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Abstract  33 

Diffuse low-grade and intermediate-grade gliomas (together known as lower-grade gliomas, WHO grade II and III) 34 

develop in the supporting glial cells of brain and are the most common types of primary brain tumor. Despite a 35 

better prognosis for lower-grade gliomas, 70% of patients undergo high-grade transformation within 10 years, 36 

stressing the importance of better prognosis. Long non-coding RNAs (lncRNAs) are gaining attention as potential 37 

biomarkers for cancer diagnosis and prognosis. We have developed a computational model, UVA8, for prognosis of 38 

lower-grade gliomas by combining lncRNA expression, Cox regression and L1-LASSO penalization. The model 39 

was trained on a subset of patients in TCGA. Patients in TCGA, as well as a completely independent validation set 40 

(CGGA) could be dichotomized based on their risk score, a linear combination of the level of each prognostic 41 

lncRNA weighted by its multivariable cox regression coefficient. UVA8 is an independent predictor of survival and 42 

outperforms standard epidemiological approaches and previous published lncRNA-based predictors as a survival 43 

model. Guilt-by-association studies of the lncRNAs in UVA8, all of which predict good outcome, suggest they have 44 

a role in suppressing interferon stimulated response and epithelial to mesenchymal transition. The expression levels 45 

of 8 lncRNAs can be combined to produce a prognostic tool applicable to diverse populations of glioma patients. 46 

The 8 lncRNA (UVA8) based score can identify grade II and grade III glioma patients with poor outcome and thus 47 

identify patients who should receive more aggressive therapy at the outset. 48 
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Introduction 61 

Over the past decade, high-throughput RNA-seq technology discovered many novel transcriptional units, 62 

which were otherwise missed by probe design based transcriptome profiling.  Among these transcriptional units 63 

were many long non-coding RNAs (lncRNA), which are transcripts longer than 200 bases with almost no protein-64 

coding potential or open reading frames of <50 amino acids. These lncRNAs are numerous in cells [1], are highly 65 

regulated and are more cell-type specific than protein-coding genes [2]. LncRNAs are involved in a broad spectrum 66 

of function and recent studies suggest they have specific roles in different diseases like cancer (reviewed in [3, 4]).  67 

Gliomas are the most common form of primary malignant brain tumor, which originate in the supporting 68 

glial cells in the brain, including astrocytes, oligodendrocytes and ependymal cells.  Based on WHO 2016 grading 69 

system, gliomas are classified into lower-grade and much aggressive high-grade gliomas.  Grade I is mostly benign, 70 

whereas diffuse low-grade and intermediate-grade gliomas make up the WHO grade II and III lesions. Grade IV 71 

gliomas include secondary glioblastomas (derived from lower grade gliomas) and primary glioblastoma multiforme 72 

(GBM).  Surgical resection of tumor is the most common initial treatment for gliomas followed by radiation therapy 73 

and chemotherapy, which can increase survival to 12 months [5, 6]. Molecular markers like 1p/19q co-deletion, 74 

MGMT promoter methylation and mutation in IDH1 gene are strong predictors of survival for gliomas [7]. Lower-75 

grade gliomas have a better prognosis than high-grade gliomas. Despite a better prognosis for lower-grade gliomas 76 

than the grade IV tumors, 70% of patients from the former group undergo high-grade transformation within 10 77 

years. 78 

LncRNAs are widely expressed in the central nervous system (CNS) and are involved in several pathways 79 

related to CNS development [8–13]. LncRNA BRN1B is one of the critical lncRNAs for brain development [13]. 80 

LncRNA Sox2OT plays an important role in determining neural fate [14] . Dysregulation of many lncRNAs like 81 

DGCR5, NRON, H19, DISC2 have been associated with different CNS diseases [15–18]. Previous studies have 82 

shown that specific lncRNA expression patterns are also associated with different histological subtypes and grade in 83 

gliomas [19, 20]. For example, expression of MALAT1, POU3F3 and H19 are highly correlated with glioma 84 

malignancy. More recently, lncRNAs are also found to be of prognostic significance suggesting their role in glioma 85 

malignancies and as a potential therapeutic target and biomarker [19, 20]. Li et al, 2014 revealed three molecular 86 
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subtypes of gliomas based on lncRNAs expression that has a strong correlation with patient’s survival [21]. 87 

