
  
 Manuscript  

 
 

            Page 1 of 21 

 

Halophilic microbial community compositional shift after 1 

a rare rainfall in the Atacama Desert 2 

 3 

 4 
Authors 5 

Gherman Uritskiy1, Samantha Getsin1, Adam Munn1, Benito Gomez-Silva2, Alfonso Davila3, Brian 6 
Glass3, James Taylor1,4* and Jocelyne DiRuggiero1* 7 

 8 

 9 

Affiliations  10 
1Department of Biology, Johns Hopkins University, Baltimore, MD, USA.  11 
2Biomedical Department, CeBiB, Universidad de Antofagasta, Antofagasta, Chile. 12 
3NASA Ames Research Center, Mountain View, CA, USA 13 
4Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA. 14 

*Correspondence to: jdiruggiero@jhu.edu and  james@taylorlab.org  15 

 16 

 17 

Competing interests: The authors declare no competing interests. 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

 31 

 32 

 33 

 34 

 35 

 36 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 14, 2019. ; https://doi.org/10.1101/442525doi: bioRxiv preprint 

https://doi.org/10.1101/442525
http://creativecommons.org/licenses/by-nc-nd/4.0/


  Page 2 of 21 

  

ABSTRACT 37 

Understanding the mechanisms underlying microbial resistance and resilience to perturbations is essential 38 
to predict the impact of climate change on Earth’s ecosystems. However, the resilience and adaptation 39 
mechanisms of microbial communities to natural perturbations remain relatively unexplored, particularly 40 
in extreme environments. The response of an extremophile community inhabiting halite (salt rocks) in the 41 
Atacama Desert to a catastrophic rainfall provided the opportunity to characterize and de-convolute the 42 
temporal response of a highly specialized community to a major disturbance. With shotgun metagenomic 43 
sequencing, we investigated the halite microbiome taxonomic composition and functional potential over 44 
a 4-year longitudinal study, uncovering the dynamics of the initial response and of the recovery of the 45 
community after a rainfall event. The observed changes can be recapitulated by two general modes of 46 
community shifts – a rapid Type 1 shift and a more gradual Type 2 adjustment. In the initial response, the 47 
community entered an unstable intermediate state after stochastic niche re-colonization, resulting in 48 
broad predicted protein adaptations to increased water availability. In contrast, during recovery, the 49 
community returned to its former functional potential by a gradual shift in abundances of the newly 50 
acquired taxa. The general characterization and proposed quantitation of these two modes of community 51 
response could potentially be applied to other ecosystems, providing a theoretical framework for 52 
prediction of taxonomic and functional flux following environmental changes. 53 

 54 

INTRODUCTION 55 

 Microbial communities are essential to the functioning and evolution of our planet and their 56 
dynamics greatly affect ecosystems processing (1). Their taxonomic and functional diversity allow 57 
microbial communities to adapt to a wide range of conditions and to respond rapidly to environmental 58 
changes (2, 3). Resilience – the ability of a community to recover from perturbations – is of particular 59 
interest, especially in the context of global climate change, as extreme weather events are becoming more 60 
frequent (1). Understanding adaptation strategies for microbial resilience is therefore critical to gain 61 
insights into microbial evolution and diversification and to better understand the dynamics of 62 
translationally relevant microbiomes following stress.   63 

Previous studies have shown that acute disturbances can push a community’s taxonomic structure 64 
toward alternative equilibrium states, while retaining the preexisting functional potential (4). Such 65 
changes have been observed in soil, aquatic, engineered, and human-associated ecosystems where 66 
experimental perturbations caused the community taxonomic composition to shift with relatively minor 67 
changes to the overall functional potential of the community (1, 2, 5, 6). Functional redundancy has been 68 
proposed as a mechanism to support functional stability following perturbation (7), however several 69 
studies have shown that major taxonomic changes can also result in important changes to the functional 70 
potential of gut communities (8, 9). 71 

Transitions between alternative taxonomic states have been postulated to occur via an intermediate 72 
dis-equilibrium state, during which a perturbation produces drastically different environmental stressors, 73 
causing the community to radically reshape in composition (1, 4). This has been observed with antibiotic 74 
treatment that can lead to mass death events. The resulting re-structuring of the gut microbiome is major 75 
with long-lasting changes even after the former conditions are re-established (6, 10). However, little is 76 
known about the response dynamics to acute perturbations and in particularly the mechanisms that push a 77 
community’s taxonomic and functional structure in and out of an intermediate state. Additionally, the 78 
response and recovery of natural communities following environmental disasters, rather than 79 
manipulative experiments, remain largely unexplored mechanistically because of the difficulty in 80 
avoiding multiple compounding environmental factors (11, 12). These gaps in the understanding of 81 
microbial community behavior limits our ability to effectively model and predict the responses of 82 
microbiomes to major perturbations, such as those resulting from climate change and natural or man-83 
made ecological disasters.  84 
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To address this knowledge gap, and to build a conceptual model for modeling microbial community 85 
responses to extreme stress, we examined the temporal dynamics in response to a disastrous climate 86 
perturbation of a unique microbial ecosystem found in the Atacama Desert, Chile. The hyper-arid core of 87 
the Atacama Desert is one of the harshest environments on Earth, with an average annual precipitation of 88 
less than 1mm and some of the highest ultraviolet (UV) and solar radiation on the planet (13, 14). Despite 89 
this, microbial communities have evolved strategies to survive and grow within various mineral 90 
substrates of the desert (15). One such community inhabits halite nodules that are natural porous salt 91 
rocks found exclusively in evaporitic salt basins of the Atacama Desert, including the Salar Grande basin 92 
(16, 17) (Fig. S1). In this community, the majority of the biomass is constituted of salt-in strategists 93 
Halobacteria (a major class of archaea) and Bacteroidetes (17, 18) – two taxonomically diverse groups of 94 
extreme halophiles that accumulate potassium ions to match the external osmotic pressure from sodium 95 
ions (17, 19, 20). This adaptation allows them to survive in extremely high-salt environment, but restricts 96 
their fitness to a narrow range of external salt concentration (21, 22). As such, these highly specialized 97 
communities are more vulnerable to change compared to habitat generalists, particularly to sudden 98 
changes in external osmotic pressure. 99 

