectively),369

filled with 6 kg of clay loam soil. Three replications per each accession were370

maintained under well-watered conditions and roots were sampled 60 days371

after sowing, to ensure fully mature roots. The roots were harvested and372

washed thoroughly. To obtain the cross-section images used in this study,373

root samples stored in 40% alcohol were hand sectioned with a razor blade374

using a dissection microscope. For each of the 25 rice accessions, and for each375

of the three biological replicates, root samples from root-shoot junction and 6376

cm from the root tip were obtained. Images of root sections were acquired377

with the Axioplan 2 compound microscope (Zeiss, Germany) at 50x and 100x378
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magnification. Specifically, for each accession and each replicate, 2-3 images379

were taken at root-shoot junction, and 2-3 images at 6 cm from the tip of the380

root, at 50x and 100x magnification. Thus, an image may have two versions:381

a 50× magnification version, which captures the whole root diameter (top382

image in Figure 1), and a 100× magnification version, which captures only the383

stele diameter (bottom image in Figure 1). However, not all 50× images have384

a 100× correspondent. Precisely, there are 388 images at 50× magnification,385

and 339 images at 100× magnification.386

For each root image, we manually measured root anatomical parame-387

ters, such as root cross-section diameter, stele diameter, late metaxylem388

average diameter and late metaxylem number, using the ImageJ software389

[60]. Specifically, root diameters were estimated using the 50× magnification390

images. The stele diameter, and late metaxylem average diameter and count391

were estimated using the 100× magnification images, if available (otherwise,392

the 50× magnification images were used). The manual measurements and393

counts constitute our ground truth to which we compared the measurements394

produced based on the bounding boxes detected by our trained Faster R-CNN395

models. Statistics about the dataset, including the minimum, maximum,396

average and standard deviation for RD, SD, LMXD and LMXN, are presented397
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in Table 1.398

Statistics RD SD LMXD LMXN
Min 354 115 15 1
Max 1352 419 65 12
Avg ± std 869± 194 216 ± 55 36 ± 8 5.4 ± 1.8

Table 1: Ground Truth Statistics: minimum (Min), maximum (Max), and average together
with standard deviation (Avg ± std) are shown for the ground truth measurements of
RD, SD, LMXD (expressed in micrometers, µm) and LMXN (which is the count of late
metaxylem objects).

In addition to measuring root anatomical parameters, each 50× magni-399

fication image was also manually labeled by independent annotators with400

bounding boxes that represent root, stele, and late metaxylem, respectively,401

and each 100× magnification image was labeled with boxes that represent402

late metaxylem.403

We used the LabelImg tool available at ttps://github.com/tzutalin/labelImg404

to perform the bounding box labeling. This tool produces annotations in the405

Pascal Visual Object Classes (VOC) XML format [63], a standard format406

used for annotating images with rectangular bounding boxes corresponding407

to objects. An example of a root cross-section image annotated using the408

LabelImg tool is shown in Figure 4 (a), where each target object is marked409

using four coordinates, shown as green dots, which determine a bounding box.410

The bounding boxes annotated with the LabelImg tool in the 50× and 100×411
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magnification images constitute the ground truth to which we compared the412

bounding boxes of the objects detected by our models. Corresponding to the413

ground truth image in Figure 4 (a) annotated with LabelImg, Figure 4 (b)414

shows the bounding box annotations produced by our models, as red boxes.415

Figure 4: Objects of interests as bounding boxes: (a) Ground truth image annotated using
LabelImg, where each object is marked using four coordinates, shown as green dots, which
determine a bounding box. (b) The annotation of the same image by the root/stele and
late metaxilem models, where the detected objects are shown using red bounding boxes.