Furthermore, analysis on previously published microarray data has explored lncRNA-based signature as a 88 

prognostic marker in gliomas ([20, 22–25]). 89 

Many studies have highlighted the power of gene expression profiles to predict tumor classification, patient 90 

outcome and tumor response to therapy. Differentially expressed genes in cancer patients versus normal individuals 91 

are often the starting set to predict prognostic signature associated with survival. This strategy suffers from false 92 

negatives and from the fact that differentially expressed genes might not be associated with differences in survival at 93 

all. Another limitation of this method is the requirement of perfect matched normal to identify differentially 94 

expressed genes. This creates a major hurdle in case of brain cancer where getting a perfect matched normal tissue is 95 

not trivial. While high-throughput technologies have facilitated the search of biomarkers through multivariate data 96 

analyses, there still remain challenges with respect to meaningful statistical and biological information. Firstly, most 97 

of the biological datasets suffer with multicollinearity: the influence of one gene on expression of other genes. 98 

Secondly, there are more features (genes) than observations (patients), which leads to overfitting by most of existing 99 

learning algorithms and results in poor performance of the model in prediction in an unseen testing dataset. Thus, a 100 

more robust machine learning approach is required to find genes as prognostic signature from a multi-dimensional 101 

multivariate gene-expression data. Regression models like lasso, ridge and elastic net are some widely used 102 

approaches to penalize the effect of multicollinearity and are well suited for constructing models when there are 103 

large numbers of features. 104 

In the present study, we develop an lncRNA-based prognostic signature in combination with Cox 105 

regression and L1-LASSO regularization to model survival of grade II and grade III glioma patients. This is the first 106 

study that combined Cox and Lasso regularization to select lncRNAs that can predict survival in glioma patients. 107 

After controlling for covariates associated with glioma survival (age, grade, IDH1 mutation status), we selected 8 108 

lncRNAs UVA8, to calculate a risk-score, which successfully divides patients into high-risk and low-risk groups in 109 

both TCGA (461 patients) and CGGA (274 patients) dataset. The risk score calculated by these 8 lncRNAs is an 110 

independent and better prognostic marker for grade II and grade III glioma patient survival. The guilt-by-association 111 

analysis of lncRNAs in UVA8 indicated their role in suppressing interferon signaling pathway and epithelial to 112 
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mesenchymal transition. Besides their use as a biomarker, these lncRNAs need to be studied in detail to determine 113 

how they affect patient outcome. 114 

Materials and Methods 115 

Patients and samples 116 

Aligned bam files and clinical information for 512 LGG patients (grade II and III) were retrieved from The Cancer 117 

Genome Atlas (TCGA) data portal https://portal.gdc.cancer.gov/. The study is performed on 461 patients for which 118 

both RNAseq and survival information were available. Most samples in TCGA are collected from patients from the 119 

US and also from other countries including Canada, Russia, and Italy.  This dataset being the largest and most 120 

updated glioma dataset is used as training dataset in the present study.  The raw sequencing data for 274 glioma 121 

patients from Chinese Glioma Genome Atlas (CGGA) as independent cohort was downloaded using accession no. 122 

SRP027383 [26]. The survival information for these Chinese patients was downloaded from CGGA 123 

http://www.cgga.org.cn/. IDH1 mutation data for all the LGG patients were retrieved from Tier 3 TCGA data 124 

accessed from the Broad GDAC Firehose; https://gdac.broadinstitute.org.  125 

RNASeq data quantification and analysis 126 

The most recent version of Gencode (GENCODE v 26) GTF file available at the time of this study was used for the 127 

gene quantification [27]. Gene abundance in FPKM was obtained for 58219 genes with 15787 genes annotated as 128 

lncRNA in GENCODE v26 using Stringtie v1.3.3 [28] . Out of 15787 lncRNAs, 1289 lncRNAs with a median 129 

expression of 1 FPKM in 512 LGG patients were finally considered for the survival model. 130 

