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The proliferation of healthcare data has brought the opportunities of applying data-driven
approaches, such as machine learning methods, to assist diagnosis. Recently, many deep
learning methods have been shown with impressive successes in predicting disease sta-
tus with raw input data. However, the “black-box” nature of deep learning and the high-
reliability requirement of biomedical applications have created new challenges regarding the
existence of confounding factors. In this paper, with a brief argument that inappropriate
handling of confounding factors will lead to models’ sub-optimal performance in real-world
applications, we present an efficient method that can remove the influences of confounding
factors such as age or gender to improve the across-cohort prediction accuracy of neural
networks. One distinct advantage of our method is that it only requires minimal changes of
the baseline model’s architecture so that it can be plugged into most of the existing neu-
ral networks. We conduct experiments across CT-scan, MRA, and EEG brain wave with
convolutional neural networks and LSTM to verify the efficiency of our method.
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1. Introduction

The increasing amount of data has led healthcare to a new era where the diagnosis can be made
directly from raw data such as CT-scan or MRI with data-driven approaches. Machine learning
methods, especially deep learning methods, have achieved significant successes in biomedical
and healthcare applications, such as classifying lung nodule,1 breast lesions,2 or brain lesions3

from CT-scans, segmentation of brain regions with MRI,4,5 or emotion classification with EEG
data.6,7

However, different from how deep learning has revolutionized many other applications, the
“black-box” nature of deep learning and the high-reliability requirement of healthcare indus-
try have created new challenges.8 One of these challenges is about removing the false signals
extracted by deep learning methods due to the existence of confounding factors. Acknowledg-
ing the recognition mistakes made by neural networks9–11 and empirical evidence that deep
neural networks can learn signals from confounding factors,12 it is likely that a well-trained
deep learning model will exhibit limited predictive performance on external data sets despite
its high predictive power on lab collected data sets. The hazard of inappropriate control of
confounding factors in healthcare-related science has been discussed extensively,13–15 but these
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Fig. 1: An illustration of the empirical contribution of this paper. From left to right, 1)
lung adenocarcinoma prediction from CT-scan with CNN, where contrast material is the
confounding factor, 2) heart right ventricle segmentation from CT-scan with U-net, where
subject identification is the confounding factor, 3) students’ confusion status prediction from
EEG signals with Bidirectional LSTM, where the students’ demographic information is the
confounding factor, 4) brain tumor prediction from CT-scan/MRA with CNN, where gender
associated information is the confounding factor.

discussions are mainly in the scope of causal analyses or association studies.
In addition to a very recent result showing that confounding factors can adversely affect

the predictive performance of neural network models,16 we offer a straightforward example
as another motivation: a neural network predictive model for Hodgkin lymphoma diagnosis
is trained on a data set collected from young volunteers with high predictive performance,
but when the model is applied to the entire society, it may report more false positives than
expected. One of the reason could be that the gender ratio reverses toward adolescence in
Hodgkin lymphoma,17 and a model trained over data collected from young volunteers is very
likely to learn a different gender bias than what is expected in a data collected different
age groups. In fact, even if the gender ratio does not change along the aging process, it is
still inappropriate for a model to predict based on features related to gender because these
features are not directly associated with disease status. As another example, skin cancer18 and
colorectal cancer19 are also observed with gender bias, and it is already observed that there is a
higher false negative rate in colorectal cancer diagnosis for women19 with traditional methods.
Confounding factors do not just exist in the forms of gender. Also, it is observed that other
factors, such as age,20 or demographic information,21 will affect the model’s performance if not
handled appropriately. Considering that the generalization theory of neural networks is still
an open research topic and people are unsure of how neural networks predict, it is particularly
important to design methods to handle the influence of these confounding factors explicitly.

In this paper, inspired by previous de-confounding techniques applied to deep learning
models,12 we propose a Confounder Filtering (CF) method. A distinct advantage of our method
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is that CF directly builds upon the original confounded neural network with a minimal change
that replaces the original top layer with a layer that predicts the confounding factors. Further,
we apply our methods to a broad spectrum of related tasks, such as:

• improved lung adenocarcinoma prediction with convolutional neural networks (CNN)
by removing contrast material as confounding factors.

• improved heart right ventricle segmentation with U-net by removing subject identifi-
cations as confounding factors.

• improved students’ confusion status prediction with Bidirectional LSTM by removing
students’ demographic information as confounding factors.

• improved brain tumor prediction with CNN by removing gender associated information
as confounding factors.

We have observed consistent improvements in predictive performance by removing the con-
founding factors. These four empirical contributions have been conveniently summarized in
Figure 1, which illustrates the experiments we perform in this paper, including the predictive
task, the model we use, the data, and the confounding factors.