Encased in salt rocks, halite communities have very limited nutrient input beyond atmospheric gasses, 100 
and obtain water almost exclusively from deliquescence, the ability of sodium chloride to produce 101 
concentrated brine when atmospheric relative humidity rises above 75% (23). Primary production is the 102 
major source of organic carbon in the community and is carried out by Cyanobacteria and, to a lesser 103 
extent, by a unique alga (17). Each halite nodule represents a near-closed miniature ecosystem and thus 104 
can be treated as true independent biological replicates in longitudinal studies, allowing community 105 
changes to be tracked without external factors compounding the results. Combined with their sensitivity 106 
to changing osmotic conditions and slow growth rates, this makes halite microbiomes ideal for studying 107 
temporal dynamics of microbial communities and their ability to adapt to major environmental changes. 108 

In 2015, Northern Atacama received its first major rain in 13 years (14). In particular, a weather 109 
station located 40 km North-West of our sampling site (Diego Aracena Airport SCDA) recorded 110 
significant rainfalls of 4.1mm (August 9th, 2015) and 20.1mm (November 20th, 2015) (24). The previous 111 
notable precipitation in the area occurred in 2002 (4.1mm) (25). Such rain events have been observed to 112 
be devastating to the specialized hyper-arid microbiomes of the Atacama Desert (26), particularly in 113 
communities adapted to survive in saturated salt conditions, such as those found in halite nodules. Our 114 
longitudinal study over 4 years not only captured the microbiome’s short-term adaptations to this major 115 
natural disaster, but also its recovery in the subsequent years, revealing two strikingly different 116 
community response mechanisms.  117 

 118 

  119 
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MATERIALS AND METHODS 120 

Longitudinal sampling strategy and sequencing approach 121 

To investigate the temporal dynamics of halite microbiomes, samples of halite nodules from two sites at 122 
Salar Grande (Fig. S1), a salar in the Northern part of the Atacama Desert (16), were harvested at regular 123 
intervals from 2014 to 2017, capturing the rare rain events that occurred in 2015 throughout the desert 124 
(14). The main sampling site (Site 1) was revisited four times during the study – twice before the rain 125 
(Sep 2014, Jun 2015), and twice after the rain – 3 months (Feb 2016) and 15 months (Feb 2017) after 126 
(Table S1). For each time-point, 5 biological replicates were sequenced with whole-metagenomic 127 
(WMG) shotgun sequencing to investigate the functional potential and taxonomic structure of the 128 
communities over time, yielding a total of 70,689,467 paired-end reads (150bp paired-end, insert size 129 
277±217bp). Additionally, 9-12 biological replicates were collected for ribosomal amplicons (16S rRNA 130 
gene) sequencing and were used for taxonomic profiling of the microbiomes; this yielded 535,233 paired-131 
end reads (250bp paired-end, insert size 419±7bp). A nearby site (Site 2) was also sampled after the rain 132 
at a higher temporal resolution (Feb 2016, July 2016, Oct 2016, and Feb 2017), with 5-13 replicates per 133 
time point. The 16S rRNA gene amplicons from samples at this site were also sequenced, yielding 134 
357,325 paired end 250bp reads (insert size 419±4bp). 135 

 136 

Climate data acquisition 137 

Climate history data was obtained from the Weather Underground weather reporting service by selecting 138 
“Monthly History” in the data browser (24). Weather data collected at the Diego Aracena International 139 
Airport (code SCDA) was manually downloaded for dates from the duration of the study (Jan 2014 – Mar 140 
2017). The minimum and maximum temperature and relative humidity, as well as total precipitation data 141 
from each day were plotted against time. The raw unedited data and analysis scripts can be found at 142 
https://github.com/ursky/timeline_paper. 143 

 144 

Sample collection and DNA extraction 145 

To investigate the effect of the rain on different locations, halite nodules were harvested from three sites 146 
in Salar Grande (Table 1). At each site, halite nodules were harvested within a 50m2 area. At the S1 147 
location, 14-24 replicates were collected yearly over the course of 4 years for the main analysis in this 148 
work comparing pre- and post-rain samples with both shotgun and amplicon sequencing. At the S2 149 
location, 5-13 replicates were collected from 4 time points in the year following the rain to validate the 150 
post-rain community recovery with amplicon sequencing. Finally, shotgun sequencing of samples from 151 
the S3 location were used to improve the binning results from S1, but were not used for the longitudinal 152 
analysis of this work because too few time points and replicates were collected (see Table S1 for details 153 
on sampling sites and replication). Halite nodules were collected as previously described (16) and ground 154 
into a powder, pooling material from 1-3 larger nodules until sufficient amount was collected, and stored 155 
in dark in dry conditions until DNA extraction in the lab. Genomic DNA was extracted as previously 156 
described (16, 17) with the DNAeasy PowerSoil DNA extraction kit (QIAGEN). 157 