Survival model selection process 131 

The gene-expression data for lncRNAs was Z-score transformed to avoid systematic error across different 132 

experiments. We first randomly selected 60% of TCGA patients for training set and remaining 40% of TCGA 133 

patients for testing set. Since, clinical information like age, gender, tumor grade or IDH mutation status can have an 134 

effect on survival (Figure S1), we assessed the prognostic potential of each lncRNA by multivariate Cox-regression 135 

controlling the effects from these other variables. We used FDR corrected p-value cutoff of 0.05 obtained after log-136 
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likelihood test comparing restricted (Age, Gender, tumor grade and IDH mutation status) with unrestricted (lncRNA 137 

expression, Age, Gender, tumor grade and IDH mutation status) model to identify the significant association of an 138 

lncRNA with survival. We used Cox-Proportional Hazards model based on L1 – penalized (LASSO) estimation to 139 

select the best model comprising a subset of prognostic lncRNA [29–31]. We used LASSO because it is suited for 140 

constructing models when there is a large number of correlated covariates [30].  141 

Risk Score calculation 142 

Risk score for each patient was established by including each of the selected genes weighted by their estimated 143 

regression coefficients in the multivariable Cox regression analysis as discussed in previous studies [32, 33].  144 

UVA8 Risk score = (-0.378 x expression value of RP11-266K4.14) + (-0.301 x expression value of FLJ37035)+ (-145 

0.280 x expression value of LINC01561) + (-0.368 x expression value of RP11-118K6.3) + (-0.369 x expression 146 

value of DGCR9) + (-0.299 x expression value of RP11-142A22.3) + (-0.434 x expression value of LINC00641) + 147 

(-0.543 x expression value of RP11-96H19.1). 148 

Coefficients are median cox-coefficient (after lasso selection and multivariate cox-regression) for each of the 8 149 

lncRNAs from the successful models (models which can stratify patients in testing set).  150 

Statistical Analysis 151 

R package glmnet was used to perform L1-penalized cox regression [34]  . R package survival and survminer were 152 

used for survival data analysis and generating Kaplan–Meier plots. Different survival models were compared by 153 

time-dependent concordance index (Cindex) [35]. Cindex is the most commonly used performance measure for 154 

survival models, which calculates the fraction of pairs whose predicted survival time is correctly ordered. R package 155 

pec::cindex is used to calculate time dependent cindex [36]. 156 

Results 157 

Building the lncRNA based survival model 158 

We developed an lncRNA based survival model for gliomas through the following steps (Figure 1). 159 
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1) We first randomly selected 60% (n=277) of the patients from TCGA as training set and reserved the 160 

remaining 40% (n=184) of patients as testing set. The results remain similar with 70% patients in training 161 

and 30% in testing set (Figure S3 A).  162 

2)  Cox multivariate regression was carried out in the training set on 1289 lncRNA controlling for effects from 163 

other covariates like age, gender, tumor grade and IDH1 mutation status.  164 

3) LncRNAs significantly associated with survival after likelihood ratio test (FDR p�<�0.05) were retained 165 

for selecting lncRNAs by lasso regularization.  166 

4) After lasso regularization and lncRNA selection, a risk score formula was established by including selected 167 

lncRNAs weighted by their estimated regression coefficients in the multivariable Cox regression analysis. 168 

Risk Score = ∑ ��
�

��� �  �� (where, � is coefficient and x is expression level of lncRNA i ) 169 

5) Patients were classified into high-risk and low-risk group by using the median risk score as the cutoff in the 170 

training set. The coefficient for each lncRNA and cutoff of risk score obtained from training set was used to 171 

calculate risk score and stratify patients into two groups in testing set.  172 

6) Survival differences between the low-risk and high-risk groups in the training and testing sets were 173 

assessed by the Kaplan–Meier estimate and compared using the log-rank test.  174 

Steps 1-6 were repeated 100 times to obtain up to 100 different lncRNA subsets (models). Only those models that 175 

separated patients in the testing set such that those with low-risk score had significantly better survival than those 176 

with high-risk score were considered as successful models and retained. 177 

The result obtained from one such survival model is shown in FigureS2.  In ~20% of the trials the multivariate cox-178 

regression and lasso regularization in the training set did not select any lncRNAs significantly associated with 179 

survival (NA in Figure 2A). The remaining 80% of the survival models contained different numbers of lncRNAs (x-180 

axis of Figure 2A) that significantly stratify patients into low and high-risk groups in training set (Figure 2A). 181 