We would like to emphasize that the 50× magnification images contain416

all the anatomical features that we target in this study, and are sufficient417

for training the proposed deep learning models. However, we also trained418

models on the 100× magnification images, independently, to understand how419

much the identification of the LMX objects and their measurements may be420
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improved by using images with a higher resolution. In general, any resolution421

can be used for training, as long as all the features that need to be identified422

are contained in the image.423

2.4. Experimental Setup424

2.4.1. Training, Development and Test Datasets425

We performed a set of experiments using 5-fold cross-validation. Specifi-426

cally, we split the set of 50× magnification images into five folds, based on427

accessions, such that each fold contained 5 accessions out of the 25 accessions428

available. The exact number of 50× magnification images (instances) in each429

fold is shown in Table 2. For each fold, Table 2 also shows the number of430

corresponding 100× magnification images (instances) available (as mentioned431

before, not every 50× magnification image has a corresponding 100× magnifi-432

cation image). In each 5-fold cross-validation experiment, four folds were used433

for training, and the fifth fold was used for test. To tune hyper-parameters,434

we used one of the training folds as the development dataset. The results435

reported represent averages over the 5 folds. The reason for splitting the set436

of images based on accessions was to avoid using images from the same plant437

or the same replicate both in the training and test datasets.438
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Table 2: Number of instances in each of the 5 folds used to perform cross-validation for
the 50× and 100× magnification images, respectively. The total number of instances in
the dataset is also shown.

Fold Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Total
Instances (50×) 71 79 86 77 75 388
Instances (100×) 62 60 80 69 68 339

2.4.2. Evaluation Metrics439

We used three standard metrics in our evaluation, driven by preliminary440

observations. First, given that there exist exactly one root and one stele in441

an image, we observed that these objects are always detected in the 50×442

magnification images. We used the Intersection-over-Union (IoU) metric to443

measure how well the predicted bounding boxes overlap with the ground444

truth bounding boxes. Second, given that the number of LMX objects varies445

between 1 and 12, and these objects are relatively small, the corresponding446

object detection models are prone to both false positive and false negative447

mistakes. Thus, we used mean average precision (mAP), a standard metric in448

object detection, to evaluate the ability of our models to accurately identify449

the LMX objects. Both IoU and mAP metrics range between 0 and 1, and450

higher values are better. Finally, we used the root mean square error (RMSE)451

and relative root mean square error (rRMSE) (i.e., percentage error) metrics452

to measure the ability of the Faster R-CNN approach to detect objects453
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and corresponding bounding boxes that lead to root/stele/LMX diameter454

measurements and LMX counts close to those available as ground truth. For455

RMSE and rRMSE, smaller values are better.456

2.4.3. Hyper-parameter Tuning457

Deep learning models, in general, and the Faster R-CNN models, in458

particular, have many tunable hyper-parameters. We tuned several hyper-459

parameters shown to affect the performance of the Faster R-CNN models460

[64], and used the values suggested by Ren et al. [52] for the other hyper-461

parameters. More specifically, we tuned the IoU threshold used in the RPN462

network to identify anchors that could potentially include an object of interest463

(i.e., positive instances/anchors). Furthermore, we tuned the non-maximum464

suppression (NMS) threshold which is used to filter region proposals produced465

by the trained RPN network (specifically, if two proposals have IoU larger466

than the NMS threshold, the two proposals will be considered to represent467

the same object). At last, we tuned the fraction of positive instances in a468

mini-batch.469

The specific values that we used to tune the IoU threshold were 0.4, 0.5 and470

0.6; the values used to tune the NMS threshold were 0.6, 0.7 and 0.8; and the471

values used to tune the fraction of positive instances in a mini-batch were 1:5472
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and 1:4. To observe the variation of performance with the tuned parameters,473

