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Abstract 26 

To characterize latent components of genetic associations, we applied truncated singular value 27 

decomposition (DeGAs) to matrices of summary statistics derived from genome-wide 28 

association analyses across 2,138 phenotypes measured in 337,199 White British individuals in 29 

the UK Biobank study. We systematically identified key components of genetic associations and 30 

the contributions of variants, genes, and phenotypes to each component. As an illustration of 31 

the utility of the approach to inform downstream experiments, we report putative loss of function 32 

variants, rs114285050 (GPR151) and rs150090666 (PDE3B), that substantially contribute to 33 

obesity-related traits, and experimentally demonstrate the role of these genes in adipocyte 34 

biology. Our approach to dissect components of genetic associations across human phenotypes 35 

will accelerate biomedical hypothesis generation by providing insights on previously unexplored 36 

latent structures. 37 

Introduction 38 

Human genetic studies have been profoundly successful at identifying regions of the genome 39 

contributing to disease risk1,2. Despite these successes, there are challenges to translating 40 

findings to clinical advances, much due to the extreme polygenicity and widespread pleiotropy 41 
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of complex traits3–5. In retrospect, this is not surprising given that most common diseases are 42 

multifactorial. However, it remains unclear exactly which factors, acting alone or in combination, 43 

contribute to disease risk and how those factors are shared across diseases. With the 44 

emergence of sequencing technologies, we are increasingly able to pinpoint alleles, possibly 45 

rare and with large effects, which may aid in therapeutic target prioritization6–13. Furthermore, 46 

large population-based biobanks, such as the UK Biobank, have aggregated data across tens of 47 

thousands of phenotypes14. Thus, an opportunity exists to characterize the phenome-wide 48 

landscape of genetic associations across the spectrum of genomic variation, from coding to 49 

non-coding, and rare to common. 50 

Singular value decomposition (SVD), a mathematical approach developed by differential 51 

geometers15, can be used to combine information from several (likely) correlated vectors to form 52 

basis vectors, which are guaranteed to be orthogonal and to explain maximum variance in the 53 

data, while preserving the linear structure that helps interpretation. In the field of human 54 

genetics, SVD is routinely employed to infer genetic population structure by calculating principal 55 

components using the genotype data of individuals16. 56 

To address the pervasive polygenicity and pleiotropy of complex traits, we propose an 57 

application of truncated SVD (TSVD), a reduced rank approximation of SVD17–19, to characterize 58 

the underlying (latent) structure of genetic associations using summary statistics computed for  59 

2,138 phenotypes measured in the UK Biobank population cohort14. We applied our novel 60 

approach, referred to as DeGAs – Decomposition of Genetic Associations – to assess 61 

associations among latent components, phenotypes, variants, and genes. We highlight its 62 

application to body mass index (BMI), myocardial infarction (MI), and gallstones, motivated by 63 

high polygenicity in anthropometric traits, global burden, and economic costs, respectively. We 64 

assess the relevance of the inferred key components through GREAT genomic region ontology 65 

enrichment analysis20 and functional experiments. Further, we experimentally demonstrate a 66 

role of newly discovered obesity-related genes in adipocyte biology. 67 

Results 68 

DeGAs method overview 69 

We generated summary statistics by performing genome-wide association studies (GWAS) of 70 

2,138 phenotypes from the UK Biobank (Fig. 1a, Supplementary Tables S1-S2). We perform 71 

variant-level quality control, which includes linkage-disequilibrium (LD) pruning and removal of 72 

variants in the MHC region, to focus on 235,907 variants for subsequent analyses. Given the 73 

immediate biological consequence, subsequent downstream implications, and medical 74 

relevance of predicted protein-truncating variants (PTVs), commonly referred to as loss-of-75 

function variants12,21,22, we perform separate analyses on two variant sets: (1) all directly-76 

genotyped variants and (2) PTVs (Supplementary Fig. S1). To eliminate unreliable estimates of 77 

genetic associations, we selected associations with p-values < 0.001, and standard error of beta 78 

value or log odds ratio of less than 0.08 and 0.2, respectively, for each dataset. The Z-scores of 79 

these associations were aggregated into a summary statistic matrix 𝑊 of size 𝑁 × 𝑀, where 𝑁 80 

and 𝑀 denote the number of phenotypes and variants, respectively. 𝑁 and 𝑀 were 2,138 and 81 
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235,907 for the “all” variant group; and 628 and 784 for the PTV group. The rows and columns 82 

of 𝑊 correspond to the GWAS summary statistics of a phenotype and the phenome-wide 83 

association study (PheWAS) of a variant, respectively. We applied TSVD to each matrix and 84 

obtained a decomposition into three matrices 𝑊 = 𝑈𝑆𝑉𝑇 (U: phenotype, S: variance, V: variant). 85 

This reduced representation of 𝐾 = 100 components altogether explained 41.9% (all) and 86 

75.5% (PTVs) of the variance in the original summary statistic matrices (Fig. 1b-c, Methods, 87 

Supplementary Fig. S2).  88 

To characterize each latent component, we defined phenotype squared cosine score, 89 

phenotype contribution score, variant contribution score, and gene contribution score. The 90 

squared cosine scores quantifies the relative importance of component for a given phenotype or 91 

gene, and are defined based on the squared distance of a component from the origin on the 92 

latent space23 (Fig. 1d, Methods). Contribution scores quantify relative importance of a 93 

phenotype, variant, or gene to a given component and is defined based on the squared distance 94 

of a phenotype, variant, or gene from the origin (Fig. 1d). We then performed biological 95 

characterization of DeGAs latent components with the genomic region enrichment analysis tool 96 

(GREAT)20 followed by functional experiments in adipocytes (Fig. 1e).   97 

Characterization of latent structures of DeGAs 98 

The PCA plots show the projection of phenotypes and variants onto DeGAs latent components. 99 

(Fig. 2a-b). For the variant plot, we overlay biplot annotation as arrows to interpret the direction 100 

of the components (Fig. 2b). Overall, we find that the first five principal components of genetic 101 

associations can be attributed to: 1) fat-free mass that accounts for the “healthy part” of body 102 

weight24 (32.7%, Supplementary Table S3) and two intronic variants in FTO (rs17817449: 103 

contribution score of 1.15% to PC1, rs7187961: 0.41%); and a genetic variant proximal to 104 

AC105393.1 (rs62106258: 0.46%);  2) whole-body fat mass (61.5%) and the same three FTO 105 

and AC105393.1 variants (rs17817449: 0.97%, rs7187961: 0.28%, rs62106258: 0.27%); 3) 106 

bioelectrical impedance measurements (38.7%), a standard method to estimate body fat 107 

percentage25,26, and genetic variants proximal to ACAN (rs3817428: 0.64%), ADAMTS3 108 

(rs11729800: 0.31%), and ADAMTS17 (rs72770234: 0.29%); 4) eye meridian measurements 109 

(80.9%), and two intronic variants in WNT7B (rs9330813: 5.73%, rs9330802: 1.14%) and a 110 

genetic variant proximal to ATXN2 (rs653178: 0.96%); and 5) bioelectrical impedance and 111 

spirometry measures (45.4% and 26.0%, respectively) and genetic variants proximal to FTO 112 

(rs17817449: 0.17%), ADAMTS3 (rs11729800: 0.11%), and PSMC5 (rs13030: 0.11%) (Fig. 2c-113 

d, Supplementary Table S4).  114 

Applying DeGAs components for BMI, MI, and gallstones 115 

To illustrate the application of DeGAs in characterizing the genetics of complex traits, we 116 

selected three phenotypes, BMI, MI, and gallstones given the large contribution of 117 

anthropometric traits on the first five components, that ischemic heart diseases is a leading 118 

global fatal and non-fatal burden, and that gallstones is a common condition with severe pain 119 

and large economic costs where polygenic risk factors are largely unknown27,28. We identified 120 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 14, 2018. ; https://doi.org/10.1101/442715doi: bioRxiv preprint 

https://doi.org/10.1101/442715
http://creativecommons.org/licenses/by/4.0/


4/53 

the top three key components for these three phenotypes with DeGAs using the “all” variants 121 

dataset.  122 

For BMI, we find that the top three components of genetic associations (PC2, PC1, and 123 

PC30) altogether explained over 69% of the genetic associations (47%, 18%, and 4%, 124 

respectively, Supplementary Fig. S3a). The top two components (PC2 and PC1) corresponded 125 

to components of body fat (PC2) and fat-free mass measures (PC1), as described above. PC30 126 

was driven by fat mass (28.7%) and fat-free mass (6.8%), but also by non-melanoma skin 127 

cancer (7.72%) – linked to BMI in epidemiological studies29 – and childhood sunburn (7.61%) 128 

(Fig. 3a, Supplementary Table S4).  129 

For MI, a complex disease influenced by multiple risk factors30, we found that the top 130 

components were attributed to genetics of lipid metabolism (PC22, high-cholesterol, statin 131 

intake, and APOC1), alcohol intake (PC100), and sleep duration and food intake (PC83, 25.2%) 132 

that collectively corresponded to 36% of the genetic associations (Fig. 3a, Supplementary Fig. 133 

S3b, S4-S5, Supplementary Table S4).  134 

Cholelithiasis is a disease involving the presence of gallstones, which are concretions 135 

that form in the biliary tract, usually in the gallbladder31. We found that the top components 136 

contributing to gallstones corresponded to associations with fresh fruit (PC72) and water intake 137 

(PC64), as well as bioelectrical impedance of whole body (PC67) corresponding to 51% of 138 

genetic associations altogether (Fig. 3a, Supplementary Fig. S3c, S4, S6, Supplementary Table 139 

S4). 140 

Biological characterization of DeGAs components 141 

To provide biological characterization of the key components, we applied the genomic region 142 

enrichment analysis tool (GREAT)20 to dissect the biological relevance of the identified 143 

components with the both coding and non-coding variants. Given the coverage of the manually 144 

curated knowledge of mammalian phenotypes, we focused on the mouse genome informatics 145 