Among these 80% of survival models, 86% also significantly separated patients into high-risk and low-risk in the 182 

testing set and are referred to as successful survival models. In order to create a robust survival model we sorted the 183 

lncRNAs based on the number of times an lncRNA was selected by successful survival models (Figure 2B). Out of 184 

167 total prognostic lncRNA in 69 successful survival models, we first ranked lncRNAs based on number of times a 185 

given RNA was selected by successful models and then from the top 20 selected 8 lncRNAs with the highest median 186 
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cox-coefficient (Absolute value > 0.2) and least variance in the successful models in the testing set (Absolute value 187 

< 0.10). 7 out of these 8 lncRNAs were also selected after 70%-30% split of training and testing patients (Figure 188 

S3A), after 1000 trials instead of 100 (Figure S3B) and all 8 lncRNAs were selected when we used Elastic net, 189 

instead of Lasso, for regularization and lncRNA selection (Figure S3C) suggesting the prognostic importance of 190 

these 8 lncRNAs in gliomas. For brevity, this set of 8 lncRNA as a prognostic signature of gliomas will be referred 191 

to as UVA8 in the manuscript. 192 

UVA8 is predictive of survival in training and independent validation set 193 

We assessed the predictive power of UVA8 by comparing overall survival of low and high risk patients in the entire 194 

TCGA dataset stratified based on median risk score obtained by UVA8 (risk score calculation discussed in 195 

methods). Patients in the low-risk group showed longer overall survival than the high-risk group in TCGA dataset 196 

(Figure 3A, median OS 741.5 vs 639 days; P = 3.1e-15, HR=5.8). The risk scores of the patients in the TCGA 197 

dataset range from -4 to 4 with median risk score of -0.023 (Figure 3B, top panel). Moreover, there are more 198 

patients alive in the low risk group than in the high-risk group (Figure 3B, middle panel). Interestingly, expression 199 

levels of all lncRNA in UVA8 are high in low risk patients than in high-risk patients indicating these lncRNAs as 200 

favorable prognostic genes ((Figure 3B, bottom panel)). These findings were further validated in an independent 201 

validation dataset comprising of 274 patients obtained from CGGA. Using the same median coefficient of UVA8 202 

obtained from the successful survival models in TCGA, patients showed longer overall survival in low-risk than in 203 

high-risk group in CGGA (Figure 3C, median OS = 1120.5 vs 587 days; P = 0.0017, HR=1.68). Moreover, low-risk 204 

group in CGGA has also longer progression free survival (PFS) than the high-risk group (Figure 3D, median PFS 205 

597.5 vs 411.5 days; P = 0.00088, HR=1.70). Thus, UVA8 can predict survival in both training and independent 206 

validation set. 207 

Since, 32% of patients in CGGA are in grade IV, the difference in overall survival could be due to over-208 

representation of grade IV patients in high-risk group.  However, even when only lower-grade gliomas (grade II and 209 

III) were separately examined we found significantly longer survival for low-risk versus high-risk patients (Figure 210 

S4A). UVA8 fails to cluster grade IV patients from CGGA into two distinct groups highlighting the specificity of 211 

signature for lower-grade gliomas (Figure S4B).  212 
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8-lncRNA based risk score is an independent predictor of survival 213 

Lower grade gliomas have poorer outcomes in older patients, in tumors of higher grade and tumors with wild type 214 