and select the values that gave the best performance, we trained a model474

corresponding to a particular combination of parameters on three training475

folds, and evaluated the performance of the model on the development fold.476

The performance of the models for root and stele detection was measured477

using the IoU metric (by comparing the predicted bounding boxes with the478

ground truth bounding boxes), while the performance of the models for LMX479

detection was measured using the mAP metric (by comparing the detected480

LMX objects with the ground truth LMX objects) to ensure that the Faster481

R-CNN models can accurately detect all the LMX objects.482

Our tuning process revealed that the performance did not vary signif-483

icantly with the parameters for our object detection tasks. However, the484

best combination of parameters for the root/stele models consisted of the485

following values: 0.4 for the IoU threshold, 0.8 for the NMS threshold and486

1:4 for the fraction of positive anchors in a mini-batch. The best combination487

of parameters for the LMX models was: 0.5 for the IoU threshold, 0.8 for the488

NMS threshold, and 1:4 for the fraction of positive anchors in a mini-batch.489

We used these combinations of values for the root/stele and LMX models,490

respectively, in our experiments described in the next section.491
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3. Results and Discussion492

In this section, we present and discuss the results of our experiments493

using the Faster R-CNN models trained on rice root cross-section images.494

Furthermore, we outline time requirements for Faster R-CNN and discuss the495

availability of the Faster R-CNN model for root anatomy as a tool.496

3.1. Variation of Performance with the Number of Training Instances497

As opposed to the existing tools for identifying anatomical parameters in498

root cross-section images, which incorporate background knowledge about499

the root anatomy of a particular species and the types of images used, the500

automated Faster R-CNN approach is easily generalizable to various species501

and types of images, given that a representative set of annotated images502

is provided as training data. Under the assumption that data annotation503

is expensive and laborious, we aim to understand how many images are504

necessary for good performance on roots from a particular species. Intuitively,505

the number of required images should be relatively small, given that our506

model relies on a VGG-16 network pre-trained to detect a large number of507

objects, generally more complex than root, stele and late metaxylem objects.508

To validate our intuition, we have performed an experiment where we509
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varied the number of images used for training, while keeping the number of510

test images fixed. Specifically, we used 5, 10, 25, 50, 75, 100, 150, 200, 250,511

and all available training images in a split, respectively, to train models for512

detecting the root, stele and LMX in an image. The 50× magnification images513

were used to train the models for root/stele/LMX. The 100× magnification514

images were also used to train models for LMX, with the goal of understanding515

the benefits provided by higher resolution images. The trained models were516

subsequently used to detect root, stele, and LMX objects in test images.517

The performance of the models was measured by comparing the predicted518

objects with the ground truth objects. We used the IoU metric to evaluate the519

predicted bounding boxes for root/stele by comparison with the corresponding520

ground truth bounding boxes. We used the mAP metric to measure the ability521

of the models to accurately detect LMX objects. The variation of performance522

with the number of training images is shown in Figure 5 for root/stele (Left523

plot) and LMX (Right plot). As can be seen, in the case of the models trained524

on the 50× magnification images, the performance increases with the number525

of training images, but tends to stabilize generally around 250 images. This526

confirms our intuition that only a small number of labeled images is needed527

to learn accurate models for the problem at hand. Furthermore, the left528
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Figure 5: Variation of performance with the number of training images for root/stele
detection model (Left plot), and for the LMX detection model (Right plot), respectively.
We used 50× magnification images to detect root and stele objects, and both 50× and 100×
magnification images to detect LMX. The performance of the root/stele detection model
was measured using the IoU metric (which shows how accurately the predicted bounding
boxes match the ground truth), while the performance of the LMX detection model was
measured using the mAP metric (which shows how accurately LMX objects were detected).
The plots show average values over 5 splits together with standard deviation.