(MGI) phenotype ontology32. For each key component, we applied GREAT and found an 146 

enrichment for the mouse phenotypes consistent with the phenotypic description of our 147 

diseases of interest20. The top component for BMI, identified as the body fat measures 148 

component (PC2), showed enrichment of several anthropometric terms including abnormally 149 

short feet (brachypodia) (MP:0002772, binomial fold = 9.04, p = 1.3 × 10−23), increased birth 150 

weight (MP:0009673, fold = 6.21, p = 1.3 × 10−11), and increased body length (MP:0001257, 151 

binomial fold = 3.01, p = 1.3 × 10−36) (Fig. 3B, Supplementary Table S5). For MI, we found 152 

enrichment of cardiac terms, such as artery occlusion (PC22, MP:0006134, fold = 15.86, p = 153 

1.14 × 10−25) and aortitis (PC22, MP:0010139, aorta inflammation, fold = 9.36, p = 154 

3.41 × 10−31) (Supplementary Fig. 7, Supplementary Table S6). Similarly, for gallstones, the 155 

top enrichment was for abnormal circulating phytosterol level (PC72, MP:0010075, fold = 11.54, 156 

p = 5.51 × 10−11), which is known to be involved in gallstone development33 (Supplementary 157 

Fig. 8, Supplementary Table S7).  158 
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Protein truncating variants 159 

Predicted PTVs are a special class of genetic variants with possibly strong effects on gene 160 

function9,12,21,34. More importantly, strong effect PTV-trait associations can uncover promising 161 

drug targets, especially when the direction of effect is consistent with protection of human 162 

disease. Given the challenges with interpreting genetic associations across thousands of 163 

possibly correlated phenotypes, we applied DeGAs to PTV gene-phenotype associations. We 164 

identified PC1 and PC3 as the top two key components for BMI, with 28% and 12% of 165 

phenotype squared contribution scores, respectively (Supplementary Fig. S9). The major drivers 166 

of PC1 were weight-related measurements, including left and right leg fat-free mass (5.0% and 167 

3.7% of phenotype contribution score for PC1, respectively), left and right leg predicted mass 168 

(4.9% each), weight (4.6%), and basal metabolic rate (4.6%), whereas the drivers of PC3 169 

included standing height (13.7%), sitting height (8.1%), and high reticulocyte percentage (6.4%) 170 

(Fig. 4a, Supplementary Table S4). Top contributing PTVs to PC1 included variants in PDE3B 171 

(19.0%), GPR151 (12.3%), and ABTB1 (8.5%), whereas PC3 was driven by PTVs on TMEM91 172 

(8.6%), EML2-AS1 (6.7%), and KIAA0586 (6.0%) (Fig. 4b, Supplementary Table S4).  173 

Based on stop-gain variants in GPR151 (rs114285050) and PDE3B (rs150090666) 174 

being key contributors to the top two components of genetic associations for PTVs and BMI 175 

(Fig. 4c), we proceeded to detailed phenome-wide association analysis (PheWAS) assessing 176 

associations of these PTVs with anthropometric phenotypes. PheWAS analysis of these 177 

variants confirmed strong associations with obesity-related phenotypes including waist 178 

circumference (GPR151, marginal association beta = -0.065, p = 2.5 × 10−8), whole-body fat 179 

mass (GPR151, beta = -0.069, p = 1.4 × 10−7), trunk fat mass (GPR151, beta = -0.071, p = 180 

1.5 × 10−7), hip circumference (PDE3B, beta = 0.248, p = 1.8 × 10−11), right leg fat-free mass 181 

(PDE3B, beta = 0.129, p = 4.2 × 10−8) and body weight (PDE3B, beta = 0.177, p = 4.6 × 10−8) 182 

(Fig. 4d, Supplementary Fig. S10, Supplementary Table S8-9). Among 337,199 White British 183 

individuals, we found 7,560 heterozygous and 36 homozygous carriers of the GPR151 variant 184 

and 947 heterozygous carriers of PDE3B variants. To assess the effect of the PTVs on BMI, a 185 

commonly-used measure of obesity, we performed univariate linear regression analysis with 186 

age, sex, and the first four genetic PCs as covariates and found that heterozygous and carriers 187 

of GPR151 PTVs showed 0.324 kg/m2 lower BMI than the average UK Biobank participant (p = 188 

4.13 × 10−7). We did not find evidence of association with homozygous carriers (N = 28; p = 189 

0.665), presumably due to lack of power (Supplementary Fig. S11). Heterozygous carriers of 190 

PDE3B PTVs showed 0.647 kg/m2 higher BMI (p = 2.09 × 10−4) than the average UK Biobank 191 

participant (Supplementary Fig. S12). 192 

Functional experiments for candidate genes in cellular models of 193 

adipocytes 194 

We sought to illustrate the potential application of DeGAs in prioritizing therapeutic targets using 195 

functional follow-up experiments. Several of our most interesting findings were observed for 196 

obesity-related traits, including the top two candidate genes (PDE3B and GPR151) contributing 197 

to PC1 – the leading component associated with obesity. For this reason, we chose to study 198 

these two genes in relation to adipocyte biology. Specifically, the expression and function of 199 
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PDE3B and GPR151 were evaluated in mouse 3T3-L1 and human Simpson-Golabi-Behmel 200 

Syndrome (SGBS) cells, two well-established preadipocyte models used for studying adipocyte 201 

differentiation (i.e. adipogenesis) and function35,36. 202 

First, we demonstrated that both genes were expressed in preadipocytes, but showed 203 

different expression patterns when cells were transforming into mature adipocytes: PDE3B 204 

increased dramatically during both mouse and human adipogenesis, while GPR151 maintained 205 

a low expression level throughout the differentiation (Fig. 5a-b). Next, to explore the causal 206 

relationships between gene expression and adipogenesis, we introduced short interfering RNA 207 

(siRNA) against Pde3b and Gpr151, respectively, into 3T3-L1 preadipocytes and monitored the 208 

impact of gene knockdown on conversion of preadipocytes to adipocytes. Knockdown of 209 

Gpr151 (Fig. 5c) drastically impaired adipocyte differentiation, as evidenced by lowered 210 

expression of adipogenesis markers (Pparg, Cebpa and Fabp4) (Fig. 5d), as well as the 211 

reduced formation of lipid-containing adipocytes (Fig. 5e-f). Further, to test the functional 212 

capacity of the fat cells lacking Gpr151, we performed a lipolysis assay - an essential metabolic 213 

pathway of adipocytes and thus, a key indicator of adipocyte function - on mature adipocytes 214 

derived from preadipocytes transfected with either scrambled siRNA (scRNA) or siGpr151. Not 215 

surprisingly, Gpr151-deficient lipid-poor adipocytes showed dramatically lower lipolysis, along 216 

with impaired capability of responding to isoproterenol (ISO), a β-adrenergic stimulus of lipolysis 217 

(Fig. 5g). These data suggest that GPR151 knockdown in adipocyte progenitor cells may block 218 

their conversion into mature adipocytes; thus, preventing the expansion of adipose tissue. 219 

These results are directionally consistent with our DeGAs and univariate regression analysis 220 

showing that GPR151 PTVs are associated with lower obesity and fat mass, especially central 221 

obesity (e.g. waist circumference and trunk fat mass) (Fig. 4d). 222 

To further analyze the functional impact of GPR151 in adipocytes, we generated an 223 

overexpression model of GPR151 by infecting 3T3-L1 preadipocytes with virus expressing Flag-224 

tagged human GPR151 driven by either EF1 or aP2 promotor (Supplementary Fig. S13a). 225 

Overexpression of GPR151 by both constructs were confirmed at the gene and protein levels 226 

(Supplementary Fig. S13b-d). However, despite the substantial effect of Gpr151 knockdown on 227 

adipogenesis (Fig. 5), overexpression of GPR151 in preadipocytes failed to influence adipocyte 228 

differentiation significantly, as shown by similar levels of adipogenic markers compared to the 229 

non-infected controls (Supplementary Fig. S13e-f). To eliminate the potential masking effects of 230 

any unperturbed cells in the partially infected cell population, we specifically selected GPR151-231 

overexpressing cells by staining Flag-GPR151 positive cells with APC-conjugated flag antibody 232 

(Supplementary Fig. S13g-h) and sorted APC+ and APC- cells from the differentiating adipocyte 233 

cultures. In both EF1- and aP2-driven GPR151 overexpression models, GPR151 mRNA levels 234 

were enriched in APC+ cells compared to APC- cells. However, APC+ cells expressed genes 235 

characteristics of differentiating adipocytes in a similar level to that of APC- cells 236 

(Supplementary Fig. S13i-j). These data conclude that overexpression of GPR151 in 237 

preadipocytes cannot further enhance adipogenesis, suggesting that the endogenous level of 238 

GPR151 in preadipocytes may be sufficient to maintain the normal differentiation potential of 239 

preadipocytes. Although GPR151 is predominantly expressed in the brain, especially in 240 

hypothalamic neurons that control appetite and energy expenditure37, we identified for the first 241 

time that the GPR151 protein is present in both subcutaneous and visceral adipose tissue from 242 

mice (SAT and VAT), albeit in a very low level (Supplementary Fig. S13k). Together with our 243 
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gain- and loss-of-function studies of GPR151 in preadipocyte models, we infer that the 244 

regulatory role of GPR151 in body weight may involve both central and peripheral effects. The 245 

minimal but indispensable presence of GPR151 in adipose progenitor cells in generating lipid-246 

rich adipocytes seems to represent an important mechanism by which GPR151 promotes 247 

obesity. 248 

In contrast to GPR151, knockdown of Pde3b in 3T3-L1 preadipocytes (Supplementary 249 

Fig. S14a) showed no significant influence on adipogenesis and lipolysis (under either basal or 250 

β-adrenergic stimulated conditions), as compared to scRNA-transfected controls 251 

(Supplementary Fig. S14b-e). Since PDE3B is expressed primarily in differentiated adipocytes 252 

(Fig. 5a-b), future research efforts should be concentrated on studying the metabolic role of 253 