 158 

16S rRNA gene amplicon library preparation and sequencing 159 

The communities’ 16S rRNA gene was amplified with a 2-step amplification and barcoding PCR strategy 160 
as previously described (16) by amplifying the hypervariable V3-V4 region with 515F and 926R primers 161 
(27). PCR was done with the Phusion High-Fidelity PCR kit (New England BioLabs) with 40ng of 162 
gDNA. Barcoded samples were quantified with the Qubit dsDNA HS Assay Kit (Invitrogen), pooled and 163 
sequenced on the Illumina MiSeq platform with 250 bp paired-end reads at the Johns Hopkins Genetic 164 
Resources Core Facility (GRCF). 165 
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 166 

Shotgun metagenomic library preparation 167 

Whole-genome metagenomic sequencing libraries were prepared using the KAPA HyperPlus kit 168 
(Roche). The fragmentation was performed with 5ng of input gDNA for 6 minutes to achieve size peaks 169 
of 800bp. Library amplification was done with dual-index primers for a total of 7 cycles, and the product 170 
library was cleaned 3 times with XP AMPure Beads (New England BioLabs) to remove short fragments 171 
and primers (bead ratios 1X and 0.6X, keep beads) and long fragments (0.4X bead ratio, discard beads). 172 
Other steps followed the manufacturer’s recommendations. The final barcoded libraries were quantified 173 
with Qubit dsDNA HS kit, inspected on a dsDNA HS Bioanalyzer, pooled to equal molarity, and 174 
sequenced with paired 150bp reads on the HiSeq 2000 platform at GRCF. 175 

 176 

16S rRNA gene amplicon sequence analysis 177 

The de-multiplexed and quality trimmed 16S rRNA gene amplicon reads from the MiSeq sequencer were 178 
processed with MacQIIME v1.9.1 (28). Samples from site 1 and 2 were processed separately. The reads 179 
were clustered into OTUs at a 97% similarity cutoff with the pick_open_reference_otus.py function (with 180 
--suppress_step4 option), using the SILVA 123 database (29) release as reference and USEARCH 181 
v6.1.554 (30). The OTUs were filtered with filter_otus_from_otu_table.py (-n 2 option), resulting in a 182 
total of 472 OTUs for site 1 and 329 OTUs for site 2 (Data S1). The taxonomic composition of the 183 
samples was visualized with summarize_taxa_through_plots.py (default options; Data S1). The beta 184 
diversity metrics of samples from the two sites were compared by normalizing the OTU tables with 185 
normalize_table.py (default options), and then running beta_diversity.py (-m unweighted_unifrac, 186 
weighted_unifrac). The sample dissimilarity matrices were visualized on PCoA plots with 187 
principal_coordinates.py (default parameters) and clustered heat maps with clustermap in Seaborn v0.8 188 
(31) (method=‘average’, metric=‘correlation’). Group significance was determined with 189 
compare_categories.py (--method=permanova). Relative similarity between metadata categories (harvest 190 
dates) was calculated with the make_distance_boxplots.py statistical package, which summarized the 191 
distances between pairs of sample groups (from Weighted or Unweighted Unifrac dissimilarity matrices), 192 
and then performed a two-sided Student's two-sample t-test to evaluate the significance of differences 193 
between the distances. Relative abundance of phyla and domain taxa were computed from the sum of 194 
abundances of OTUs with their respective taxonomy, and group significance calculated with a two-sided 195 
Student's two-sample t-test. Detailed scripts for the entire analysis pipeline can be found at 196 
https://github.com/ursky/timeline_paper. 197 

 198 

Processing shotgun metagenomic sequence data 199 

The de-multiplexed WMG sequencing reads were processed with the complete metaWRAP v0.8.2 200 
pipeline (32) with recommended databases on a UNIX cluster with 48 cores and 1024GB of RAM 201 
available. Read trimming and human contamination removal was done by the metaWRAP Read_qc 202 
module (default parameters) on each separate sample. The taxonomic profiling was done on the trimmed 203 
reads with the metaWRAP Kraken module (33) (default parameters, standard KRAKEN database, 2017). 204 
The reads from all samples from the 3 sampling sites were individually assembled (for pI calculations) 205 
and co-assembled (for all other analysis) with the metaWRAP Assembly module (--use-metaspades 206 
option) (34). For improved assembly and binning of low-abundance organisms, reads from all samples 207 
were co-assembled, then binned with the metaWRAP Binning module (--maxbin2 --concoct --metabat2 208 
options) while using all the available samples for differential coverage information. The resulting bins 209 
were then consolidated into a final bin set with metaWRAP’s Bin_refinement module (-c 70 -x 5 options; 210 
Data S2). The bins were then quantified by Salmon (35) with the Quant_bins module (default 211 
parameters). Contig read depth was estimated for each sample with the metaWRAP’s Quant_bins 212 
module, and the weighted contig abundance calculated by multiplying the contig’s depth by its length, 213 
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and standardizing to the total contig abundance in each replicate. Detailed scripts for the entire analysis 214 
pipeline can be found at https://github.com/ursky/timeline_paper. 215 