The remainder of this paper is organized as follows. In Section 2, we first briefly discuss
the related work of this paper, mainly in the methodological perspective. In Section 3, we
formally introduce our method, namely Confounder Filtering. Then in Section 4, we apply
our method to a wide spectrum of experiments to show the effectiveness of our method and
report relevant analysis. Finally, we conclude this paper with discussion of limitations and
future directions in Section 5.

2. Related Work

The recent boom of deep learning techniques has allowed a large number of neural network
methods developed for healthcare applications rapidly. Readers can refer to comprehensive
reviews on how the deep learning can be applied to healthcare and biomedical areas.8,22–24

In this section, we will mainly discuss the related work of our paper in the methodological
perspective.

To the best of our knowledge, there are not many deep learning works that control the
effects of confounding factors explicitly. Wang et al presented a two-phase algorithm named
Select-Additive Learning.12 In the first phase, the model uses information of confounding
factors to select which components of the representation learned by neural networks are as-
sociated with confounding factors, and then in the addition phase, the algorithm forces the
neural networks to discard these components by adding noises. Zhong et al also discussed how
confounding factors affect the predictive performance of neural networks. They presented an
augment training framework that requires little additional computational costs.25 The idea is
to add another neural classifier that predicts confounding factors while predicting original la-
bels, and gradient descent optimizes both of these classifiers. The general additional structure
is very similar to the Confounding Filtering method that we are going to present, but our
method trains the network in differently so that we can differentiate the weights associated
with confounding factors and filter them out explicitly.
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In a broader view, correcting confounding factors is related to reducing the representations
learned by neural networks through some components of the raw data that are not related to
the predictive task. In this perspective, there is a significant amount of neural network methods
that can be considered as related work, covering the fields such as domain adaptation,26

transfer learning,27,28 and domain generalization.29 Readers can refer to the survey papers
cited and the references therein if interested. Within the scope of this paper, we do not
discuss with these methods for two reasons: 1) these methods are not designed for correcting
confounding factors explicitly, therefore they may or may not be applicable in this specific
situation, 2) even if our CF method behave similar to, or slightly shy of the performance of
these methods, there is still a distinct advantage: CF is simple enough to be plugged into any
neural networks with almost no changes of the architecture.

3. Confounder Filtering (CF) Method

In this section, we will formally introduce the Confounder Filtering (CF) method. CF method’s
goal is to reduce the effects of confounders, therefore improves the generalizability of deep
neural networks. We first offer an intuitive overview of the main idea of CF, then we formalize
our method, which is followed by a discussion of the availability of the implementation.

3.1. Overview

CF method is aimed to remove the effects of confounding factors by removing the weights that
are associated with them. Therefore, the core step is to identify such weights. We first train a
model, namely G, conventionally for the predictive task. Then we replace the top model layer
with another classifier that predicts the labels of confounding factors, and we continue to train
the model. During this training phase, we keep track of the updates of weights. Finally, we
filter out all the weights that are frequently updated during this training phase out of G by
replacing these weights with zeros, leading to a new confounder-free model. This process is
illustrated in Fig. 2.

3.2. Method

We continue to formalize our method. For the convenience of discussion, we split a deep neural
network architecture into two components: representation learner component and classification
component, denoted by g(·; θ) and f(·;φ) respectively, where θ and φ stand for the correspond-
ing parameters. Therefore, the complete neural network classifier is denoted as f(g(·; θ);φ).
Given data < y,X >, the classical training process of the neural network is achieved via
solving the following equation:

θ̂, φ̂ = argmin
θ,φ

c(y, f(g(X; θ);φ)) (1)

where c(·, ·) stands for the cost function, with famous examples such as mean-squared-error
loss or cross-entropy loss.

Ideally, to effectively remove the effects of confounding factors, a method needs the labels
of the confounding factors. In other words, we need data in the form of < X, y, s >, where s
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Fig. 2: This figure shows the overview of the CF method. From left to right: 1) Train the
neural network conventionally. 2) Train the neural network to predict confounding factors
(e.g. gender information) and inspect the changes of weights each iteration to locate the ones
with largest changes. 3) Remove the located weights, then the model is ready for confounder-
free prediction.

stands for the label of the confounding factors (e.g. age, gender, physical factors of medical
devices etc.). This is also required by similar previous work.12,25 However, our method does
not require full correspondence between X, y, and s. For example, later in our experiment, we
will show that with two independently collected data sets < X1, y1 > and < X2, s2 >(i.e. we
only have correspondence between X1 and y1, and between X2 and s2, but not between y1 and
s2), we are able to correct the confounding factors between X1 and y1 with help of X2 and s2.
For simplicity, we still present our method with < X, y, s >.