PDE3B in mature adipocytes. As an essential enzyme that hydrolyzes both cAMP and cGMP, 254 

PDE3B is known to be highly expressed in tissues that are important in regulating energy 255 

homeostasis, including adipose tissue38. Pde3b whole-body knockout in mice reduces the 256 

visceral fat mass39 and confers cardioprotective effects40. There is a growing body of evidence 257 

that cardiometabolic health is linked to improved body fat distribution (i.e. lower visceral fat, 258 

higher subcutaneous fat) in a consistent direction41. Our PheWAS analysis suggests that 259 

PDE3B PTVs have the strongest association with subcutaneous and lower-body adiposity (e.g. 260 

hip and leg fat mass) (Supplementary Fig. S10). Therefore, understanding the fat depot-specific 261 

metabolic effects of PDE3B may help uncover the mechanism underlying the positive 262 

relationship of PDE3B PTVs with peripheral fat accumulation and favorable metabolic profiles.    263 

Discussion 264 

We developed DeGAs, an application of TSVD, to decompose genome-and phenome-wide 265 

summary statistic matrix from association studies of thousands of phenotypes for systematic 266 

characterization of latent components of genetic associations. Applying DeGAs, we identified 267 

key latent components characterized with disease outcomes, risk factors, comorbidity 268 

structures, and environmental factors, with corresponding sets of genes and variants, providing 269 

insights on their context specific functions. With additional biological characterization of latent 270 

components using GREAT, we find enrichment of relevant phenotypes in mouse phenotype 271 

ontology. This replication across species highlights the ability of DeGAs to capture functionally 272 

relevant sets of both coding and non-coding variants in each component. 273 

Given that DeGAs is applied on summary statistics and does not require individual level 274 

data, there is substantial potential to dissect genetic components of the human phenome when 275 

applied to data from population-based biobanks around the globe14,42–45. As a proof of concept, 276 

we report novel potential therapeutic targets against obesity or its complications based on 277 

combination of quantitative results from DeGAs, phenome-wide analyses in the UK Biobank, 278 

and functional studies in adipocytes. 279 

Taken together, we highlight the directional concordance of our experimental data with 280 

the quantitative results from DeGAs and PTV-phenotype associations: GPR151 inhibition may 281 

reduce total body and central fat, while deletion of PDE3B may favor subcutaneous, rather than 282 

visceral, fat deposition; both are expected to have beneficial effects on cardiometabolic health. 283 

Although these two genes were recently reported to be associated with obesity in another 284 

recent study based on the UK Biobank46, we are the first to experimentally identify GPR151 as a 285 
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promising therapeutic target to treat obesity, partly due to its requisite role in regulating 286 

adipogenesis. We also suggest PDE3B as a potential target of adipocyte-directed therapy. In 287 

this study, we focused on evaluating the functional effects of these genes on adipocyte function 288 

and development. We do not exclude the contribution nor the importance of other tissues or 289 

mechanisms underlying body weight changes. Indeed, some lines of evidence support 290 

additional effects of GPR151 on obesity via the central nervous system – possibly on appetite 291 

regulation37.  292 

The resource made available with this study, including the DeGAs app, an interactive 293 

web application in the Global Biobank Engine47, provides a starting point to investigate genetic 294 

components, their functional relevance, and new therapeutic targets. These results highlight the 295 

benefit of comprehensive phenotyping on a population and suggest that systematic 296 

characterization and analysis of genetic associations across the human phenome will be an 297 

important part of efforts to understand biology and develop novel therapeutic approaches.   298 

Methods 299 

Study population 300 

The UK Biobank is a population-based cohort study collected from multiple sites across the 301 

United Kingdom. Information on genotyping and quality control has previously been described14. 302 

In brief, study participants were genotyped using two similar arrays (Applied Biosystems UK 303 

BiLEVE Axiom Array (807,411 markers) and the UK Biobank Axiom Array (825,927 markers)), 304 

which were designed for the UK Biobank study. The initial quality control was performed by the 305 

UK Biobank analysis team and designed to accommodate the large-scale dataset of ethnically 306 

diverse participants, genotyped in many batches, using two similar novel arrays14. 307 

Genotype data preparation 308 

We used genotype data from the UK Biobank dataset release version 214 and the hg19 human 309 

genome reference for all analyses in the study. To minimize the variabilities due to population 310 

structure in our dataset, we restricted our analyses to include 337,199 White British individuals 311 

based on the following five criteria reported by the UK Biobank in the file “ukb_sqc_v2.txt”: 312 

1. self- reported white British ancestry (“in_white_British_ancestry_subset” column) 313 

2. used to compute principal components (“used_in_pca_calculation” column) 314 

3. not marked as outliers for heterozygosity and missing rates (“het_missing_outliers” 315 

column) 316 

4. do not show putative sex chromosome aneuploidy (“putative_sex_chromo- 317 

some_aneuploidy” column) 318 

5. have at most 10 putative third-degree relatives (“excess_relatives” column). 319 

 320 

We annotated variants using the VEP LOFTEE plugin (https://github.com/konradjk/loftee) and 321 

variant quality control by comparing allele frequencies in the UK Biobank and gnomAD 322 

(gnomad.exomes.r2.0.1.sites.vcf.gz) as previously described12. 323 
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We focused on variants outside of major histocompatibility complex (MHC) region 324 

(chr6:25477797-36448354) and performed LD pruning using PLINK with "--indep 50 5 2". 325 

Furthermore, we selected variants according to the following rules: 326 

● Missingness of the variant is less than 1%. 327 

● Minor-allele frequency is greater than 0.01%. 328 

● The variant is in the LD-pruned set. 329 

● Hardy-Weinberg disequilibrium test p-value is greater than 1.0 × 10−7. 330 

● Manual cluster plot inspection. We investigated cluster plots for subset of our variants 331 

and removed 11 variants that has unreliable genotype calls as previously described12. 332 

● Passed the comparison of minor allele frequency with gnomAD dataset as previously 333 

described12.  334 

These variant filters are summarized in Supplementary Fig. S1. 335 

Phenotype data preparation 336 

We organized 2,138 phenotypes from the UK Biobank in 11 distinct groups (Supplementary 337 

Table 1). We included phenotypes with at least 100 cases for binary phenotypes and 100 338 

individuals with non-missing values for quantitative phenotypes. For disease outcome 339 

phenotypes, cancer, and family history, we used the same definitions as previously described12. 340 

We used specific data fields and data category from the UK Biobank to define the phenotypes in 341 

the following categories as well as 19 and 42 additional miscellaneous binary and quantitative 342 

phenotypes: medication, imaging, physical measurements, assays, and binary and quantitative 343 

questionnaire (Supplementary Table 1-2).  344 

Some phenotype information from the UK Biobank contains three instances, each of 345 

which corresponds to (1) the initial assessment visit (2006-2010), (2) first repeat assessment 346 

visit (2012-2013), and (3) imaging visit (2014-). For binary phenotype, we defined "case" if the 347 

participants are classified as case in at least one of their visits and "control" otherwise. For 348 

quantitative phenotype, we took a median of non-NA values. In total, we defined 1,196 binary 349 

phenotypes and 943 quantitative phenotypes. 350 

Genome-wide association analyses of 2,138 phenotypes 351 

Association analyses for single variants were applied to the 2,138 phenotypes separately. For 352 

binary phenotypes, we performed Firth-fallback logistic regression using PLINK v2.00a (17 July 353 

2017) as previously described12,48. For quantitative phenotypes, we applied generalized linear 354 

model association analysis with PLINK v2.00a (20 Sep. 2017). We applied quantile 355 

normalization for phenotype (--pheno-quantile-normalize option), where we fit a linear model 356 

with covariates and transform the phenotypes to normal distribution 𝑁(0, 1) while preserving the 357 

original rank. We used the following covariates in our analysis: age, sex, types of genotyping 358 

array, and the first four genotype principal components computed from the UK Biobank. 359 
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Summary statistic matrix construction and variant filters 360 

We constructed two Z-score summary statistic matrices. Each element of the matrix 361 

corresponds to summary statistic for a particular pair of a phenotype and a variant. We imposed 362 

different sets of variant filters.   363 

● Variant quality control filter: Our quality control filter described in the previous section on 364 

genotype data preparation. 365 

● Non-MHC variant filter: All variants outside of major histocompatibility complex region. 366 

With this filter, variants in chr6:25477797-36448354 were excluded from the summary 367 

statistic matrix. 368 

● PTVs-only: With this filter, we subset to include only the variants having the VEP 369 

LOFTEE predicted consequence of: stop gain, frameshift, splice acceptor, or splice 370 

donor. 371 

By combining these filters, we defined the following sets of variants 372 

● All-non-MHC: This is a combination of our variant QC filter and non-MHC filter. 373 

● PTVs-non-MHC: This is a combination of our variant QC filter, non-MHC filter, and PTVs 374 

filter. 375 

In addition to phenotype quality control and variant filters, we introduced value-based filters 376 

based on statistical significance to construct summary statistic matrices only with confident 377 

values. We applied the following criteria for the value filter: 378 

● P-value of marginal association is less than 0.001. 379 

● Standard error of beta value or log odds ratio is less than 0.08 for quantitative 380 

phenotypes and 0.2 for binary phenotypes. 381 

With these filters, we obtained the following two matrices: 382 

● All-non-MHC dataset that contains 2,138 phenotypes and 235,907 variants. We label 383 

this dataset as “all” dataset. 384 

● “PTVs-non-MHC” dataset that contains 628 phenotypes and 784 variants. We label this 385 

dataset as “PTVs only” dataset. This contains a fewer number of phenotypes because 386 

not all the phenotypes have statistically significant associations with PTVs. 387 

The effects of variant filters are summarized in Fig. S1. Finally, we transformed the summary 388 

statistics to Z-scores so that each vector that corresponds to a particular phenotype has zero 389 

mean with unit variance. 390 

Truncated singular value decomposition of the summary statistic 391 

matrix 392 

For each summary statistic matrix, we applied truncated singular value decomposition (TSVD). 393 