plot in the figure shows that the IoU values for both root and stele objects529

are around 0.95, when all the training images are used, and that the root530

bounding boxes are slightly better than the stele bounding boxes. Similarly,531

the LMX objects are detected with high accuracy, as shown in the right plot532

of Figure 5, where the mAP values are close to 0.9 consistently for models533

trained with smaller or larger number of 100× magnification images. Similar534

performance is obtained with the models trained from all 50× magnification535

images. The plots for both root/stele and LMX also show that generally the536

variance decreases with the size of the data. The slow decrease in performance537
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that is observed sometimes between two training set sizes can be explained538

by the addition of some inconsistently labeled images present in the original539

dataset. Examples of inconsistently labeled images as shown in Figure 6.540

3.2. Performance Evaluation Using RMSE/rRMSE541

The Faster R-CNN models trained on root images were used to detect542

root/stele/LMX objects in the test data. Subsequently, the detected objects543

were further used to calculate RD, SD, LMXD and LMXN. To evaluate544

the models in terms of their ability to produce accurate root/stele/LMX545

diameter and LMX number, we have used the RMSE error computed by546

comparing the measurement/count estimates obtained from the predicted547

bounding boxes with the ground truth measurements/counts. The RD and548

SD measurements were evaluated based on models trained/tested with the549

50× magnification images, while LMXD and LMXN were evaluated based on550

models trained/tested with 50× and 100× magnification images, respectively.551

Intuitively, the LMXD/LMXN results obtained with the models trained on552

the 100× magnification images should be more accurate, as those images have553

higher resolution. The RMSE/rRMSE results of the experiments correspond-554

ing to the five splits, together with the average over the five splits, are shown555

in Table 3. In addition, Table 3 shows the expected human error estimated556
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(a) LMXN=4 (b) LMXN=3

(c) LMXN=4 (d) LMXN=3

(e) LMXN=12 (f) LMXN=11

Figure 6: Examples of inconsistent human annotations that are included in our ground
truth dataset. Specifically, image (a) was manually labeled as having LMXN=4 (the
smaller LMX was included in the count), while image (b) was labeled as having LMXN=3
(the smaller LMX was not included in the count although it has size comparable with
the smaller LMX counted in (a)). Our models consistently identified 4 LMX objects in
both (a) and (b) images. Similarly, image (c) was incorrectly labeled manually as having
LMXN=4, while the similar image in (d) was properly labeled as having LMXN=3. Our
models correctly identified 3 LMX objects in both (c) and (d) images. Finally, images (e)
and (f) show a larger number of LMX which have variable size, but it is not very clear
which LMX were counted by the human annotator and which were not counted to get the
12 and 11 counts, respectively. Our models identified 7 LMX objects in image (e) and 10
LMX objects in image (f).
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by performing an additional manual annotation using ImageJ (similar to how557

the original ground truth annotation was done), and comparing the second558

manual annotation against the first manual annotation.559

Table 3: RMSE (µm) and rRMSE (i.e., percentage error) results for root diameter (RD),
stele diameter (SD), late metaxylem diameter (LMXD) and late metaxylem number
(LMXN) for 5 splits, together with the average over the 5 splits, and also the estimates for
the human error. The number of 50× magnification images used in these experiments is
388, while the number of 100× magnification images is 339. For each measurement, the
magnification of the images used to train the model that produced that measurement (i.e.,
50× or 100×) is also shown.

Split
RD(50×) SD(50×) LMXD(50×) LMXD(100×) LMXN(50×) LMXN (100×)

RMSE rRMSE RMSE rRMSE RMSE rRMSE RMSE rRMSE RMSE rRMSE RMSE rRMSE

Split 1 62.77 6.78 21.93 9.16 3.67 9.50 2.45 6.54 0.81 22.34 1.37 24.55
Split 2 32.18 3.94 17.54 8.32 3.77 10.53 3.13 8.18 0.71 16.55 0.45 9.17
Split 3 61.19 6.90 21.96 9.16 3.53 9.07 3.22 7.87 0.91 17.35 0.83 15.53
Split 4 33.12 3.74 20.01 9.18 3.58 11.70 3.56 10.34 1.90 30.98 0.63 11.33
Split 5 43.67 3.26 20.94 10.26 2.43 7.51 1.61 4.61 0.74 16.39 0.25 5.02