 216 

Functional annotation 217 

Gene prediction and functional annotation of the co-assembly was done with the JGI Integrated 218 
Microbial Genomes & Microbiomes (IMG) (36) annotation service. Gene relative abundances were taken 219 
as the average read depth of the contigs carrying those genes (estimated with Salmon (35). KEGG KO 220 
identifiers were linked to their respective functions using the KEGG BRITE pathway classification (37). 221 
KEGG pathway relative abundances were calculated as the sum of read depths of genes (estimated from 222 
the read depths of the contigs carrying them) classified to be part of the pathway. To test for changes in 223 
functional diversity, the total number of unique enzyme identifiers that had a combined coverage of 1, 2, 224 
4, 8, 16, or 32 transcripts per million was calculated. 225 

 226 

Isoelectric point (pI) analysis 227 

The average pI of gene pools were calculated from individual replicate metagenomic assemblies. Open 228 
reading frames (ORFs) were predicted by PRODIGAL (38) with the use of metaWRAP (32), and the pI 229 
of each ORF was calculate with ProPAS (39). The average pI of the entire gene pool as well as individual 230 
taxa were calculated from the average pI of proteins encoded on contigs of relevant (KRAKEN) 231 
taxonomy. 232 

 233 

Taxonomic turnover index (TTI) 234 

The turnover indexes (TTIs) of each gene function (KO ID) represent the changes in relative abundances 235 
of the organismal strains (contigs) carrying them. For this purpose, the abundance of any given gene is 236 
assumed to be equal to the average abundance (coverage) of the contig that carries it. To calculate the 237 
TTIs, all contigs carrying genes of a given KEGG KO were identified, and the change in their relative 238 
abundances was calculated between two time-points of interest. Contig abundances from individual 239 
replicates were added up for each time point, then the TTI for each KEGG KO identifier was calculated 240 
from the weighted average of the absolute values of these changes (Equation 1). Importantly, this index 241 
does not measure the net change in abundance of each function, but instead quantifies the turnover in the 242 
organisms that carry it. Indeed, it is possible for the total abundance of a gene function to be carried by a 243 
completely new set of organisms, yet remain unchanged in total abundance. The RIs from all the KEGG 244 
functions were plotted and the difference in their distributions between the time points was computed 245 
with the Kolmogorov-Smirnov 2-sample test. 246 

𝑇𝑇𝐼 =
𝑇2 − 𝑇1'

(

𝑇1 + 𝑇2'
(

 247 

Equation 1: Formula calculating one function’s taxonomic turnover index TTI, where T1 and T2 are 248 
standardized abundances of a contig carrying that function in two samples, and N is the number of 249 
contigs carrying that functions. 250 

 251 

Shotgun statistical analysis 252 

The significance in abundance changes of gene functions (i.e. KEGG KO identifiers), functional 253 
pathways (i.e. KEGG BRITE identifiers), and average pI of gene pools were estimated with a two-sided 254 
Student’s two-sample t-test. The relative similarity between groups of replicates (ordered by harvest 255 
dates) in terms of total pathway abundances and co-assembly contig abundances were computed by 256 
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comparing Pearson correlations between samples. A Pearson correlation coefficient distance matrix was 257 
computed from all replicates, and a two-sided Student’s two-sample t-test was performed to evaluate the 258 
significance of the difference between the correlation distances. Differentially abundant KEGG (level 2) 259 
pathways were selected with a one-way ANOVA test (p<0.01, FDR<1%), and hierarchically clustered 260 
with Seaborn v0.8 (31) (method=’average’, metric=’euclidean’). The significance of the differences in 261 
distributions of RIs between pairs of time points, as well as differences in pI distributions of gene pool 262 
proteins were calculated with the Kolmogorov-Smirnov 2-sample test. Significance of MAG abundance, 263 
contig abundance, and pathway abundance clustering was determined with SigClust (nsim=1000, 264 
icovest=3) (40). Due to time considerations, the contig clustering test was limited to contigs over 5kbp in 265 
length, which were then subsampled randomly to 5000 contigs prior to the test.  266 

 267 

  268 
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RESULTS 269 

High-order taxonomic composition and functional potential were temporarily perturbed after the 270 
rain 271 

 The halite communities were found to be sensitive to the acute perturbation from the rain at the end 272 
of 2015 (Fig. S2), as it induced a change in their taxonomic structure (Fig. 1). Practical considerations 273 
limited this longitudinal study to 4 samples collected of a 4-year period (2014-2017), with 2 time points 274 
before and 2 time points after the rain event. A second site was sampled 4 times after the rain, over 1 275 
year. The average climate temperature during pre-rain sample collection was notably cooler (11°C-18°C) 276 
than that of 2016 and 2017 (17°C-25°C), which could have contributed to the shift described below. 277 
However, the recovery of the community composition in the following year despite higher temperatures 278 
suggests that the shift and recovery were primarily driven by the two rain events at the end of 2015.  279 

 280 
Fig. 1. Average taxonomic composition of halite microbial communities from Site 1 before (2014, 2015) 281 
and after (2016, 2017) the rain event, estimated from whole metagenome reads with KRAKEN and 282 
visualized with KronaTools. 283 