The matrix, which we denote as 𝑊, of size 𝑁 × 𝑀, where 𝑁 denotes the number of phenotypes 394 

and 𝑀 denotes the number of variants, is the input data. With TSVD, 𝑊 is factorized into a 395 

product of three matrices: 𝑈, 𝑆, and 𝑉𝑇: 𝑊 =  𝑈𝑆𝑉𝑇, where 𝑈 = (𝑢𝑖,𝑘)𝑖,𝑘 is an orthonormal 396 

matrix of size 𝑁 × 𝐾 whose columns are phenotype (left) singular vectors, 𝑆 is a diagonal matrix 397 

of size 𝐾 × 𝐾 whose elements are singular values, and 𝑉 = (𝑣𝑗,𝑘)𝑗,𝑘 is an orthonormal matrix of 398 

size 𝑀 × 𝐾 whose columns are variant (right) singular vectors. While singular values in 𝑆 399 
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represent the magnitude of the components, singular vectors in 𝑈 and 𝑉 summarizes the 400 

strength of association between phenotype and component and variant and component, 401 

respectively. With this decomposition, the 𝑘-th latent component (principal component, PC 𝑘) 402 

are represented as a product of 𝑘-th column of 𝑈, 𝑘-th diagonal element in 𝑆, and 𝑘-th row of 403 

𝑉𝑇. We used implicitly restarted lanczos bidiagonalization algorithm (IRLBA)49 404 

(https://github.com/bwlewis/irlba) implemented on SciDB50 to compute the first 𝐾 components in 405 

this decomposition. 406 

Relative variance explained by each of the components 407 

A scree plot (Fig. S1) quantify the variance explained by each component: variance explained 408 

by 𝑘-th component = 𝑠𝑘
2/ VarTot(𝑊) where, 𝑠𝑘 is the 𝑘-th diagonal element in the diagonal matrix 409 

𝑆 and VarTot(𝑊) is the total variance of the original matrix before DeGAs is applied. 410 

Selection of number of latent components in TSVD 411 

In order to apply TSVD to the input matrix, the number of components should be specified. We 412 

apply 𝐾 =  100 for our analysis for both datasets. We computed the expected value of squared 413 

eigenvalues under the null model where the distribution of variance explained scores across the 414 

full-ranks are uniform. This can be computed with the rank of the original matrix, which is equal 415 

to the number of phenotypes in our datasets: 416 

𝐸[Variance explained by 𝑘-th component under the null] = 1
(Rank(𝑊)2)⁄  417 

For all of the two datasets, we found that that of 100-th component is greater than the 418 

expectation. This indicates even the 100-th components are informative to represent the 419 

variance of the original matrix. In the interest of computational efficiency, we set 𝐾 =  100. 420 

Factor scores 421 

From these decomposed matrices, we computed factor score matrices for both phenotypes 422 

and variants as the product of singular vector matrix and singular values. We denote the one for 423 

phenotypes as 𝐹𝑝  =  (𝑓𝑖,𝑗
𝑝)𝑖,𝑗 the one for variants as 𝐹𝑣  =  (𝑓𝑖,𝑗

𝑣)𝑖,𝑗 and defined as follows: 424 

𝐹𝑝 =  𝑈𝑆 425 

𝐹𝑣 =  𝑉𝑆 426 

Since these factor scores are mathematically the same as principal components in principal 427 

component analysis (PCA), one can investigate the contribution of the phenotypes or variants 428 

for specific principal components by simply plotting factor scores23 (Fig. 2a-b). Specifically, 429 

phenotype factor score is the same as phenotype principal components and variant factor score 430 

is the same as variant principal components. By normalizing these factor scores, one can 431 

compute contribution scores and cosine scores to quantify the importance of phenotypes, 432 

variants, and principal components as described below. 433 
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Scatter plot visualization with biplot annotations 434 

To investigate the relationship between phenotype and variants in the TSVD eigenspace, we 435 

used a variant of biplot visualization51,52. Specifically, we display phenotypes projected on 436 

phenotype principal components (𝐹𝑝 = 𝑈𝑆) as a scatter plot. We also show variants projected on 437 

variant principal components (𝐹𝑣 = 𝑉𝑆) as a separate scatter plot and added phenotype singular 438 

vectors (𝑈) as arrows on the plot using sub-axes (Fig. 2b, 4c, S5-6). In scatter plot with biplot 439 

annotation, the inner product of a genetic variant and a phenotype represents the direction and 440 

the strength of the projection of the genetic association of the variant-phenotype pair on the 441 

displayed latent components. For example, when a variant and a phenotype share the same 442 

direction on the annotated scatter plot, that means the projection of the genetic associations of 443 

the variant-phenotype pair on the displayed latent components is positive. When a variant-444 

phenotype pair is projected on the same line, but on the opposite direction, the projection of the 445 

genetic associations on the shown latent components is negative. When the variant and 446 

phenotype vectors are orthogonal or one of the vectors are of zero length, the projection of the 447 

genetic associations of the variant-phenotype pair on the displayed latent components is zero. 448 

Given the high dimensionality of the input summary statistic matrix, we selected relevant 449 

phenotypes to display to help interpretation of genetic associations in the context of these traits. 450 

Contribution scores  451 

To quantify the contribution of the phenotypes, variants, and genes to a given component, we 452 

compute contribution scores. We first define phenotype contribution score and variant 453 

contribution score. We denote phenotype contribution score and variant contribution score for 454 

some component 𝑘 as cntr𝑘
phe(𝑖) and cntr𝑘

var(𝑗), respectively. They are defined by squaring the 455 

left and right singular vectors and normalizing them by Euclidian norm across phenotypes and 456 

variants:  457 

cntr𝑘
phe(𝑖) = (𝑢𝑖,𝑘)

2
 458 

cntr𝑘
var(𝑗) =  (𝑣𝑖,𝑘)

2
 459 

where, 𝑖 and 𝑗 denote indices for phenotype and variant, respectively. Because 𝑈 and 𝑉 are 460 

orthonormal, the sum of phenotype and variant contribution scores for a given component are 461 

guaranteed to be one, i.e. ∑ cntr𝑘
phe(𝑖)𝑖 =  ∑ cntr𝑘

var(𝑗)𝑗 = 1. 462 

Based on the variant contribution scores for the 𝑘-th component, we define the gene 463 

contribution score for some component 𝑘 as the sum of variant contribution scores for the set 464 

of variants in the gene: 465 

cntr𝑘
gene(𝑔) =  ∑ cntr𝑘

var(𝑗)

𝑗∈𝑔

 466 

where, 𝑔 denotes indices for the set of variants in gene 𝑔. To guarantee that gene contribution 467 

scores for a given component sum up to one, we treat the variant contribution score for the non-468 

coding variants as gene contribution scores. When multiple genes, 𝑔1, 𝑔2,…, 𝑔𝑛 are sharing the 469 

same variants, we defined the gene contribution score for the union of multiple genes rather 470 

than each gene: 471 
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cntr𝑘
gene({𝑔𝑖 | 𝑖 ∈ [1, 𝑛]}) =  ∑ cntr𝑘

var(𝑗)

{𝑗 | 𝑗∈𝑔1 ∧ 𝑗∈𝑔2 ∧⋯∧ 𝑗∈𝑔𝑛}

 472 

With these contribution score for a given component, it is possible to quantify the relative 473 

importance of a phenotype, variant, or gene to the component. Since DeGAs identifies latent 474 

components using unsupervised learning, we interpret each component in terms of the driving 475 

phenotypes, variants, and genes, i.e. the ones with large contribution scores for the component. 476 

The top 20 driving phenotypes, variants, and genes (based on contribution scores) for 477 

the top five TSVD components and the top three key components for our phenotypes of interest 478 

are summarized in Supplementary Table S3. 479 

We used stacked bar plots for visualization of the contribution score profile for each of 480 

the components. We represent phenotypes, genes, or variants with large contribution scores as 481 

colored segments and aggregated contributions from the remaining ones as “others” in the plot 482 

(Fig. 2c-d, 3a, 4a-b, Supplementary Fig. S4). To help interpretation of the major contributing 483 

factors for the key components, we grouped phenotypes into categories, such as “fat”, “fat-free” 484 

phenotypes, and showed the sum of contribution scores for the phenotype groups. The list of 485 

phenotype groups used in the visualization is summarized in Supplementary Table S3. 486 

Squared cosine scores 487 

Conversely, we can also quantify the relative importance of the latent components for a given 488 

phenotype or variant with squared cosine scores. We denote phenotype squared cosine score 489 

for some phenotype 𝑖 and variant squared cosine score for some variant 𝑗 as cos2
𝑖
phe

(𝑘) and 490 

cos2
𝑗
var

(𝑘) , respectively. They are defined by squaring of the factor scores and normalizing 491 

them by Euclidian norm across components:  492 

cos2
𝑖
phe

(𝑘) =  
(𝑓𝑖,𝑘

𝑝)
2

∑ (𝑓𝑖,𝑘′
𝑝)

2
𝑘′

⁄  493 

cos2
𝑗
var

(𝑘) =  
(𝑓𝑗,𝑘

𝑣)
2

∑ (𝑓𝑗,𝑘′
𝑣)

2
𝑘′

⁄  494 

By definition, the sum of squared cosine scores across a latent component for a given 495 

phenotype or variant equals to one, i.e.  ∑ cos2
𝑖
phe

(𝑘)𝑘 =  ∑ cos2
𝑗
var

(𝑘)𝑘 = 1. While singular 496 

values in the diagonal matrix 𝑆 quantify the importance of latent components for the global latent 497 

structure, the phenotype or variant squared cosine score quantifies the relative importance of 498 

each component in the context of a given phenotype or a variant. The squared cosine scores for 499 

the phenotypes highlighted in the study is summarized in Fig. S3 and Supplementary Fig. S9. 500 