IDH1 status (Figure S1). Interestingly, the risk score derived from UVA8 is higher in patients older than 40 years, 215 

patients in grade III vs grade II and patients harboring wild-type IDH1 gene (Figure S5). It was therefore important 216 

to determine whether UVA8 derived risk score is an independent predictor of survival. We divided the patients into 217 

younger (Age < 40) and older (Age >= 40) groups and found that risk-score can still stratify the patients into low-218 

risk and high risk in both groups (Figure 4A). Similarly, UVA8 based risk score can still separate the patients into 219 

low and high-risk groups in grade II or grade III gliomas (Figure 4B). Although, IDH mutation status is a widely 220 

used prognostic and predictive biomarker, the UVA8 based risk score can also separate patients into two risk groups 221 

in patients presorted based on IDH mutation status (Figure 4C). UVA8 derived risk score can also stratify patients 222 

into two risk groups among male and female patients (Figure 4D).  223 

Conversely we tested whether these standard clinically used parameters, age, gender, grade and IDH mutation status, 224 

continue to independently stratify patients even after they have been presorted into two groups by UVA8 risk score 225 

(Figure S6).  In patients with high UVA8 risk score, age, grade and IDH mutations status can further separate the 226 

patients into two groups of better or worse outcome. In contrast, in patients with low UVA8 risk scores, none of the 227 

clinical factors could further stratify patients into two different survival groups with a pvalue<0.05  (Figure S6). 228 

Consistent with the previous observation (Figure S1), gender is ineffective in stratifying patients into two categories 229 

within patients with high- or low-risk score. 230 

UVA-8 is a better predictor of glioma patients’ survival 231 

We assessed the accuracy of UVA8 in prediction of survival by comparing its time-dependent area under curve 232 

(AUC) with other clinical characteristics. For each prognostic factor (e.g. UVA8, IDH status etc.) we varied the cut-233 

off so as to vary the false positive rate for five-year survival prediction from 0 to 1.  For each cut-off the 234 

corresponding true positive rate for five-year survival was calculated (Figure 5A). Comparing the Area-under the 235 

curve (AUC) for these ROC curves suggested that UVA8 performs best in predicting survival of the glioma patients 236 

compared to the other criteria. This calculation was extended to predict survival of other durations (1-16 years) and 237 

the AUC plotted for each predictor (Figure 5B). UVA8 can predict survival better for all durations, particularly at 238 
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the very early years after diagnosis when the prediction is worse for most of the predictors. Since, gender is not 239 

associated with glioma patients’ survival (Figure S1), the prediction of outcome was no better than random guess 240 

(AUC = 0.5) (Figure 5A and 5B). We employed Cox multivariable probability hazard model to identify the impact 241 

of UVA8 and different clinicopathological characteristics in estimating hazard (Figure 5C). UVA8 is most 242 

significantly correlated with the survival information (p�=�1.4e-07) and shows highest hazard ratio (HR�=�4), 243 

indicating that the risk score performs better than any other currently used approaches for prognosis. Here, the 244 

hazard ratio of UVA8 is calculated by dichotomizing the risk score of  > -0.023 (median risk score from TCGA) to 1 245 

and < -0.023 to 0 to compare the hazard rates of high risk versus low risk patients. The hazard ratio of the 8 246 

lncRNAs individually and combined as risk score is tabulated in Supplementary Table S1. The UVA8 Risk score 247 

is associated with more hazard (HR=2) than any of the individual lncRNA supporting the importance of a 248 

combinatorial signature than an individual RNA for predicting survival. The hazard ratio of UVA8 in 249 

Supplementary Table S1 is different from that in Figure 5C because in the former the hazard ratio is calculated 250 

with the risk score as a continuous variable. 251 

We then sought to compare the performance of UVA8 based survival model with published lncRNA based survival 252 

models by calculating Cindex (as discussed in Methods) for TCGA dataset for each of the models. We first 253 

calculated risk score for each patient by considering the expression level of the prognostic lncRNAs in each model 254 

weighted by their estimated regression coefficients retrieved from the respective studies (Supplementary Table 255 

S2). The patients were ordered based on their actual survival at a given time after diagnosis and based on their risk 256 

score in each model. The concordance of the two orders is measured in pairwise comparisons of the patients to 257 

calculate a single time-dependent concordance index for the model that is being evaluated.   UVA8 outperforms all 258 

existing lncRNA based survival models at different times after diagnosis (Figure 5D). As expected, prognostic 259 

signatures that were specific to GBMs (Zhang6_2013 and Zhou6_2017) show poor concordance index when used to 260 

predict survival of lower-grade glioma patients. 261 

Interferon signaling is the most enriched pathway in guilt by association with UVA8 262 