Average 46.59 4.92 20.39 9.21 3.40 9.66 2.79 7.51 1.02 20.72 0.71 13.12
Human 48.14 5.46 25.17 11.29 3.39 9.13 3.39 9.13 0.21 3.89 0.21 3.89
error

As can be seen from Table 3, the average RMSE error for RD over the560

5 splits is 46.59µm, while the average rRMSE is 4.92%. Given that root561

diameter for the images in our dataset varies between 354µm and 1352µm (see562

Table 1), and that the RMSE estimate for human error for RD is 48.14µm563

(with the corresponding rRMSE being 5.46%), these results suggest that564

the Faster R-CNN models trained on rice images can accurately learn to565

predict RD. Similarly, the average RMSE error for SD over the five splits is566

20.39µm and the corresponding rRMSE is 9.21%, while the stele diameter567
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varies between 115µm and 419µm. As for RD, the RMSE/rRMSE errors for568

the SD predictions are smaller than the estimates for human error, which569

are 25.17µm and 11.29%, respectively. As opposed to root and stele, the570

LMXD is significantly smaller, varying between 15µm and 65µm. In this571

case, the average RMSE error is 3.40µm and 2.79µm for models trained using572

50× and 100× magnification images, respectively. The rRMSE for the model573

trained on the 50× magnification images is 9.66%, and decreases to 7.51%574

for the model trained on the 100× magnification images. Compared with the575

SD estimates for human error (which are based on the 100× magnification576

images, when available, or the 50× magnification images, otherwise), the577

results of the models trained on the 50× magnification images are slightly578

worse (rRMSE is 9.66% versus 9.13%), while the results of the models trained579

on the 100× magnification images are slightly better (7.51% versus 9.13%).580

In terms of LMXN, the ground truth numbers vary between 1 and 12,581

with an average of 5 LMX objects per image. The average RMSE error for582

LMXN is 1.02 for models trained on 50× magnification images and 0.71 for583

models trained on 100× magnification images. Correspondingly, the rRMSE is584

20.70% for models trained on 50× magnification images, and down to 13.12%585

for models trained on 100× magnification images. While the Faster R-CNN586
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models trained with the 100× magnification images reduce the rRMSE error587

by approximately 7.5%, their average error is still higher than the estimate588

for human error by approximately 10%, showing that these models could be589

further improved with more training data.590

We performed error analysis to gain insights into the usefulness of these591

results in practice. Specifically, we analyzed images where our models made592

mistakes in terms of LMXN, and observed that some of those images were593

annotated in an inconsistent way by the human annotators, as can be seen in594

Figure 6, where some smaller LMX objects are sometimes counted and other595

times not counted. This observation is not surprising, as human annotators596

are prone to mistakes and inconsistencies. As opposed to that, the automated597

Faster R-CNN models produce more consistent results (i.e., consistently count598

or not count a smaller LMX). More training images are necessary to learn599

well in the presence of noise/inconsistencies. Nevertheless, our results suggest600

that the Faster R-CNN approach to root anatomy has the potential to replace601

the labor-intensive manual annotations of root cross-section images.602

3.3. Faster R-CNN Robustness to Image Variations603

We further studied the ability of the Faster R-CNN models to “adapt” to604

other types of root cross-section images. To do this we identified 14 images605
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that have been used to demonstrate RootAnalyzer and 10 images that have606

been used to demonstrate PHIV-RootCell. In addition, we also searched the607

Web for root cross-section images, and identified 15 more images from rice,608

9 images from maize, and 9 images labeled as monocot root cross-section609

images. Together, our dataset of external images consists of 57 heterogeneous610

images, which came from different species, were taken with different imaging611

technologies under different conditions, had different sizes and resolutions,612

different backgrounds, different luminosity, etc. We randomly split each613

category of images into training/validation and test subsets. Specifically, 42614