 284 

 Weighted Unifrac analysis of the amplicon data, which compares the dissimilarity of communities 285 
based on weighted taxonomic composition, revealed that the halite communities were significantly 286 
different between time-points (PERMANOVA: p<0.001), with the taxonomic composition shifting 287 
following the rain. While the composition of the post-recovery (2017) communities was still significantly 288 
different from the pre-rain (2014 and 2015) samples (PERMANOVA: p<0.001), we found that they were 289 
more similar to each other than to the post-rain (2016) communities, suggesting a partial recovery in 290 
composition (two-sided t-tests of pairwise comparisons: p<0.0001; Fig. 2A, S3E). To investigate broad 291 
high-level taxonomic changes, we interrogated the community composition at the domain and phylum 292 
levels. At the domain level, the halite community structure shifted from an Archaea-dominated 293 
community before the rain (2014 and 2015) to a more balanced Archaea-Bacteria community 3-months 294 
after the rain (2016) (Fig. 1). The relative abundance of Archaea dropped significantly (two-sided t-tests: 295 
p<0.0001) in both 16S rRNA gene (Fig. 2B) and WMG sequencing. At the phylum level, we tracked 296 
changes in four taxa that constituted the majority of the community - Cyanobacteria, Bacteroidetes, 297 
Euryarchaeota (only represented by Halobacteria), and Chlorophyta (Data S1). While chloroplast 16S 298 
rRNA gene abundance is not necessarily indicative of the absolute abundance of algae, we know that 299 
there is only one alga in the halite community and that it contains a unique chloroplast (17), validating 300 
our use of chloroplast sequences as a proxy for relative algal abundances. All four taxa significantly 301 
shifted in abundance after the rain: Cyanobacteria, Chlorophyta and Bacteroidetes significantly increased 302 
in relative abundance following the rain, while the abundance of Halobacteria significantly decreased 303 
(Fig. 1, S3A-D; Data S1; two-sided t-tests: p<0.01). The abundances of these taxonomic groups partially 304 
recovered in the final sampling time-point (Fig. S3). To strengthen these observations of community 305 
changes, we conducted additional sampling after the rain with a higher temporal resolution at an alternate 306 
location (Site 2; Fig. S4, S5; Data S1). From 16S rRNA gene sequencing of this additional data set, we  307 
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discovered gradual changes of domain (Fig. S4A) and some of the major phyla (Fig. S5) during the year 308 
after the rain, revealing the slow nature of this recovery process. Weighted Unifrac dissimilarity 309 
clustering of these samples (Fig. S4B) confirmed significant differences between the pre- (Feb 2016) and 310 
post-rain (Feb 2017) samples (PERMANOVA: p<0.001), however the intermediate time-points (Jul 2017 311 
and Oct 2017) did not form distinct clusters and overlapped with the other samples.312 

 313 
Fig. 2. Halite microbial community taxonomic composition and functional potential over time. 314 
Taxonomic composition of halite microbiomes at each time point, shown by (A) hierarchical clustering 315 
(correlation metric) of the Weighted Unifrac dissimilarity matrix and (B) the average relative abundance 316 
of archaeal sequences, based on 16S rRNA gene amplicon sequencing. Error bars represent standard 317 
deviation; significance bars denote two tail t-test p-val<0.0001. The changes in functional potential of 318 
the halite communities is shown in (C) with a PCA of the abundance of KEGG pathways inferred from 319 
WMG co-assembly quantitation and (D) with hierarchical clustering (Euclidean metric) of differentially 320 
abundant pathways (ANOVA p<0.01, FDR=<1%), standardized to the maximum value in each row.  321 

 322 

 323 
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 The functional potential of the community, determined by annotation of KEGG pathways in the 324 
WMG co-assembly, also significantly changed after the rain, although it is important to note that these 325 
estimates were only based on gene abundances. Consistent with the taxonomy-based clustering, samples 326 
from before the rain (2014 and 2015) were distinctly separate from samples collected shortly after the 327 
rain (2016; Fig. 2C). The KEGG pathway abundances in 2014 samples were better correlated with that of 328 
2015 and 2017 samples than 2016 samples (two-sided t-tests of Pearson correlations: p<0.001). While the 329 
majority of functional pathways were present in similar abundances between replicates and time points, a 330 
number of pathways were differentially represented between time points (Fig. 2D; ANOVA test, p<0.01, 331 
FDR<1%). Of these, the majority were significantly over- or under-represented in the samples collected 332 
shortly after the rain (2016-02; SigClust 2-group significance: p<0.0001).  333 

 334 
Fig. 3. Differences in predicted protein isoelectric points and potassium uptake potential over time. 335 
Analysis of the isoelectric points (pI) of proteins encoded in replicates of WMG assemblies from samples 336 
harvested at different dates, showing (A) the overall weighted distribution of the protein pIs, and the 337 
weighted average pI of proteins encoded in (B) all contigs and (E) only Halobacteria contigs. (D) pI 338 
distribution of predicted proteins encoded in Bacteroidetes and Halobacteria contigs. Average potassium 339 
uptake potential across time point samples inferred from trk gene relative abundance and quantified in 340 
(C) all contigs and (F) only Halobacteria contigs. Error bars represent standard deviation; significance 341 
bars represent group significance based on a two tail t-test, and stars denote the p-value thresholds 342 
(*=0.01, **=0.001, ***=0.0001). 343 

 344 

 345 
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Differences in salt adaptations likely drove changes in salt-in strategists 346 