Note that squared cosine scores and contribution scores are two complementary scoring 501 

metrics to quantify the relationship among phenotypes, components, variants, and genes. It 502 

does not necessarily have inverse mapping property. For example, it is possible to see a 503 

situation, where for a given phenotype 𝑝, phenotype squared cosine score identifies 𝑘 as the top 504 

key component, but phenotype contribution score for 𝑘 identifies 𝑝′ (𝑝′  ≠  𝑝) as the top driving 505 

phenotype for the component 𝑘. This is because the two scores, contribution score and squared 506 

cosine score, are both defined by normalizing singular vector and principal component vector 507 

matrices, respectively, but with respect to different slices: one for row and the other for column. 508 
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Genomic region enrichment analysis with GREAT  509 

We applied the genomic region enrichment analysis tool (GREAT version 4.0.3) to each DeGAs 510 

components20. We used the mouse genome informatics (MGI) phenotype ontology, which 511 

contains manually curated knowledge about hierarchical structure of phenotypes and genotype-512 

phenotype mapping of mouse32. We downloaded their ontologies on 2017-09-28 and mapped 513 

MGI gene identifiers to Ensembl human gene ID through unambiguous one-to-one homology 514 

mapping between human and mouse Ensembl IDs. We removed ontology terms that were 515 

labelled as “obsolete”, “bad”, or “unknown” from our analysis. As a result, we obtained 709,451 516 

mapping annotation spanning between 9,554 human genes and 9,592 mouse phenotypes. 517 

For each DeGAs component, we selected the top 5,000 variants according to their 518 

variant contribution score and performed enrichment analysis with the default parameter as 519 

described elsewhere20. Since we included the non-coding variants in the analysis, we focused 520 

on GREAT binomial genomic region enrichment analysis based on the size of regulatory 521 

domain of genes, and quantified the significance of enrichment in terms of binomial fold 522 

enrichment and binomial p-value. Given that we have 9,561 terms in the ontology, we set a 523 

Bonferroni p-value threshold of 5 × 10−6. To illustrate the results of the genomic region 524 

enrichment analysis for the phenotypes of our interest, we made circular bar plots using the R 525 

package ggplot2, where each of the key components are displayed in the innermost track with 526 

their phenotype squared cosine score to be proportional to their angle, and the resulted 527 

significant ontology terms are represented as the bars. The binomial fold change is represented 528 

as the radius and the binomial p-value is represented as color gradient in a log scale in the plot 529 

(Fig. 3b, Supplementary Fig. S7-8, Supplementary Table S5-7). 530 

Quality control of variant calling with intensity plots 531 

To investigate the quality of variant calling for the two PTVs highlighted in the study, we 532 

manually inspected intensity plots. These plots are available on Global Biobank Engine. 533 

● https://biobankengine.stanford.edu/intensity/rs114285050 534 

● https://biobankengine.stanford.edu/intensity/rs150090666 535 

Phenome-wide association analysis 536 

To explore the functional roles of the two PTVs across thousands of potentially correlated 537 

phenotypes, we performed a phenome-wide association study (PheWAS). We report the 538 

statistically significant (p < 0.001) associations with phenotypes with at least 1,000 case count 539 

(binary phenotypes) or 1,000 individuals with measurements with non-missing values 540 

(quantitative phenotypes) (Fig. 3d, Supplementary Fig. S10). The results of this PheWAS are 541 

also available as interactive plots as a part of Global Biobank Engine. 542 

● https://biobankengine.stanford.edu/variant/5-145895394 543 

● https://biobankengine.stanford.edu/variant/11-14865399 544 
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Univariate regression analysis for the identified PTVs 545 

To quantify the effects of the two PTVs on obesity, we performed univariate regression analysis. 546 

We extracted individual-level genotype information for the two PTVs with the PLINK2 pgen 547 

Python API (http://www.cog-genomics.org/plink/2.0/)48. After removing individuals with missing 548 

values for BMI and genotype, we performed linear regression for BMI 549 

(http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=21001) with age, sex, and the first four genomic 550 

PCs as covariates: 551 

BMI ~ 0 + age + as.factor(sex) + PC1 + PC2 + PC3 + PC4 + as.factor(PTV) 552 

where, PC1-4 denotes the first four components of genomic principal components, PTV ranges 553 

in 0, 1, or 2 and it indicates the number of minor alleles that the individuals have.  554 

Mouse 3T3-L1 cell culture and differentiation 555 

3T3-L1 preadipocytes were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) containing 556 

10% fetal bovine serum (FBS) and antibiotics (100 U/mL of penicillin G and 100 μg/mL of 557 

streptomycin) at 37°C in a humidified atmosphere containing 5% CO2. To obtain fully 558 

differentiated adipocytes, 3T3-L1 preadipocytes were grown into 2-day post-confluence, and 559 

then differentiation was induced by using a standard differentiation cocktail containing 0.5 mM of 560 

IBMX, 1 μm of dexamethasone, 1 μg/mL of insulin, and 10% FBS. After 48 h, medium was 561 

changed into DMEM supplemented with 10% FBS and 1 μg/mL of insulin and replenished every 562 

48 h for an additional 6 days.  563 

Human SGBS cell culture and differentiation 564 

SGBS cells were cultured in DMEM/F12 containing 33 μM biotin, 17 μM pantothenate, 565 

0.1 mg/mg streptomycin and 100 U/mL penicillin (0F medium) supplemented with 10% FBS in a 566 

5% CO2 incubator. To initiate differentiation, confluent cells were stimulated by 0F media 567 

supplemented with 0.01 mg/mL human transferrin, 0.2 nM T3, 100 nM cortisol, 20 nM insulin, 568 

250 μM IBMX, 25 nM dexamethasone and 2 μM rosiglitazone. After day 4, the differentiating 569 

cells were kept in 0F media supplemented with 0.01 mg/mL human transferrin, 100 nM cortisol, 570 

20 nM insulin and 0.2 nM T3 for additional 8-10 days until cells were fully differentiated. 571 

siRNA knockdown in 3T3-L1 preadipocytes 572 

At 80% confluence, 3T3-L1 preadipocytes were transfected with 50 nM siRNA against 573 

Gpr151 (Origene #SR412988), Pde3b (Origene #SR422062), or scrambled negative control 574 

(Origene #SR30004) using Lipofectamine™ RNAiMAX Transfection Reagent (Invitrogen) 575 

following the manufacturer’s protocol. The transfected cells were incubated for 48 h and then 576 

subjected to differentiation. 577 
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Reverse transcription (RT) and qPCR analysis  578 

Total RNA was extracted using TRIzol reagent (Invitrogen), following the manufacturer’s 579 

instruction. RNA was converted to cDNA using High-Capacity cDNA Reverse Transcription Kit 580 

(Applied Biosystems). Quantitative PCR reactions were prepared with TaqMan™ Fast 581 

Advanced Master Mix (Thermo Fisher Scientific) and performed on ViiA 7 Real-Time PCR 582 

System (Thermo Fisher Scientific). All data were normalized to the content of Cyclophilin A 583 

(PPIA), as the endogenous control. TaqMan primer information for RT-qPCR is listed below: 584 

GPR151 (Hs00972208_s1), Gpr151 (Mm00808987_s1), PDE3B (Hs00265322_m1), Pde3b 585 

(Mm00691635_m1), Pparg (Mm00440940_m1), Cebpa (Mm00514283_s1), Fabp4 586 

(Mm00445878_m1), PPIA (Hs04194521_s1), Ppia (Mm02342430_g1). 587 

Oil Red O staining and quantification 588 

Cells were washed twice with PBS and fixed with 10% formalin for 1 h at room temperature. 589 

Cells were then washed with 60% isopropanol and stained for 15 min with a filtered Oil Red O 590 

solution (mix six parts of 0.35% Oil Red O in isopropanol with four parts of water). After washing 591 

with PBS 4 times, cells were maintained in PBS and visualized by inverted microscope. After 592 

taking pictures, Oil Red O stain was extracted with 100% isopropanol and the absorbance was 593 

measured at 492 nm by a multi-well spectrophotometer (Bio-Rad).  594 

Lipolysis assay 595 

Glycerol release into the culture medium was used as an index of lipolysis. Fully differentiated 596 

3T3-L1 adipocytes were serum starved overnight and then treated with either vehicle (DMSO) 597 

or the lipolytic stimuli isoproterenol (ISO, 10µM) for 3 h.  The culture medium was collected and 598 

the glycerol content in the culture medium was measured using an adipocyte lipolysis assay kit 599 

(ZenBio #LIP-1-NCL1). Glycerol release into the culture medium was normalized to the protein 600 

content of the cells from the same plate. 601 

Overexpression of GPR151 in 3T3-L1 preadipocytes 602 

The GPR151 construct was obtained from Addgene (#66327). This construct includes a 603 

cleavable HA signal to promote membrane localization, a FLAG epitope sequence for cell 604 

surface staining followed by codon-optimized human GPR151 sequence53. We PCR-amplified 605 

the above sequence with stop codon and assembled it into a lentiviral plasmid (Addgene 606 

#85969) with either EF1 promoter (Addgene # 11154) or aP2 promoter (Addgene # 11424). 607 

EF1⍺-GPR151 or aP2-GPR151 lentiviral plasmid were transfected into human embryonic 608 

kidney 293T cells, together with the viral packaging vectors pCMV-dR8.91 and pMD2-G. 72 h 609 

after transfection, virus-containing medium was collected, filtered through a 0.45-μm pore-size 610 

syringe filter, and frozen at -80°C. 3T3-L1 preadipocytes at 50% confluence were infected with 611 

the lentivirus stocks containing 8 µg/mL polybrene. Two days after transduction, lentivirus-612 

infected 3T3-L1 preadipocytes were subject to differentiation.  613 
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Flow cytometry analysis 614 

Day 6 differentiating 3T3-L1 adipocytes were collected and washed with ice cold FACS buffer 615 

(PBS containing 2% BSA). Cells were first resuspended into FACS staining buffer (BioLegend # 616 

420201) at ~1M cells/100l and incubated with anti-mouse CD16/CD32 Fc Block (BioLegend # 617 

101319) at room temperature for 10-15 min. Cells were then incubated with APC-conjugated 618 