images were used for training/validation and 15 images were used for test.615

We initially used the Split 1 models (trained on 50× magnification images)616

to identify RD, SD, LMXD and LMXN traits for the external test images.617

Subsequently, we fine-tuned the Split 1 models with the external training618

images, and used the fine-tuned models to identify the RD, SD, LMXD and619

LMXN traits for the external test images. The results of these experiments620

are shown in Table 4.621

As can be seen in the table, out-of-the-box, the Faster R-CNN models622

trained on our original rice images were not very accurate on the external623

images. In fact, the original models could not even detect the root in 4 out624
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Table 4: Faster R-CNN Model Robustness to Image Variations. The training and test
internal images correspond to the training and test subsets of Split 1. The external images
are collected from the Web. We used RMSE(µm)/rRMSE(%) to compare models trained
on internal images with models trained on internal and external images in terms of their
ability to detect RD/SD/LMX objects (and derived their diameter) in a variety of images.

Experiment
RD (50%) SD (50%) LMXD (100%) LMXN (100%)

RMSE rRMSE RMSE rRMSE RMSE rRMSE RMSE rRMSE
Train on internal images
Test on external images

480.99 57.14 301.46 100.28 45.02 91.04 3.78 53.96

Train on internal/external images
Test on external images

24.85 2.95 13.67 4.55 3.85 7.79 0.58 8.25

Train on internal images
Test on internal images

62.77 6.78 21.93 9.14 3.67 9.50 0.81 22.34

Train on internal/external images
Test on internal images

59.79 6.46 20.18 8.41 2.84 7.56 0.96 17.46

of 15 images, and could not detect the stele in 7 out of 15 images, due to625

the differences between the external images and our internal images used626

for training (if an object was not detected, a 0 diameter was assigned to627

it). However, the fine-tuned models significantly improved the results of the628

original models, with rRMSE dropping from 57.14% to 2.95% for RD, from629

100.28% to 4.55% for SD, from 91.04% to 7.79% for LMXD, and from 53.96%630

to 8.25% for LMXN. We emphasize that the high errors of the original models631

are generally due to the models not being able to detect some objects at632

all (although the error for the objects detected was relatively small). These633

results show that the Faster R-CNN models fine-tuned with a small number634

of images (specifically, 42) can learn to predict the new types of images635

accurately.636
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To ensure that the performance of the fine-tuned models was not worse637

than the performance of the original models on our internal images, we also638

tested the fine-tuned models on the test fold corresponding to Split 1 (which639

was used for training). We recorded both the results of the original models and640

the results of the fine-tuned models in Table 4 (the last two rows, respectively).641

As can be seen, the results on our internal images improved slightly when642

using the fine-tuned models, as those models are more robust to variations.643

Specifically, rRMSE dropped from 6.78% to 6.46% for RD, from 9.14% to644

8.41% for SD, from 9.50% to 7.56% for LMXD, and from 22.34% to 17.46%645

for LMXN. It is also interesting to note that the results of the models on646

the external images are better than the overall results on the internal images.647

One possible reason for this may be that the images found online are generally648

clearer images, used to illustrate root anatomy, despite the fact that they are649

different from our internal images.650

3.4. Advantages and Disadvantages of the Faster R-CNN Approach651

While a direct comparison between the Faster R-CNN model (trained652

on rice root cross-section images) and existing approaches (e.g., RootScan653

and RootAnalyzer) is not possible, given that each approach is trained on654

different species, in this section, we first outline several advantages of the655
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Faster R-CNN model by comparison with existing models, and then emphasize656