Although many lncRNAs have been identified there has been very little functional annotation of the RNAs.  We 263 

therefore applied guilt-by-association to infer functions of the lncRNAs associated with survival in UVA8. First we 264 
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interrogated whether protein-coding genes most correlated with an lncRNA in TCGA glioma cohort are themselves 265 

predictive of outcome. All the lncRNAs in UVA8 are associated with a negative cox coefficient (protective). Of the 266 

8 mRNAs most correlated positively with these 8 lncRNAs, 5 also have a negative cox-coefficient with a significant 267 

p-value. Conversely, of the 8 mRNAs most anti-correlated with these lncRNAs, 5 have a positive cox coefficient 268 

with a significant p-value (Figure 6A). This result is consistent with the expectation that the expression of these 269 

protective lncRNAs will be positively correlated with expression of protective mRNAs and negatively correlated 270 

with the expression of harmful mRNAs.  271 

GSEA analysis on protein-coding genes pre-ranked from most positively correlated to most negatively correlated to 272 

the lncRNA revealed several common pathways co-regulated with each of the 8 lncRNAs (Figure 6B). 273 

Interestingly, among the mRNAs that are negatively correlated with the lncRNAs, genes involved in immune and 274 

inflammatory response (IFNG, IFNA, allograft rejection, NFkB inflammatory response and JAK-STAT pathway) 275 

are highly enriched.  Similarly genes involved in epithelial to mesenchymal transition and cell-cycle progressions 276 

are also most enriched. These gene-set enrichments suggest a conventional tumor suppressor phenotype associated 277 

with these 8 lncRNAs.  278 

Many of the mRNAs are common in the IFNG, IFNA, allograft rejection, NFkB inflammatory response and JAK-279 

STAT gene sets. The genes up-regulated in response to IFNG are mostly negatively correlated to lncRNAs in 280 

UVA8.  To visualize this, the correlation coefficients were plotted for each lncRNA (columns) with individual 281 

mRNAs in the IFNG response pathway (rows) (Figure 6C). Out of 8, 6 lncRNAs (RP11-266K4.14, FLJ37035, 282 

RP11-118K6.3, RP11-142A22.3, LINC00641 and RP11-96H19.1) are clustered together because they are more 283 

negatively correlated with genes of interferon gamma response pathway (Figure 6C).  284 

We found both NFKB and STAT3 genes as highly negatively correlated with the expression of the protective 285 

lncRNAs in UVA8. Genes involved in epithelial to mesenchymal transition and encoding cell cycle related targets 286 

of E2F transcription factors and involved in G2/M checkpoints were also negatively correlated with UVA8 287 

expression. On the other hand, genes that are down regulated upon activation of the oncogenes KRAS are positively 288 

correlated with the expression of the protective lncRNAs of UVA8. 289 
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In order to check whether these lncRNAs can possibly act as eRNAs, we also checked the distance between 290 

lncRNAs and their correlated genes and found that these lncRNAs are correlated to several genes located in different 291 

location of genome suggesting a trans-regulation by these lncRNAs (data not shown). More experimental studies are 292 

required in future to decipher the role of these lncRNAs in regulating these genes and whether this regulation 293 

explains the effect of the lncRNAs on glioma tumor progression. 294 

Discussion 295 

Gene expression profile reflects the underlying biological processes of disease. Cox regression is a widely used 296 

approach to decipher correlation between gene expression profile and patient outcome. Previous analyses on 297 

microarray data explored protein coding genes that could predict the prognosis of gliomas, particularly focusing on 298 

high grade GBMs. LncRNAs are a class of RNA which can serve as a better prognostic marker than protein coding 299 

mRNAs because they are numerous and cell-type specific [2, 3]. Additionally, since lncRNAs do not encode 300 

protein, they are the ultimate effectors, and their expression levels more accurately predict the levels of their 301 

activity. Recent studies have detected tumor-specific lncRNAs in exosomes, apoptotic bodies and microparticles 302 

highlighting another advantage of considering lncRNAs in tumors, because they are expected to appear as fluid-303 

based markers for the diagnosis of different cancers [37–39]. Among six published lncRNA-based prognostic 304 

signatures for gliomas two are for predicting outcome in GBMs and one specifically for anaplastic gliomas. Wang et 305 

al, 2016 and Chen et al, 2017 have shown that a set of only four lncRNAs could predict survival in gliomas [23, 25]. 306 