FLAG antibody (BioLegend # 637307) for 20-30 min at room temperature in the dark. Following 619 

washing and centrifugation, cells were resuspended in FACS buffer and sorted using a BD 620 

InfluxTM Cell Sorter. Cells without FLAG antibody staining were used to determine background 621 

fluorescence levels. Cells were sorted based on APC fluorescence and collected directly into 622 

TRIzol reagent for RNA extraction.  623 

Western Blot Analysis 624 

Lysate aliquots containing 50μg of proteins were denatured, separated on a 4-10% SDS-625 

polyacrylamide gel, and transferred to nitrocellulose membranes using a Trans-Blot® SD Semi-626 

Dry Transfer Cell (Bio-Rad). Membranes were blocked in 5% non-fat milk and incubated 627 

overnight at 4 °C with primary antibodies: anti-GPR151 (LSBio # LS-B6760-50) or anti-beta-628 

actin (Cell Signaling #3700). Subsequently, the membranes were incubated for 1 h at room 629 

temperature with IRDye® 800CW goat-anti-mouse antibody (LI-COR #926-32210). Target 630 

proteins were visualized using Odyssey® Fc Imaging System (LI-COR). 631 

Statistical analysis of functional data 632 

Data are expressed as mean ± SEM. Student’s t test was used for single variables, and one-633 

way ANOVA with Bonferroni post hoc correction was used for multiple comparisons using 634 

GraphPad Prism 7 software.  635 
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Figures 794 

Figure 1 795 

 796 
 797 
Fig.1 Illustrative study overview. a Summary of the UK Biobank genotype and phenotype data used in the study. We included White 798 
British individuals and analyzed LD-pruned and quality-controlled variants in relation to 2,138 phenotypes with a minimum of 100 799 
individuals as cases (binary phenotypes) or non-missing values (quantitative phenotypes) (Supplementary Table S1-2).  800 
b Decomposition of Genetic Associations (DeGAs) characterizes latent genetic components, which are represented as different 801 
colors on the palette, with an unsupervised learning approach – truncated singular value decomposition (TSVD), followed by 802 
identification of the key components for each phenotype of our interest (painting phenotypes with colors) and annotation of each of 803 
the components with driving phenotypes, variants, and genes (finding the meanings of colors). c TSVD applied to decompose 804 
genome- and-phenome-wide summary statistic matrix 𝑊 to characterize latent components. 𝑈, 𝑆, and 𝑉 represent resulting matrices 805 
of singular values and vectors. d We used the squared cosine score and the contribution score, to quantify compositions and 806 
biomedical relevance of latent components. e We applied the genomic region enrichment analysis tool (GREAT) for biological 807 
characterization of each component and performed functional experiments focusing on adipocyte biology. 808 

809 
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Figure 2 810 

 811 
 812 
Fig. 2 Characterization of latent structures of genetic associations from genome- and-phenome-wide association summary statistics 813 
with DeGAs. a-b Components from truncated singular value decomposition (TSVD) corresponds to principal components in the 814 
phenotype (a) and variant (b) spaces. The first two components of all variants, excluding the MHC region, and relevant phenotypes 815 
are shown. b For variant PCA, we show biplot arrows (red) for selected phenotypes to help interpretation of the direction of principal 816 
components (Methods). The variants are labeled based on the genomic positions and the corresponding gene symbols. For 817 
example, "16:53813367 (FTO)" indicates the variant in gene FTO at position 53813367 on chromosome 16. c-d Phenotype (c) and 818 
gene (d) contribution scores for the first five components. PC1 is driven by largest part of the body mass that accounts for the 819 
“healthy part” (main text) including whole-body fat-free mass and genetic variants on FTO and DLEU1, whereas PC2 is driven by 820 
fat-related measurements, PC3 is driven by bioelectrical impedance measurements, PC4 is driven by eye measurements, and PC5 821 
is driven by bioelectrical impedance and spirometry measurements along with the corresponding genetic variants (main text, 822 
Supplementary Table S3-4). Each colored segment represents a phenotype or gene with at least 0.5% and 0.05% of phenotype and 823 
gene contribution scores, respectively, and the rest is aggregated as others on the top of the stacked bar plots. The major 824 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 14, 2018. ; https://doi.org/10.1101/442715doi: bioRxiv preprint 

https://doi.org/10.1101/442715
http://creativecommons.org/licenses/by/4.0/


26/53 

contributing phenotype groups (Methods, Supplementary Table S3) and additional top 10 phenotypes and the top 10 genes for each 825 
component are annotated in c and d, respectively. Abbreviations. pred.: predicted, %: percentage, mass/% mass and percentage, 826 
BP: blood pressure, AR: automated reading, L: left, R: right.  827 
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Figure 3 828 

 829 
Fig.3 The top three key latent components from DeGAs of coding and non-coding variants for body mass index (BMI), myocardial 830 
infarction (MI), and gallstones. a The top three key components for each phenotype are identified by phenotype squared cosine 831 
scores and characterized with the driving phenotypes by phenotype contribution scores (Methods). Each colored segment 832 
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represents a phenotype with at least 0.5% of phenotype contribution scores for each of the component and the rest of the 833 
phenotypes are aggregated as others and shown as the gray bar on the top. For BMI, additional phenotype grouping is applied 834 
(Methods, Supplementary Table S3). b Biological characterization of driving non-coding and coding variants of the key components 835 
for BMI with GREAT. The key components are shown proportional to their squared cosine score along with significantly enriched 836 
terms in mouse MGI phenotype ontology. The radius represents binomial fold change and the color gradient represents p-value 837 
from GREAT ontology enrichment analysis. Abbreviations. pred.: predicted, #: number, %: percentage, mass/% mass and 838 
percentage, BP: blood pressure, AR: automated reading, L: left, R: right, WA: weighted average. †: Corneal resistance factor (right), 839 
‡: Birth weight of first child, §: Age started wearing glasses or contact lenses, ∥: Average weekly beer plus cider intake, ¶: Median z-840 
statistic (in group-defined mask) for shapes activation, ♣: Weighted-mean MD in tract uncinate fasciculus (right).  841 
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Figure 4 842 

 843 
Fig. 4 DeGAs applied to the protein-truncating variants (PTVs) dataset. a-b Phenotype (a) and gene (b) contribution scores for the 844 
top key components associated with BMI based on phenotype grouping (Methods, Supplementary Table S3). c Variant PCA plot 845 
with biplot annotations for the top two components (Methods). The identified targets for functional follow-up (main text) are marked 846 
as (I) rs114285050 (a stop-gain variant on GPR151) and (II) rs150090666 (PDE3B). d Phenome-wide association analysis for 847 
GPR151 rs114285050. The p-values (left) and log odds ratio (OR) (binary phenotypes, shown as red) or beta (quantitative 848 
phenotypes, shown as blue) (right) along with 95% confidence interval are shown for the phenotypes with minimum case count of  849 
1,000 (binary phenotypes) or 1,000 individuals with non-missing values (quantitative phenotypes) and strong association (p < 0.001) 850 
and with this variants among all the phenotypes used in the study. Abbreviations: L: left, R: right, %: percentage, pred: predicted.  851 
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Figure 5 852 

 853 
Fig. 5 Experimental validation of GPR151 and PDE3B function in cellular models of adipogenesis. a-b qPCR analysis of gene 854 
expression patterns of PDE3B and GPR151 during (a) mouse 3T3-L1 adipogenesis and (b) human SGBS adipogenesis. c qPCR 855 
analysis of Gpr151 mRNA knockdown in 3T3-L1 preadipocytes. d qPCR analysis of the effect of siGpr151 knockdown on 856 
adipogenesis markers, Pparg, Cebpa and Fabp4. e-g Oil-Red O staining (e), quantification of lipid droplets (f), and lipolysis (g) in 857 
scRNA- or siGpr151-tansfected adipocytes. Means  SEM are shown (***p-value<0.001, **p-value<0.01, *p-value <0.05). scRNA: 858 
scrambled siRNA. ISO: isoproterenol.  859 
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Fig. S1: Variant filtering workflow 885 

 886 
Fig. S1 Illustrative summary of the variant filters used in the study. The last two variant sets 887 

(“all” variants and PTVs) are used in the study. Abbreviations. SE: standard error. LOR: log 888 

odds ratio.  889 
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Fig. S2: Scree plot 890 

 891 
 892 

Fig. S2 Scree plot summarizes variance explained in each of the top 100 (a) and 20 (b) 893 

components. The scree plots are shown for two datasets consists of LD-pruned and QC-filtered 894 

sets of array-genotyped variants outside of MHC region: (1) all array-genotyped variants, which 895 

includes coding and non-coding variants (blue) and (2) protein-truncating variants (PTVs, red). 896 

For each component, we calculate the variance explained defined as squared eigenvalues 897 

divided by the total variance in the original matrix (Methods). We plotted those values as dots 898 

and cumulative values as lines.   899 
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Fig. S3: Squared cosine score (all variants dataset) 900 

 901 
 902 

Fig. S3 Identification of the key components with phenotype squared cosine scores. Squared 903 

cosine score quantifies relative importance of the key components for a given phenotype. The 904 

top five key components are identified for all variant dataset that includes both coding and non-905 

coding variants for three phenotypes: a body mass index (BMI), b myocardial infarction (MI), 906 

and c gallstones. The top five key components are shown on the horizontal axis and the 907 

corresponding squared cosine scores are shown on the vertical axis.  908 
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Fig. S4: Gene contribution score (all variants dataset) 909 

 910 
 911 

Fig. S4 Gene contribution scores for the top three key components for body mass index (BMI), 912 

myocardial infarction (MI), and gallstones using all variant dataset, which includes both coding 913 

and non-coding variants. For each phenotype, the top three key components with their 914 

phenotype squared cosine scores are shown on the top of the stacked bar plot and gene 915 

contribution scores for each of the components are shown as colored segments. Each colored 916 

segment represents a gene with at least 0.05% of contribution scores and the rest of the genes 917 

are aggregated as the gray bar at the top. For the visualization, the maximum value of the 918 

vertical axis is set to be 0.6. For each component, the labels for the top 10 driving genes are 919 

shown. For non-coding variants, we display their genomic coordinates.  920 
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Fig. S5: Variant PCA plot for myocardial infarction. 921 