several disadvantages.657

Regarding the advantages, the following points can be made:658

(1) For an existing tool, it is hard to find parameters that are universally659

good for a set of images. For example, for a given set of parameters,660

the segmentation result from the RootAnalyzer in Figure 7 shows that661

the parameters are appropriate for the left rice image (a) where the662

LMX are reasonably well identified, but not appropriate for the right663

rice image (b) where no LMX is identified. As opposed to that, our664

experiments have shown that the performance of the Faster R-CNN665

model does not vary much with hyper-parameters. Once a model is666

properly trained, it performs accurately on a variety of images.667

(2) Plant samples used for imaging are grown in different conditions, for668

example in hydroponic (water based nutrient supply) or in soil, and root669

cross-section images are collected using different techniques (e.g., hand670

sectioning or sectioning using tools like vibratomes). Plant growing or671

image acquisition differences lead to differences in image’s color, contrast672

and brightness. As opposed to other tools, the Faster R-CNN model673

is not very sensitive to the light conditions or to the structure of the674
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Figure 7: RootAnalyzer Annotations: With the same set of parameters, in the left image the
root border (red), stele border (yellow), endodermis (green) and late-metaxylem (purple)
are detected reasonably well, while in the right image, only half of the stele border is
detected. Given that the tool fails to properly detect the stele border, it also fails to detect
the late metaxylem.

root cross-section images (including the epidermis thickness, epidermis675

transparency, and distorted cross-sections), assuming the models are676

trained with a variety of root cross-section images.677

(3) Each existing tool is designed with certain image characteristics in mind,678

and may not work on images that do not exhibit those characteristics.679

For example, RootAnalyzer assumes a clear cell boundary and does680

not work for images that contain a solid boundary where the cells are681

not clearly identifiable. The Faster R-CNN models simply reflect the682

broad characteristics of the images that they are trained on, instead of683

being built with some characteristics in mind. No specific background684
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knowledge is provided, except for what is inferred automatically from685

training images.686

(4) Each tool is designed for a particular species, and incorporates back-687

ground knowledge for that particular species. As different species may688

have different root anatomy, a tool designed for a species may not work689

for other species. For example, RootAnalyzer is designed to automati-690

cally analyze maize and wheat root cross-section images, and “may work”691

for other species [48]. However, the Faster R-CNN model can be easily692

adapted to other species, assuming some annotated training images693

from those species are provided. No other background knowledge is694

required. Along the same lines, the Faster R-CNN model can be easily695

adapted to images with different resolutions, assuming those images696

include the features of interest.697

While the Faster R-CNN model presents several advantages as compared698

to existing approaches that incorporate background knowledge, it also has699

several disadvantages, as outlined below:700

• We found that smaller LMX objects are not detected by the Faster701

R-CNN models, most probably due to inconsistencies in the training702

data, as illustrated in Figure 6. To better handle noise and improve the703
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performance, more training data might be needed. Alternatively, more704

consistent ground truth should be provided.705

• While the bounding boxes which mark detected objects can produce706

accurate results, they are not always perfectly enclosing the detected707

object, as it can be seen in Figure 4. Thus, the diameter measurements708

can be sometimes slightly biased, and could potentially be improved.709

• The Faster R-CNN model can accurately detect objects and identify710

traits such as diameter for the detected objects. The diameter can711

be subsequently used to derive other traits such as the object area.712

However, better area estimates could be potentially obtained with a713

Mask R-CNN model, which has the ability to detect object boundaries714

more precisely.715

• The Faster R-CNN models can detect objects that can be marked with716

a bounding box. For other types of objects (e.g., aerenchym objects),717

Mask R-CNN models may be more appropriate.718

3.5. Faster R-CNN Approach as a Tool for Root Anatomy719

The Faster R-CNN model trained on our images can be used as a tool720

from a terminal or through a web-based application, which is also mobile721
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friendly. The web-based application is available at https://rootanatomy.org.722