The most notable change in the functional composition of the community post-rain (2016) was an 347 
enrichment in proteins with a higher isoelectric point (pI), and a decrease in the potassium uptake 348 
potential (trk genes), both of which are hallmarks of salt-in strategists. We found that the pI of proteins 349 
encoded in community gene pool shifted significantly after the rain, favoring higher pI composition (Fig. 350 
3A; KS 2-sample test: p<0.0001). Because of the significantly different pI distributions in the predicted 351 
proteins of Halobacteria (pI=5.04) and Bacteroidetes (pI=5.80; Fig. 3D; KS2-sample test: p<0.0001), the 352 
shift in their relative abundances resulted in the average pI of the community to significantly increase 353 
after the rain (two-sided t-test: p<0.01; Fig. 3B). Consistent with salt-in adaptations, we also found that 354 
the average potassium uptake potential (estimated from trk gene abundances) significantly decreased 355 
after the rain (Fig. 3C). Interestingly, both the shift in the average protein pool pI and the change in 356 
potassium uptake potential were also observed within the highly heterogeneous Halobacteria class (Fig. 357 
3E, F).  358 

 359 

Fine-scale taxonomic compositional shift after the rain 360 

While changes in overall taxonomic composition (domain and phylum levels) of the halite communities 361 
were transient (Fig. 2A,B), we surprisingly found that their fine-scale composition (individual OTUs and 362 
contigs) did not recover. Samples collected at different dates were significantly different in terms of 363 
presence or absence of operational taxonomic units (97%OTUs), as measured by the Unweighted Unifrac 364 
dissimilarity index (PERMANOVA: p<0.001), with samples harvested shortly after the rain (2016) being 365 
more distant from pre-rain samples than they were from each other (two-sided t-test: p<0.0001). We 366 
found that the community did not return to its initial state after the perturbation, as the post-recovery 367 
samples (2017) clustered together with post-rain (2016) samples (Fig. 4A), and were less distant to 2016 368 
samples than to the pre-rain samples (two-sided t-test: p<0.0001). The altered OTU composition of the 369 
community, shown with Unweighted Unifrac clustering, contrasts with the successful recovery of the 370 
higher-order taxonomic structure, as shown with Weighted Unifrac dissimilarity clustering (Fig. 2A). 371 

 The shift in the community’s fine-scale membership was validated with WMG sequencing at the 372 
scale of individual contig abundances (Fig. S6). Based on contig read coverage across samples, we found 373 
that all post-rain samples clustered away from pre-rain samples (Fig. 4C; SigClust 2-group significance: 374 
p<0.01). Additionally, pairwise Pearson correlation comparison confirmed that contig abundances of 375 
post-rain samples were better correlated with each other than with that of pre-rain samples (two-sided t-376 
test: p<0.0001). These contig-level turnover dynamics were additionally investigated with individually 377 
recovered metagenome-assembled genomes (MAGs). 91 high-quality MAGs (>70% completion, <5% 378 
contamination; Data S2) were reconstructed with metaWRAP (32) and their abundances were tracked 379 
between samples. Pearson correlation comparison (two-sided t-test: p<0.0001) and group significance 380 
analysis (SigClust 2-group significance: p<0.01) confirmed the permanent shift of the fine-scale taxa 381 
composition after the rain (Fig. 4B). While the fine-scale composition of the community did change 382 
during the post-rain recovery between 2016 and 2017, the resulting shift was more moderate when 383 
compared to the more drastic taxonomic shift immediately following the rain. This contrasts with the 384 
near-complete recovery of the overall functional potential of the community (Fig. 2C,D). Additionally, 385 
two conditionally rare taxa (41) of Cyanobacteria that were previously reported in only a small fraction 386 
of halite nodules (18), were found in high abundances in most of the samples after the rain (Fig. S7). 387 
Surprisingly, we found no correlation between the functional potentials of the MAGs and their survival 388 
after the rain, suggesting that this shift was a stochastic process. These results indicate that while the 389 
abundances of higher-order taxonomic ranks recovered to the pre-rain state, the fine-grain taxonomy of 390 
the community has been permanently reshuffled.  391 
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 392 
Fig. 4. Fine-scale taxonomic composition shifts across time. Fine-scale compositional changes of 393 
halite communities over time shown with (A) hierarchical clustering (correlation metric) of an 394 
Unweighted Unifrac dissimilarity matrix (based on 16S rRNA gene amplicon sequencing), (B) 395 
hierarchical clustering (Euclidean metric) of standardized MAG abundances, (C) PCA of co-assembly 396 
contig abundances, and (D) weighted distributions of taxonomic turnover (TTI) of functional niches 397 
between time points. The TTI of each functional category estimates the changes in organisms that 398 
encode it (see Methods). 399 