 922 

 923 
Fig. S5 Variant PCA plot with biplot annotation for the top two key components for myocardial 924 

infarction using “all” dataset. Genetic variants projected into the top two key components, PC22 925 

(horizontal axis) and PC100 (vertical axis) are shown as scatter plot. Variants are annotated 926 

with gene symbols. Directions of genetic associations for relevant phenotypes are annotated as 927 

red arrows using the secondary axes (Methods). Abbreviations. AR: automated reading.  928 
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Fig. S6: Variant PCA plot for Gallstones 929 

 930 
Fig. S6 Variant PCA plot with biplot annotation for the top two key components for gallstones 931 

using “all” dataset. Genetic variants projected into the top two key components, PC72 932 

(horizontal axis) and PC64 (vertical axis). Variants are annotated with gene symbols. Directions 933 

of genetic associations for relevant phenotypes are annotated as red arrows using the 934 

secondary axes (Methods). 935 

936 
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Fig. S7: GREAT enrichment analysis for MI 937 

 938 
Fig. S7 Biological characterization of driving non-coding and coding variants of the key 939 

components for myocardial infarction (MI) with the genomic region enrichment analysis tool 940 

(GREAT) using the all variants dataset. The key components are shown proportional to their 941 

squared cosine score along with significantly enriched terms in mouse genome informatics 942 

(MGI) phenotype ontology. The radius represents binomial fold change and the color gradient 943 

represents p-value from GREAT ontology enrichment analysis.   944 
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Fig. S8: GREAT enrichment analysis for gallstones 945 

 946 
Fig. S8 Biological characterization of driving non-coding and coding variants of the key 947 

components for gallstones with the genomic region enrichment analysis tool (GREAT) using the 948 

all variants dataset. The key components are shown proportional to their squared cosine score 949 

along with significantly enriched terms in mouse genome informatics (MGI) phenotype ontology. 950 

The radius represents binomial fold change and the color gradient represents p-value from 951 

GREAT ontology enrichment analysis.   952 
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Fig. S9: Squared cosine score of BMI (PTVs dataset) 953 

 954 
Fig. S9 Identification of the key components for BMI with phenotype squared cosine scores 955 

using the PTVs dataset. The top five key components are shown on the horizontal axis and the 956 

corresponding squared cosine scores are shown on the vertical axis. 957 
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Fig. S10: PheWAS analysis for PDE3B 958 

 959 
Fig. S10 Phenome-wide association (PheWAS) analysis for rs150090666, a stop-gain variant in 960 

PDE3B. The p-values (left) and log odds ratio (binary phenotypes, shown as red) or beta 961 

(quantitative phenotypes, shown as blue) (right) along with 95% confidence interval are shown 962 

for the phenotypes with minimum case count of 1,000 (binary phenotypes, a) or 1,000 963 

individuals with non-missing values (quantitative phenotypes, b) and strong association (p ≤964 

0.001) and with this variants among all the phenotypes used in the study.  965 
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Fig. S11: Univariate regression analysis for GPR151 966 

 967 
 968 

Fig. S11 Distribution of BMI stratified by sex and genotype of rs114285050, a stop-gain variant 969 

in GPR151. The outliers are removed from the plot and the mean values are annotated and 970 

shown as dashed lines. The number of carriers of the variants are shown at the bottom. 971 

  972 
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Fig. S12: Univariate regression analysis for PDE3B 973 

 974 
Fig. S12 Distribution of BMI stratified by sex and genotype of rs150090666, a stop-gain variant 975 

in PDE3B. The outliers are removed from the plot and the mean values are annotated and 976 

shown as dashed lines. The number of carriers of the variants are shown at the bottom. 977 

  978 
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Fig. S13: GPR151 overexpression     979 

 980 
Fig. S13 Effects of GPR151 overexpression on 3T3-L1 adipogenesis. a Structure of GPR151 981 

overexpression construct driven by either EF1⍺ or aP2 promotor. b-d Confirmation of GPR151 982 
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overexpression at both mRNA (b-c) and protein levels (d) in 3T3-L1 cells during adipogenesis. 983 

e-f qPCR analysis of the effect of GPR151 overexpression on adipogenesis markers, Pparg (e) 984 

and Fabp4 (f). g-h FACS analysis of APC fluorescence in Day 6 3T3-L1 adipocytes infected 985 

with either EF1⍺-GPR151 (g) or aP2-GPR151 (h) (shown in red), in comparison to wild-type 986 

(WT) cells (shown in blue). i-j Relative mRNA levels of GPR151 and adipogenic markers 987 

(Pparg, Cebpa, Fabp4) in purified APC+ and APC- cells from Day 6 3T3-L1 adipocytes infected 988 

by either EF1⍺-GPR151 (i) or aP2-GPR151 (j). k Comparison of protein levels of GPR151 in 989 

mouse brain, subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT). ND: not-990 

detectable. 991 

 992 

Fig. S14: Pde3b knockdown 993 

 994 
Fig. S14 Effects of Pde3b knockdown in 3T3-L1 adipogenesis. a qPCR analysis of Pde3b 995 

mRNA knockdown in 3T3-L1 preadipocytes. b qPCR analysis of the effect of siPde3b 996 

knockdown on adipogenesis markers, Pparg, Cebpa and Fabp4. c-d Oil-Red O staining (c) and 997 

quantification (d) of lipid droplets in scRNA- or siPde3b-tansfected adipocytes. e lipolysis 998 

assays of scRNA- or siPde3b-tansfected adipocytes. Means  SEM are shown (***p-999 

value<0.001, *p-value<0.05). scRNA: scrambled siRNA. ISO: isoproterenol.  1000 
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Table S1 List of phenotype categories 1001 

List of phenotype categories used in our study and their data source are shown with one 1002 

example phenotype per category. Abbreviation in the type column. B: binary, Q: quantitative, P: 1003 

described in previously published literature, F: the UK Biobank data field ID, and C: the UK 1004 

Biobank data category ID. 1005 

 1006 

Phenotype group name Type 

Number of 

phenotypes Example 

Data 

source 

Disease outcome B 363 Hypertension P12 

Cancer B 46 Skin cancer P12 

Family History B 10 High blood pressure P12 

Medication B 709 Aspirin intake F:20003 

Questionnaire (binary) Q 49 Wears glasses or contact lenses C:100025 

Imaging Q 683 Volume of white matter C:100003 

Physical Measurement Q 122 Standing height C:100006 

Assay Q 34 Red blood cell (erythrocyte) count C:100079 

Questionnaire (quantitative) Q 62 Sleep duration C:100079 

Miscellaneous (binary) B 19 Ever attempted suicide  

Miscellaneous (quantitative) Q 42 Number of medications taken  

  1007 
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Table S2 List of phenotypes 1008 

The list of phenotypes considered in the study. The table is sorted by category, number cases 1009 

(for binary phenotypes), and the number of non-missing values (for quantitative phenotypes). 1010 

The two columns, "All" and "PTVs" indicates whether the phenotype is used in each of the 1011 

dataset after imposing the filters on the genome-and phenome-wide summary statistics matrix. 1012 

One can browse the summary statistics from genome-wide association studies on the Global 1013 

Biobank Engine with the URL in the table. 1014 

I am showing the first five lines of the table here. The full table is in Excel file. 1015 

Category 
Phenotype 
name 

Number 
of cases All PTVs Global Biobank Engine phenotype page (URL) 

Disease 
outcome hypertension 107407 Y Y https://biobankengine.stanford.edu/coding/HC215  

Disease 
outcome 

essential 
hypertension 64234 Y Y https://biobankengine.stanford.edu/coding/HC273  

Disease 
outcome asthma 43626 Y Y https://biobankengine.stanford.edu/coding/HC382  

Disease 
outcome 

high 
cholesterol 43054 Y Y https://biobankengine.stanford.edu/coding/HC269  

 1016 

Table S3: Phenotype groupings for visualization 1017 

The list of phenotype groups used in the phenotype contribution score plots are summarized.  1018 

Phenotype groups List of phenotypes in the group 

fat-free 

Arm fat-free mass (left) 

Arm fat-free mass (right) 

Leg fat-free mass (left) 

Leg fat-free mass (right) 

Total fat-free mass 

Trunk fat-free mass 

Whole body fat-free mass 

fat 

Android fat mass 

Android tissue fat percentage 

Arm fat mass (left) 
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Arm fat mass (right) 

Arm fat percentage (left) 

Arm fat percentage (right) 

Arm tissue fat percentage (left) 

Arm tissue fat percentage (right) 

Arms fat mass 

Arms tissue fat percentage 

Body fat percentage 

Gynoid fat mass 

Gynoid tissue fat percentage 

Leg fat mass (left) 

Leg fat mass (right) 

Leg fat percentage (left) 

Leg fat percentage (right) 

Leg tissue fat percentage (left) 

Leg tissue fat percentage (right) 

Legs fat mass 

Legs tissue fat percentage 

Total fat mass 

Total tissue fat percentage 

Trunk fat mass 

Trunk fat percentage 

Trunk tissue fat percentage 

Whole body fat mass 

impedance 
Impedance of arm (left) 

Impedance of arm (right) 
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Impedance of leg (left) 

Impedance of leg (right) 

Impedance of whole body 

reticulocyte 

High light scatter reticulocyte count 

High light scatter reticulocyte percentage 

Immature reticulocyte fraction 

Mean reticulocyte volume 

Reticulocyte count 

Reticulocyte percentage 

meridian 

3mm strong meridian (left) 

3mm strong meridian (right) 

3mm weak meridian (left) 

3mm weak meridian (right) 

6mm strong meridian (left) 

6mm strong meridian (right) 

6mm weak meridian (left) 

6mm weak meridian (right) 

spirometry 

Forced expiratory volume in 1-second (FEV1) 

Forced expiratory volume in 1-second (FEV1), Best measure 

Forced expiratory volume in 1-second (FEV1), predicted 

Forced expiratory volume in 1-second (FEV1), predicted percentage 

Forced vital capacity (FVC) 