This site is linked to a GitHub repository that contains the source code, the723

pre-trained Faster R-CNN models and the ground truth data. The web-based724

application is user-friendly and does not require any programming skills. It725

can be run with one of our sample images displayed on the site, or with an726

image uploaded by the user.727

3.6. Time Requirements728

In terms of time/image requirements, our experiments have shown that729

accurate Faster R-CNN models can be trained from scratch with 150 to 250730

images. The average time for labeling an image with LabelImg is approxi-731

mately 2 minutes. The average time for training a model on an EC2 p2-xlarge732

instance available from Amazon Web Services (AWS) is approximately 10733

hours, and does not require any human intervention during that time. Once734

the model is trained, the average time to annotate a new image is less than one735

second (using an EC2 p2-xlarge instance). If using our webserver (hosted on a736

local machine), the running time for annotating a new image is approximately737

9 seconds, as this includes the time to setup the virtual environment, the738

time to retrieve the input image from the server, the time to perform the739

annotation, and the time to download the image to the user’s browser. Given740
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these time requirements, assuming that a relatively large number of images741

need to be annotated for a biological study (on the order of thousands),742

the human time can be potentially reduced from days or weeks (the time743

would take to manually annotate all images) to hours (the time may take to744

manually label images for training) or minutes (the time for automatically745

annotating images with our tool).746

Furthermore, the human time for labeling images for training could be747

dramatically reduced to less than an hour, if one is fine-tuning the Faster748

R-CNN model trained on our images as opposed to training a model from749

scratch.750

4. Conclusions751

In this paper, we trained Faster R-CNN models on rice root cross-section752

images and used the trained model to perform root anatomy. The Faster753

R-CNN approach to root anatomy is fully automated and does not need754

any background knowledge, except for the implicit knowledge in images755

that the model is trained on. More specifically, we trained Faster R-CNN756

models to detect root, stele and LMX objects, and to predict bounding boxes757

for each detected object. Subsequently, the bounding boxes were used to758
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obtain anatomical properties, specifically, root diameter, stele diameter, LMX759

diameter and LMX number. The Faster R-CNN models used had VGG-16760

as a backbone, to take advantage of the extensive training of the VGG-16761

network, and were fine-tuned on root cross-section images.762

We evaluated the Faster R-CNN models in terms of their ability to763

detect the objects of interest, and also in terms of their ability to lead764

to accurate measurements for RD, SD, LMXD and LMXN. The results of765

the evaluation showed that the models produced accurate and consistent766

annotations, when trained on a relatively small number of training images,767

specifically close to 300 images. For LMXD and LMXN, we trained Faster768

R-CNN models from both 50× magnification images and 100× magnification769

images. Our results showed that the performance is slightly better for the770

100× magnification images, although this magnification is not a requirement771

for good performance. Furthermore, our results suggest that the Faster R-772

CNN models can potentially be used in practice to accelerate the speed at773

which root cross-section images are analyzed, and save significant human774

efforts and costs.775

The evaluation in this paper was done on rice images. However, an776

important observation was that the models can be easily adapted to other777
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types of root cross-section images and also to other species, by fine-tuning778

the existing Faster R-CNN models with a small number of labeled images779

from the species of interest. Similarly, additional anatomical features can be780

extracted by fine-tuning the existing models with images labeled according781

to other traits that are targeted (assuming the traits can be marked using782

bounding boxes).783

While a direct comparison with existing tools for analyzing root cross-784

section images was not possible, we identified several advantages of the785

automated Faster R-CNN approach as compared to existing approaches that786

explicitly use background knowledge. We also identified several limitations787

of the Faster R-CNN model, including the fact that they can only be used788

for objects that can be represented using bounding boxes. As opposed to the789

Faster R-CNN model, existing approaches can identify a bigger variety of790

anatomical features. Thus, we can conclude that the Faster R-CNN approach791

and the existing tools have complementary strengths, and one cannot fully792

replace another.793

As part of future work, we plan to thoroughly study domain adaptation794

approaches that allow the transfer of knowledge from the trained rice Faster795

R-CNN models to models for other plant species (or for other traits), without796
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labeling a large number of images from the other species of interest.797
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