After we train the neural network following the conventional manner as showed in Equa-
tion 1 with < X, y > and get θ̂ and φ̂, we continue to identify the weights associating with
confounding factors through tuning the classification component via < X, s >. Formally, we
solve the following problem:

φ̃ = argmin
φ

c(s, f(g(X; θ̂);φ))

During the optimization, our method inspects how the gradient of the cost function with
respect to < X, s > updates the previous trained weights (i.e. φ̂) with < X, y >. For the ith

value of φ (denoted as φi), we calculate the frequency of updating it during the entire training
process (denoted as πi). Formally, we have:

πi =
1

n

n∑
t=1

|∆φi,t|

where n is the number of total steps, t stands for the index of step.
Further, we construct a masking matrix/tensor M of the same shape as φ, and Mi is
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constructed according to πi. For example, common choices could be either through a Bernoulli
sampling

Mi = Ber(πi)

or a straightforward thresholding procedure:

Mi =

{
0, πi > τ

1, otherwise

In the following experiment, we choose to use the thresholding procedure with τ , whose
value lies between top 20% and top 25% of πi’s values.

Finally, we have φ̂′ = φ̂⊗M , where ⊗ stands for element-wise product, and the final trained
neural network after confounding factor associated weights filtered out is as following:

f(g(X; θ̂); φ̂′)

which is ready for confounder-free prediction.

3.3. Availability

The implementation of our method in TensorFlow is available onlinea with a simple example
that trains a CNN for Cifar10 dataset, onto which we add some image patterns as confounding
factors. Users can follow the online instruction to apply CF to their own customized neural
networks.

4. Experiments

In this section, we will verify the performance of our CF method on four different tasks by
adding CF towards the current baseline models. For each task, we will first introduce the data
set, and then introduce the methods we compare and the results. After discussions of these
four tasks, we will introduce some analyses of the model behaviors to further validate the
performance of our method.

4.1. lung adenocarcinoma prediction

4.1.1. Data

We construct a data set to test the model performance in classifying adenocarcinomas and
healthy lungs from CT-scans. Our experimental data set is a composition of three data sets:

• Data Set 1: The CT-images from healthy people are collected from ELCAP Public
Lung Image Databaseb. The CT scans have obtained in a single breath hold with a
1.25 mm slice thickness that consists of 1310 DICOM images from 25 persons.

• Data Set 2: The CT-scans of diseased lungs are collected from 69 different patients
by Grove et al .30 These scans are diagnostic contrast-enhanced CT scans, being done
at diagnosis and prior to surgery and slice thickness at variable from 3 to 6 mm.

ahttps://github.com/HaohanWang/CF
bhttp://www.via.cornell.edu/lungdb.html
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• Data Set 3: Since these two data sets are collected differently, and one of them is
a collection of contrast-enhanced CT scans. The contrast material will likely serve as
the confounding factor in prediction. To correct the confounding factor. We noticed a
processed versionc of Data Set 2, which consists of explicit labels of contrast infor-
mation. The data set contains 475 series from 69 different patients selected 50% with
contrast and 50% without contrast.

Fig. 3: Prediction accuracy of CNN in
comparison with CF-CNN

Therefore, we use the 1290 healthy images
from 20 persons in Data Set 1 and 1214 dis-
eased lung images from 61 patients in Data Set
2 as the training set, and the rest from these two
data sets as the testing set. We use the images
from Data Set 3 with corresponding contrast
labels to correct confounding factors.

4.1.2. Results

We experiment with the most popular architec-
tures of CNNs, including AlexNet,31 CifarNet,32

LeNet,33 VGG16,34 and VGG19.34 We first suf-
ficiently train these baseline models with ap-
propriate learning rate until the training accu-
racy converges, and then use our CF method
to correct the confounding factors. We test the
prediction accuracy of both vanilla CNNs and
CF-improved CNNs. Fig. 3 shows the results.
We can see that CF can consistently improve the predictive results over a variety of different
CNNs.

4.2. Segmentation on right ventricle(RV) of Heart

4.2.1. Data

The data set35 contains 243 physician-segmented CT images (216×256 pixels) from 16 patients.
Data augmentation techniques, such as random rotations, translations, zooms, shears and
elastic deformations (locally stretch and compress the image), are used to increase the number
of samples. More information regarding the data set, including how the training/testing data
sets are split, can be found onlined.

4.2.2. Results

The main baseline in this experiment is U-net, which is a convolutional network architecture for
fast and precise segmentation of images. Previous experiments show that U-net can behave well

chttps://www.kaggle.com/kmader/siim-medical-images/home
dhttps://blog.insightdatascience.com/heart-disease-diagnosis-with-deep-learning-c2d92c27e730
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even with a small dataset.36 We first test U-net following previous setting35 and interestingly,
we achieve a higher accuracy that what was reported. Vanilla U-net achieves an accuracy of
0.9477. Then, we use CF method to remove the subject identities as confounding factors and
improve the accuracy from 0.9477 to 0.9565.