 400 

The rain disrupted taxonomic membership of potential functional niches 401 

To investigate the basis of the functional potential shift of the halite community after the rain, we 402 
introduced a taxonomic turnover index (TTI), which quantifies the turnover of strains (estimated from 403 
contigs) contributing to each community function. To compute the TTI, genes from each KEGG 404 
Orthology identifier were catalogued and their abundances in each sample estimated from the read 405 
coverage of the contig that they were on. The absolute value average of the change in contig abundances 406 
that carry a given function between two samples represents the degree of taxonomic turnover within that 407 
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functional category (see Methods). A relatively high TTI for a given community function indicates that it 408 
is carried by different community members between two samples, but does not necessarily imply a high 409 
net change in its total abundance in the samples. Therefore, the distribution in TTIs for all functions 410 
between two time-points quantifies changes in niche representation over that time (Fig. 4D). However, 411 
because these results are based solely on functional potential prediction from gene abundances, it should 412 
be noted that our estimations of the functional landscape could be significantly altered by compensatory 413 
transcriptional and translational processed, and functional rates. The turnover following the rain (2015 to 414 
2016) was significantly higher than the baseline taxonomic shift prior to the rain (2014 to 2015; KS 2-415 
sample test: p<0.0001), indicating that the same functional pathways were being carried on a different set 416 
of contigs. However, the shift in functional niche membership during the recovery phase (2016 to 2017) 417 
was low compared to the post-rain shift, indicating that the taxonomic membership did not return to its 418 
initial state. These findings indicate that functional redundancy of community members ensured a robust 419 
functional landscape in the halite microbial communities despite changes in the fine-scale taxonomic 420 
membership. Interestingly, this shift did not notably affect the overall functional diversity of the samples, 421 
as seen from lack of a significant difference between the total number of unique gene functions found in 422 
each time-point (two-sided t-tests: p>0.05). 423 

 424 

  425 
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DISCUSSION 426 

 The response and recovery of the halite microbiome, a sensitive extremophile ecosystem, provided 427 
the opportunity to characterize the response dynamics of a natural community to changing environmental 428 
conditions. While low sampling frequency limits the temporal resolution of this study, our evidence 429 
suggests that the 2015 rainfall required major adaptations in the extreme halophiles found within the 430 
halite nodules of Salar Grande. The shift in the observed taxonomic composition following the rain was 431 
noteworthy not only in the context of this study but also when comparing with previous studies of this 432 
area in 2013 (17). The surviving community was comprised of organisms with higher average isoelectric 433 
points (pI) of their predicted proteins and lower potassium uptake potential. This was significant because 434 
high potassium uptake is a strategy used by salt-in strategists to balance high external salt concentrations, 435 
while the low pI of their proteome allows them to function in the high-potassium intracellular 436 
environment (21, 42). Our reported average isoelectric points for the two dominant salt-in strategists in 437 
this system – 5.80 (Bacteroidetes) and 5.04 (Halobacteria) – were similar to those previously documented 438 
for these taxa – 5.92 and 5.03, respectively (19). It is also well documented that acid-shifted proteomes is 439 
also an adaptation in salt-in strategists to increasing salt in the environments (43, 44). The changes in pI 440 
and potassium uptake potential we observed after the rain suggest that the rain temporarily decreased the 441 
salt concentrations within the colonized pores (23, 45), rapidly changing the osmotic conditions within. 442 
We hypothesize that this led to a mass death event of organisms poorly adapted to large osmotic changes 443 
immediately following the rain, while giving others an advantage.  444 

 The taxonomic shifts at the contig level were likely driven by neutral (i.e. random) processes (46, 445 
47) resulting from the halite re-colonization, rather than deterministic processes associated with 446 
adaptation to the rain. These stochastic dynamics, similar to those governing the initial colonization of 447 
halite nodules, resulted in high inter-nodule taxonomic diversity (18) while the functional states 448 
remained. We suggest that each nodule was stochastically colonized by random draw, from the seed 449 
bank, of competitively equivalent organisms. A seed bank is a diverse genetic reservoir consisting of a 450 
large collection of low-abundance organisms (1, 48) that might be critical for microbiome functioning, 451 
particularly following prolonged unchanging environmental conditions such as the past 13 years prior to 452 
the rain in northern Atacama. Seed banks conserve genetic and functional diversity, which in turn allows 453 
for rapid adaptation and restructuring of the microbial community following a drastic perturbation. 454 

 While our methods cannot differentiate the DNA of living organisms from relic DNA present in the 455 
halite nodule (49), it is unlikely that the observed compositional shift after the rain was an artifact of relic 456 
DNA turnover. Indeed, it is improbable that the 24.2mm of rain was sufficient to wash away relic DNA 457 
from within the nodules. Similarly, the rain itself was probably not a major contributor to the sequenced 458 
DNA since we did not detect non-halophilic organisms that are likely to be found in atmospheric 459 
microbiomes (50).  460 

 The halite microbiome was able to recover from this catastrophic event, however, the effects of the 461 
perturbation lasted remarkably long (months), in contrast with studies in other desert systems where 462 
much quicker recoveries were documented (weeks) (12). The higher temporal resolution in the time 463 
series at additional sampling Site 2 especially highlights the slow-growing nature of these extremophiles 464 
and suggests that the immediate effects of the rain on the halite community may have been even more 465 
dramatic than what we observed 3-months post-rain (17, 51). Fifteen months post-rain, the community 466 
was comprised of an entirely new set of organisms but its functional potential recovered to a pre-rain 467 
state, suggesting that the community taxonomic structure entered an alternative equilibrium state during 468 
the recovery period (4, 11). The functional consistency of a community, disconnected from taxonomic 469 
variance, has previously been documented in a variety of microbiomes and stems from functional 470 
redundancy of closely related taxa (6, 7, 52, 53). In particular, isolated microbiomes such as miniature 471 
aquatic ecosystems found in bromeliad rosettes (similarly isolated as the halite nodules) appear to 472 
converge on identical functional landscapes through mechanisms such as stoichiometric balancing 473 
between metabolic pathways, despite great inter-community taxonomic diversity (54, 55).  474 
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 475 
Fig. 5. Microbial community resilience model. Models of a microbiome adapting its functional 476 
potential in response to changing environmental conditions either with (A) a rapid shift of the 477 
community’s taxonomic composition resulting from new organisms from the seed bank displacing 478 
previously dominant taxa through niche intrusion (as seen in the initial shock from the rainfall), or with 479 
(B) a gradual adjustment in relative abundance of major taxa (as seen in the halite community 480 
recovery). On the y-axis, the vertical spread represents the abundance of a given taxon (A through H) 481 
and on the x-axis, darker colored bars show which functional category is encoded in their genomes. The 482 
seedbank (black bars) represents rare taxa in the community. The functional landscape curves at the top 483 
of each figure visualize the relative total abundance of each functional category, calculated by adding 484 
the abundances of the organisms that carry that function. Taxonomic turnover (TTI) rates were 485 
calculated for each model community in (A) and (B). 486 