However, the sequence of one of the lncRNAs in Chen et al., 2017, CR613436, was removed by the submitter on 307 

NCBI. Recently, the role of immune-related genes in glioma malignancies is gaining attention leading to the 308 

discovery of immune-related lncRNA-based prognostic markers for GBMs and anaplastic gliomas [40, 41]. 309 

Remarkably, there is no overlap between the prognostic lncRNAs identified in the aforementioned studies. 310 

Moreover, these studies are based on microarray data raising concerns particular to hybridization-based approaches 311 

including reliance on current knowledge of expressed genes, problems of cross-hybridization and cross-experiment 312 

comparison. Another issue is that association of lncRNAs with survival using cox-regression was sometimes carried 313 

out without controlling for any dependent variables and without penalizing for the effect of large number of 314 

variables.  315 
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In the present study, we have used an approach to screen lncRNAs from high-dimensional TCGA RNA-Seq data, 316 

which is one of the largest and the most updated data for lower-grade gliomas. After controlling for effects like age, 317 

grade, gender and IDH mutation status, we applied regularization to penalize the effect of many dependent variables 318 

and select the lncRNAs based on 100 trials. We showed the robustness of eight-lncRNA based predictor in a 319 

completely independent cohort of Chinese glioma patients. The lncRNA prognostic signature identified in the 320 

present study, UVA8, is an independent predictor of survival in TCGA glioma patients. Since UVA8 is also a better 321 

predictor than the few patient and molecular characteristics currently used for prognosis in the clinic, a simple RNA 322 

quantification will aid the physician to decide whether to adopt more aggressive therapy at the outset.  323 

The protective lncRNAs that constitute UVA8 are negatively correlated with protein coding genes involved in 324 

interferon gamma and inflammatory response highlighting the role of immune-response genes in glioma 325 

progression. Except LINC01561, all 7 lncRNAs (RP11-266K4.14, FLJ37035, RP11-118K6.3, DGCR9, RP11-326 

142A22.3, LINC00641 and RP11-96H19.1) are negatively correlated to most of the protein-coding genes which are 327 

up-regulated in response to interferon gamma/alpha, genes regulated by NF-kB in response to TNF, inflammatory 328 

response, and genes up-regulated by IL6 via STAT3.  This suggests that an active immune reaction perhaps in 329 

response to cytokines secreted from tumor and immune cells is predictive of poor outcome in gliomas.  NF-κB and 330 

JAK/STAT pathways are known to be aberrantly up-regulated in GBMs. The level of NF-κB increases as the tumors 331 

progress in astrocytic tumors [42, 43] and STAT3 is constitutively active in GBMs [44, 45]. Immune related 332 

pathways are also known to be involved in glioma tumor cell proliferation [46], survival [40], invasion [47] and 333 

chemoresistance [48]. In addition, epithelial-mesenchymal transition (associated with invasion) and active cell 334 

proliferation are suppressed if UVA8 lncRNAs are high, and this leads to better outcome, consistent with our 335 

understanding of how invasion and cell proliferation negatively impact outcome. On the other hand, genes that were 336 

positively correlated with the expression of UVA8 are enriched in genes that are down regulated by activation of the 337 

oncogene KRAS. 338 

 There are reports of the same lncRNA being predictive of outcome in the same manner in multiple tumor types.  339 