4.3. Students’ confusion status prediction

4.3.1. Data

The data set37 contains EEG brainwave data from 10 college students while they watch MOOC
video clipse. The EEG data is collected rom MindSet equipment wore by college students
when watch ten video clips, five out of which are confusing ones. The students’ identities are
considered as confounding factors in this experiment.

Table 1: Comparison with average accu-
racy for 5-fold cross validation38

Methods Accuracy(%)

SVM 67.2
KNN 51.9
CNN 64.0
DBN 52.7

RNN-LSTM 69.0
BiLSTM 73.3

CF-BiLSTM 75.0

Following previous work,38 we normalize the
training data in a feature-wise fashion (i.e.,
each feature representation is normalized to
have a mean of 0 and standard deviation of 1
across each batch of samples). The batch size is
set to 20.

4.3.2. Results

We use the state-of-the-art method applied to
this data set,38 namely a Bidirectional LSTM,
as the baseline method to compare with. The
model is configured as following: the LSTM
layer has 50 units, with tanh as activation func-
tion. The output is connected to a fully con-
nected layer with a sigmoid activation. We com-
pare five-fold-cross-validated results from CF-
improved Bidirectional LSTM with results reported previously.38 The results are shown in
Table 1. As we can see, CF method helps improve the predictive performance once plugged
in.

4.4. Brain tumor prediction

4.4.1. Data

We construct another data set for the last experiment of this paper. We test our method in
predicting brain tumors with MRA scans of healthy brainf and CT-scans with tumor brain.39

The healthy data set consists of images of the brain from 100 healthy subjects, in which 20
patients were scanned per decade and each group are equally divided by sex. The tumor data

ehttps://www.kaggle.com/wanghaohan/confused-eeg/home
fhttp://insight-journal.org/midas/community/view/21
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set is collected with 120 patients. The gender information is regarded as confounding factors
in this experiment.

4.4.2. Results

Similar to the lung adenocarcinoma prediction experiment, we compare with the set of popular
CNNs. The results are shown in Fig. 4. As we can see that, CF helps improve the prediction
performance in most cases, except that in the VGG19 cases, when the model’s performance
deteriorates after CF is plugged in.

4.5. Analyses of the method behaviors

Fig. 4: Prediction accuracy of CNN in
comparison with CF-CNN

To further understand the process of CF in
identifying the weights that are associated with
the confounding factors. We inspect how the
weights are updated during the training pro-
cess and visualize which part of the input data
is related to confounding factors.

Fig. 5(a) visualizes the weights during each
epoch. The figure splits into two panels, and
the left panel is for lung adenocarcinoma predic-
tion experiment, and the right panel is for brain
tumor prediction experiment. The figure only
shows eight weights of the top layer (in a 4× 2

rectangle), and visualizes how the weights in
the layer change as the training epoch increases.
This figure visualizes 96 epochs for lung adeno-
carcinoma prediction and brain tumor predic-
tion each. The blue dots visualize the weights
when the model is trained during the first phase, and the green dots visualize the weights
when the model is trained in the second phase for prediction confounding factors. The darker
each dot is, the more frequent it gets updated in that epoch. As we can see, for the same 4× 2

layer, the frequencies of the weights get updated are different between the training during
the first phase and training during the second phase. This differences of updating frequencies
verify the primary assumption of our method, that the weights associated with the task and
the weights associated with the confounding factors are different. Therefore, we can remove
the effects of confounding factors by removing the weights associated with them.

Further, we try to investigate which parts of the input data are corresponding to the
confounding factors. With the help of Deep Feature Selection40 method, we select the pixels
of the image that are associated with the confounding factors. Fig 5 visualizes these pixels
with yellow dots. From left to right, these four images are examples for healthy lung, diseased
lung, healthy brain, tumorous brain respectively. Interestingly, we do not see clear patterns
on the images that are related to the confounding factors. This observation further verify the
importance of our CF method because these results indicate that it is barely possible to first
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exclude the information from raw images by conventional methods since these yellow dots do
not form into any clear pattern.

Fig. 5: (a) Display of trained weights and (b) the visualization of confounding factors.

5. Conclusion

In this paper, we proposed a straightforward method, named Confounder Filtering, which aims
to reduce the effects of confounders and improve the generalizability of deep neural networks,
to achieve a confounding-factor-free predictive model for healthcare applications. One distinct
advantage of our method is that we only require minimal changes to the existing network
model to adopt our method. There are still limitations of our method: despite our method
only requires a minimal changes of the network architecture, it needs a repeated training
process (the second phase training with confounding factors). Another limitation is that our
method still requires the switching of the top classification layer from a label predictor to
a confounder predictor, which may lose the one-to-one correspondence of weights at the top
layer. In the future, in the methodological perspective, we look forward to further improving
the training process of our method. On the practical side, as we have released our code,
we hope to help the community to increase the performance of other predictive models for
healthcare application by removing the confounding factors.
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