Forced vital capacity (FVC), Best measure 

Peak expiratory flow (PEF) 

 1019 
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Table S4: Summary of contribution scores for the key 1020 

components 1021 

The list of top 20 driving phenotypes, genes, and variants for the first five principal components 1022 

and the top three key components for the phenotypes highlighted in the study are summarized 1023 

in the table. 1024 

I am showing the first four lines of the table here. The full table is in Excel file. 1025 

Dat

aset 

Phenot

ype of 

interest 

P

C 

Squar

ed 

cosine 

score 

Ra

nk 

Phenoty

pe 

Pheno

type 

contri

bution 

score Gene 

Gene 

contri

bution 

score 

Vari

ant 

Variant 

contrib

ution 

score rsid GBE 

All_

vari

ants BMI 2 

47.44

% 1 

Standing 

height 9.51% FTO 1.52% 

16-

5381

3367 0.97% 

rs17

8174

49 

https://biobankengi

ne.stanford.edu/va

riant/16-53813367 

All_

vari

ants BMI 2 

47.44

% 2 

Arm fat 

percenta

ge (left) 5.76% 

ADC

Y3 0.31% 

16-

5382

6034 0.28% 

rs71

8796

1 

https://biobankengi

ne.stanford.edu/va

riant/16-53826034 

All_

vari

ants BMI 2 

47.44

% 3 

Body fat 

percenta

ge 5.64% 

DNM

T3A 0.30% 

2-

4171

67 0.27% 

rs62

1062

58 

https://biobankengi

ne.stanford.edu/va

riant/2-417167 

 1026 

Table S5: GREAT enrichment analysis for BMI 1027 

Biological characterization of driving non-coding and coding variants of the key components for 1028 

BMI with the genomic region enrichment analysis tool (GREAT) using the all variants dataset. 1029 

The results of the enrichment analysis for MGI phenotype ontology, a manually curated 1030 

genotype-phenotype relationship knowledgebase for mouse, is summarized by the key 1031 

components. The two major summary statistics from GREAT, binomial fold and binomial p-1032 

value, are shown. Abbreviation. BFold: binomial fold, BPval: binomial p-value. 1033 

Here, I’m showing the first 3 lines of the table. The full table is in Excel file. 1034 

PC rank PC Term BFold BPval 

1 PC2 brachypodia 9.05 1.40E-23 

1 PC2 abnormal pancreas topology 8.13 8.80E-12 

1 PC2 abnormal urine catecholamine level 7.32 5.19E-18 

Table S6: GREAT enrichment analysis for MI 1035 

Biological characterization of driving non-coding and coding variants of the key components for 1036 

MI with the genomic region enrichment analysis tool (GREAT) using the all variants dataset. 1037 

The results of the enrichment analysis for MGI phenotype ontology, a manually curated 1038 
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genotype-phenotype relationship knowledgebase for mouse, is summarized by the key 1039 

components. The two major summary statistics from GREAT, binomial fold and binomial p-1040 

value, are shown. Abbreviation. BFold: binomial fold, BPval: binomial p-value. 1041 

Here, I’m showing the first 3 lines of the table. The full table is in Excel file. 1042 

PC rank PC Term BFold BPval 

1 PC22 artery occlusion 1.59E+01 1.14E-25 

1 PC22 aortic sinus aneurysm 1.28E+01 3.88E-10 

1 PC22 abnormal circulating phytosterol level 1.07E+01 6.38E-10 

Table S7: GREAT enrichment analysis for gallstones 1043 

Biological characterization of driving non-coding and coding variants of the key components for 1044 

gallstones with the genomic region enrichment analysis tool (GREAT) using the all variants 1045 

dataset. The results of the enrichment analysis for MGI phenotype ontology, a manually curated 1046 

genotype-phenotype relationship knowledgebase for mouse, is summarized by the key 1047 

components. The two major summary statistics from GREAT, binomial fold and binomial p-1048 

value, are shown. Abbreviation. BFold: binomial fold, BPval: binomial p-value. 1049 

Here, I’m showing the first 3 lines of the table. The full table is in Excel file. 1050 

PC rank PC Term BFold BPval 

1 PC72 abnormal circulating phytosterol level 1.15E+01 5.48E-11 

1 PC72 decreased systemic vascular resistance 9.86E+00 9.78E-11 

1 PC72 artery occlusion 9.51E+00 2.46E-12 

Table S8: PheWAS analysis for rs114285050 (GPR151) 1051 

Phenome-wide association (PheWAS) analysis for rs114285050, a stop-gain variant in 1052 

GPR151. 1053 

GBE 

phenotype 

code Name Case 

-log_10 p-

value 

log(OR) or 

Beta 

1.96 * 

SE(log(OR

)) or 1.96 * 

SE(beta) 

BIN1960 Fed-up feelings 136434 3.041 -0.09304 0.054978 

INI48 Waist circumference 336659 7.599 -0.06544 0.02301 

INI23100 Whole body fat mass 330970 6.87 -0.06872 0.025539 

INI23128 Trunk fat mass 331295 6.835 -0.07053 0.026284 

INI23120 Arm fat mass (right) 331422 6.816 -0.06863 0.025617 

INI23099 Body fat percentage 331318 6.816 -0.05306 0.019816 
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INI23127 Trunk fat percentage 331314 6.79 -0.06356 0.023775 

INI21002 Weight 336260 6.654 -0.06087 0.02303 

INI23116 Leg fat mass (left) 331470 6.649 -0.05468 0.020698 

INI23112 Leg fat mass (right) 331488 6.62 -0.05517 0.020933 

INI21001 Body mass index (BMI) 336144 6.498 -0.06789 0.026029 

INI23111 Leg fat percentage (right) 331491 6.341 -0.04201 0.016327 

INI23124 Arm fat mass (left) 331362 6.317 -0.06587 0.025656 

INI23115 Leg fat percentage (left) 331473 6.17 -0.04087 0.016123 

INI23119 Arm fat percentage (right) 331445 5.424 -0.04689 0.019874 

INI23123 Arm fat percentage (left) 331395 5.048 -0.04485 0.019796 

INI49 Hip circumference 336620 4.649 -0.05669 0.026205 

INI23126 Arm predicted mass (left) 331345 4.211 -0.03373 0.016499 

INI23125 Arm fat-free mass (left) 331358 3.929 -0.03257 0.01658 

INI23105 Basal metabolic rate 331502 3.923 -0.03368 0.017154 

INI23117 Leg fat-free mass (left) 331454 3.423 -0.03063 0.016887 

INI23118 Leg predicted mass (left) 331449 3.336 -0.02998 0.016776 

INI23121 Arm fat-free mass (right) 331418 3.32 -0.02894 0.016241 

INI23122 Arm predicted mass (right) 331413 3.176 -0.02808 0.016174 

INI23102 Whole body water mass 331510 3.044 -0.02784 0.01644 

INI23114 Leg predicted mass (right) 331480 3.019 -0.02812 0.016689 
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Table S9: PheWAS analysis for rs150090666 (PDE3B) 1055 

Phenome-wide association (PheWAS) analysis for rs150090666, a stop-gain variant in PDE3B. 1056 

 1057 

GBE 

phenoty

pe code Name Case 

-log_10 

p-value 

log(OR) 

or Beta 

1.96 * 

SE(log(O

R)) or 

1.96 * 

SE(beta) 

HC269 high cholesterol 43054 4.457 -0.5904 0.279692 

BIN4728 Leg pain on walking 28151 3.154 0.4366 0.252448 

BIN2020 Loneliness, isolation 60153 3.098 0.2983 0.174322 

INI49 Hip circumference 336620 10.75 0.2476 0.072167 
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INI23113 Leg fat-free mass (right) 331480 7.381 0.1293 0.046197 

INI21002 Weight 336260 7.333 0.1769 0.063445 

INI23114 Leg predicted mass (right) 331480 7.3 0.1276 0.045884 

INI23128 Trunk fat mass 331295 7.079 0.1977 0.072304 

INI23117 Leg fat-free mass (left) 331454 6.965 0.1259 0.046432 

INI23118 Leg predicted mass (left) 331449 6.958 0.1249 0.046119 

INI20015 Sitting height 336513 6.783 0.1454 0.054449 

INI23105 Basal metabolic rate 331502 6.141 0.1193 0.047177 

INI23127 Trunk fat percentage 331314 6.059 0.1641 0.065405 

INI50 Standing height 336500 6 0.1266 0.050725 

INI23100 Whole body fat mass 330970 5.895 0.1736 0.070227 

INI23120 Arm fat mass (right) 331422 5.601 0.1692 0.070462 

INI23124 Arm fat mass (left) 331362 5.255 0.1635 0.070521 

INI23102 Whole body water mass 331510 5.107 0.1031 0.045198 

INI23101 Whole body fat-free mass 331486 5.039 0.1021 0.045119 

INI23099 Body fat percentage 331318 4.919 0.1217 0.054508 

INI23123 Arm fat percentage (left) 331395 4.516 0.1158 0.054429 

INI23119 Arm fat percentage (right) 331445 4.401 0.1146 0.054645 

INI23116 Leg fat mass (left) 331470 4.208 0.1163 0.056918 

INI23126 Arm predicted mass (left) 331345 4.189 0.09246 0.045374 

INI23112 Leg fat mass (right) 331488 4.119 0.1162 0.057565 

INI23125 Arm fat-free mass (left) 331358 4.061 0.09128 0.04559 

INI23122 Arm predicted mass (right) 331413 3.746 0.085 0.044472 

INI3062 Forced vital capacity (FVC) 309028 3.572 0.1001 0.053841 

INI23130 Trunk predicted mass 331203 3.565 0.08357 0.045002 

INI23129 Trunk fat-free mass 331234 3.508 0.08307 0.045158 

INI23121 Arm fat-free mass (right) 331418 3.326 0.07965 0.044649 

INI20151 Forced vital capacity (FVC), Best measure 255494 3.243 0.102 0.058016 
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