For example, DRAIC expression predicts good outcome in gliomas, melanomas, and cancers of the prostate, 340 

stomach, liver, kidney and lung [49].  In contrast, expression of LINC00152/CYTOR is predictive of poor outcome 341 

in gliomas, and cancers of the head & neck, lung, kidney, liver and pancreas (our unpublished work).  Such 342 

observations are particularly exciting because they imply that the lncRNA has an important role in tumor biology 343 
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that transcends tumor types, and these RNAs should be prioritized for cell- and molecular-biology studies to discern 344 

their function.  It will thus be very interesting to explore whether any of the lncRNAs of UVA8 will be protective in 345 

other tumor types. Finally, future studies will address whether structural variation, copy number variations and 346 

sequence polymorphism of these lncRNAs contribute to the prognostic outcome. We are excited that UVA8 was 347 

also predictive of outcome in a completely different tumor cohort (CGGA) from a patient population that is from an 348 

entirely different geographical location with attendant differences in environment and population genotypes.  It will 349 

be interesting to see if UVA8 is equally predictive of outcome in other patient populations from other parts of the 350 

world.  351 
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Figure Legend  482 

Figure 1. Flowchart showing steps involved in identification of lncRNA based prognostic signature. 483 

Figure 2.  Selection of lncRNAs with best predictors of outcome. A) Barplot showing number of lncRNAs that 484 

predicted outcome in the training set in 100 trials. The successful models were those that also predicted outcome in 485 

the testing set. NA:  no lncRNA predicted outcome in training set. B) Barplot showing number of times each of the 486 

top 20 lncRNAs (out of 167) were present in successful survival models (significant in testing set). The lower panel 487 

shows median Cox-coefficient (after lasso penalization) and the variance of the cox-coefficient for each of the above 488 

20 lncRNAs from the successful models where they were selected. The arrow points towards lncRNAs selected for 489 

UVA8. 490 

Figure 3. Survival analysis of the patients divided by the prognostic lncRNAs in two data sets. A) Patients in 491 

the entire TCGA dataset with risk score greater than median score of -0.023 show poor survival compared with 492 

patients with risk score less than median risk score. B) Upper panel: Plot showing patients sorted based on UVA8 493 

risk score with black representing patient with risk score below median and red showing those with risk score above 494 

median.  Middle panel: Number of days of survival indicated on Y-axis of patients sorted on the X-axis based on 495 

the risk scores in the top panel and alive/dead status indicated by color.  Bottom panel: z-score transformed 496 

expression value of lncRNAs in UVA8 show higher expression in patients with low risk score. C) Kaplan Meier plot 497 

of overall survival of patients in CGGA dataset with risk score greater than (red) or less than (black) median risk 498 

score of TCGA dataset. D) Kaplan-Meier plot for progression free survival in CGGA dataset showed poor survival 499 

for patients with high-risk score.  Rest as in C. 500 

Figure 4. Stratification analysis by different clinical variables. Kaplan-Meier curve analysis of overall survival in 501 

high- and low-risk groups for A) younger (Age < 40) and older patients (Age >= 40). B) Grade II and Grade III 502 

patients C) IDH mutation status as WT and mutation (MUT) patients D) Male and Female patients. Black dashed 503 

line: patients with high risk score, Gray solid line: patients with low risk score.  The tables on the right show log-504 

rank p-value, hazard ratio and 95% confidence interval for each Kaplan-Meier plot. 505 

Figure 5. Performance evaluation of the 8-lncRNA based risk score. A) Receiver operating characteristic curve 506 

for 5-year survival shows UVA8 has better Area-Under-Curve compared with other predictors. B) Area-Under-507 

Curve plotted for different durations of survival for 8-lncRNA based risk score, tumor grade, Age, IDH mutation 508 

status and gender of patients in TCGA cohort. C) Cox multivariate regression with clinical information and risk 509 
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score calculated from UVA8 for survival in TCGA cohort. D) Concordance-index showing measure of concordance 510 

of predictor with survival of patients in TCGA. 511 

Figure 6. Guilt-by-association analysis of the 8lncRNAs in UVA8. A) Correlation and Cox-regression coefficient 512 

for the mRNAs that are most correlated (positive and negatively) with each of the lncRNAs in UVA8. a, b and c 513 

defined below the table. B) List of pathways that are most enriched in protein-coding genes that are negatively 514 

correlated with the UVA8 lncRNAs. C) Heatmap showing correlation of different genes in the interferon-gamma 515 

response gene set (rows) to the lncRNAs in UVA8 (columns). 516 
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