 487 

 The pre-rain (2014) and recovered (2017) communities were very similar in terms of their 488 
functionally potential, while the intermediate state (2016) was very distinct (Fig. 2C, D). Therefore, the 489 
two compositional shifts that the halite microbiomes underwent following the rain – the initial response 490 
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(2015-2016) and subsequent recovery (2016-2017) – resulted in a similar magnitude of change to the 491 
overall functional potential of the community. Taxonomically however, the two shifts were 492 
fundamentally distinct, as the individual taxa membership was drastically changed during the initial 493 
response to the rain but stayed unchanged during the recovery (Fig. 4B, C).  494 

 The two different mechanisms by which the halite communities achieved almost identical net 495 
change in their functional potential as they entered and then exited their intermediate state (11, 12) 496 
offered a uniquely detailed view of microbial adaptation dynamics. These two types responses, or modes, 497 
allowed for inference of a general microbiome adaptation model, which can be potentially applied to 498 
explain and predict the taxonomic and functional flux in other ecosystems following major environmental 499 
changes (Fig. 5). The first mode (Type I; Fig. 5A) is a community shift, resulting from adaptations to an 500 
acute major perturbation. In the halite nodules, the rain presented a major stress on the pre-existing 501 
communities by temporarily lowering external osmotic conditions and exerting a strong selective 502 
pressure on the salt-in strategists. This produced gaps in existing functional niches and presented an 503 
opportunity for new organisms from the seed bank to come in through niche intrusion (56). The Type I 504 
shift is driven by neutral (random) processes characterized by changes in fine-scale (i.e. strains) 505 
taxonomic composition, which results in a high taxonomic turnover index (TTI=0.89±0.12 in the model).  506 

 The second mode (Type II; Fig. 5B) is an adjustment in existing community structure, and results 507 
from gradual changes in environmental conditions. After the rain passed and the osmotic conditions 508 
within the halite nodules returned to their initial levels, the halite community gradually returned to its 509 
previous functional potential. However, because there were no major stress events to reset the strain 510 
composition of the communities, the newly dominant strains remained relatively unchanged during the 511 
recovery period. Instead, the functional potential of the community is achieved through gradual changes 512 
in relative abundances of major taxa (Fig. 2, S4, S5), the strain composition of which remained 513 
unchanged. The taxonomic mechanism behind the Type II response is relatively deterministic, as the 514 
relative abundances of currently dominant taxa is adjusted based on fitness under the new selective 515 
pressures, preventing new organisms to take over. As a result, the strain composition of these major taxa 516 
remain largely unchanged, resulting in a low taxonomic turnover index (TTI=0.28±0.17 in the model). In 517 
the halite microbiome, the Type I and a Type II shifts occurred in succession, leading the community first 518 
through an unstable intermediate state and then into an alternate equilibrium state (4). This intermediate 519 
dis-equilibrium intermediate has been reported in a number of communities after disaster events (57) or 520 
antibiotic administration (56, 58), but until now was difficult to investigate closely in natural ecosystems 521 
because of compounding complexity and fast microbial growth rates (1, 4). We postulate that Type I and 522 
Type II shifts observed in our model microbiome are integral to analogous structural rearrangement in 523 
other systems.  524 

 It is important to note that Type I and Type II functional shifts do not necessarily follow one 525 
another. If the initial environmental conditions are not re-established after a perturbation, such as after a 526 
permanent introduction of irrigation to desiccated soils, a Type I shift will most likely be the main 527 
mechanism for community adaptation, driven by the changes in environmental conditions. Alternatively, 528 
in systems where environmental conditions shift gradually, such as aquatic microbiomes during seasonal 529 
changes, Type II shifts will likely drive the changes in the community’s functional potential. We propose 530 
that TTI measurements of such shifts may be useful in future studies to categorize such dynamics. 531 

 In conclusion, the tractable nature of our model microbiome allowed us to extrapolate general 532 
mechanisms of community response and resilience to acute shock. We demonstrated that a major 533 
disturbance can result in stochastic re-population of the community’s functional niches, forcing a 534 
microbial community structure into an unstable intermediate. During the succeeding recovery period, the 535 
newly dominant taxa adjust in abundance to reproduce the initial functional potential, allowing the 536 
community to enter an alternative equilibrium. Understanding the mechanisms behind the response and 537 
recovery components of microbial perturbation responses are vital to generally model and predict the 538 
taxonomic and functional flux of ecosystems following natural and man-made ecological disasters. Our 539 
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proposed characterization and quantitation of two types of community shifts and our two-step model for 540 
community resilience can provide a framework for future work in predictive modeling of microbial 541 
communities.  542 

 543 

 544 

  545 
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