
Novel methods for epistasis detection in genome-wide
association studies

Lotfi Slim1,2*, Clément Chatelain2, Chloé-Agathe Azencott1,3, Jean-Philippe Vert1,4
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Abstract

More and more genome-wide association studies are being designed to uncover the full
genetic basis of common diseases. Nonetheless, the resulting loci are often insufficient to
fully recover the observed heritability. Epistasis, or gene-gene interaction, is one of
many hypotheses put forward to explain this missing heritability. In the present work,
we propose epiGWAS, a new approach for epistasis detection that identifies interactions
between a target SNP and the rest of the genome. This contrasts with the classical
strategy of epistasis detection through exhaustive pairwise SNP testing. We draw
inspiration from causal inference in randomized clinical trials, which allows us to take
into account linkage disequilibrium. EpiGWAS encompasses several methods, which we
compare to state-of-the-art techniques for epistasis detection on simulated and real data.
The promising results demonstrate empirically the benefits of EpiGWAS to identify
pairwise interactions.

Author summary

Genome-wide association studies are now a major tool for the discovery of biomarkers
for complex diseases. However, the complexity of genetic architecture, in particular
linkage disequilibrium, complicates that mission. Moreover, intergenic interactions, or
epistasis, are often not correctly captured by the classical statistical methodologies. In
our work, we propose a new framework to model linkage disequilibrium, which is based
on propensity scores. Our goal is to detect epistatic interactions between a
predetermined target locus and the rest of the genotype. The target may be identified
from the literature, experiments, or top hits in previous genome-wide association studies.
Recovering interactions with validated causal loci helps improve both interpretability
and statistical power. Multi-targeting drug discovery can also benefit from our work
through the combination of existing drugs with new ones for greater drug response.

Introduction 1

Decrease in sequencing cost has widened the scope of genome-wide association studies 2

(GWAS). Large cohorts are now built for an ever growing number of diseases. In 3

common ones, the disease risk depends on a large number of genes connected through 4

complex interaction networks. The classical approach and still widespread methodology 5

May 28, 2020 1/19

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 28, 2020. ; https://doi.org/10.1101/442749doi: bioRxiv preprint 

mailto:lotfi.slim@mines-paristech.fr
https://doi.org/10.1101/442749
http://creativecommons.org/licenses/by-nd/4.0/


in GWAS is to implement univariate association tests between each single nucleotide 6

polymorphism (SNP) and the phenotype of interest. Such an approach is limited for 7

common diseases, where the interactions between distant genes, or epistasis, need to be 8

taken into account. For instance, several epistatic mechanisms have been highlighted in 9

the onset of Alzheimer’s disease [1]. Most notably, the interaction between the two genes 10

BACE1 and APOE4 was found to be significant on four distinct datasets. Moreover, at 11

least two epistatic interactions were also reported for multiple sclerosis [2, 3]. 12

Several strategies [4, 5] have been developed for the detection of statistical epistasis. 13

Many of them consist in exhaustive SNP-SNP interaction testing, followed by 14

corrections for multiple hypothesis testing using procedures such as Bonferroni 15

correction [6] or the Benjamini-Hochberg [7] (BH) procedure. For all procedures, the 16

correction comes at the cost of poor statistical power [8]. For high-order interactions, 17

the loss in statistical power is aggravated by the large number of SNP tuples to consider. 18

Moreover, exhaustive testing for high-order interactions is also accompanied by an 19

increase in computational complexity. For increased speed, the current state-of-the-art 20

BOOST [9] and its GPU-derivative [10] add a preliminary screening to filter 21

non-significant interactions. Another fast interaction search algorithm in the 22

high-dimensional setting is the xyz -algorithm [11]. 23

By contrast, instead of constructing exhaustive models, we propose to focus on the 24

interactions that involve a given variant, that we refer to as the target in what follows. 25

The target is a formerly identified SNP that can be extracted from top hits in previous 26

GWAS, causal genes, or experiments. The main rationale behind this approach is to 27

leverage the established dependency between the target and the phenotype for a better 28

detection of epistatic phenomena: a lower number of interactions has to be studied with 29

the additional guarantee that the target affects the phenotype in question. In addition, 30

focusing on interactions with a single variant allows us to model the interaction of this 31

variant with all other SNPs in the genome at once, rather than pair of SNPs by pair of 32

SNPs. 33

For the purpose of epistasis detection, the pure synergistic effects of the target with 34

other variants must be decoupled from the marginal effects of the target and the other 35

variants. A failure to address this issue can alter the results. One way to do so is to use 36

an `1-penalized regression model [12] with both marginal effect and quadratic 37

interaction terms. If only one target SNP is investigated, generating as many quadratic 38

interaction terms as remaining SNPs in the genome, the number of coefficients in this 39

regression is doubled compared to a linear model with only marginal effects, rather than 40

squared if all pairwise interaction terms were to be considered. However, this is still too 41

many in a high-dimensional context such as GWAS. To improve the inference of the 42

interaction coefficients, Bien et al. [13] introduced hierNET, a LASSO with hierarchy 43

constraints between marginal and interactions terms. However, this approach does not 44

scale to more than a hundred variables and is therefore inapplicable to GWAS data. 45

We turn instead towards methods developed in the context of randomized controlled 46

trials, which aim at detecting synergies between a treatment (rather than a target SNP) 47

and a set of covariates (rather than other SNPs) towards an outcome (rather than a 48

phenotype). We draw on this analogy to propose two families of methods for epistasis 49

detection. First, modified outcome approaches are inspired by the work of Tian et 50

al. [14]. Here we construct a modified phenotype from the phenotype and all SNPs, in 51

such a way that the SNPs in epistasis with the target form the support of a sparse 52

linear regression between this modified phenotype and the non-target SNPs. Second, 53

outcome weighted learning approaches are inspired by the work of Zhao et al. [15]. Here 54

the SNPs in epistasis with the target form the support of a weighted sparse linear 55

regression between the phenotype and the non-target SNPs, with samples weighted 56

according to the phenotype and the target SNP. 57
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A major difference between our setting and that of randomized controlled trials is 58

the fact that, where they assume that the treatment is independent from the covariates, 59

we cannot assume independence between the target SNP and the rest of the genome. 60

Indeed, although recombination can be expected to break down non-random 61

associations between alleles at several loci, such associations exist, and are referred to as 62

linkage disequilibrium [16]. To account for this dependence, we introduce the equivalent 63

of propensity scores (that is to say, the probability of treatment given the 64

covariates [17]) in the modified outcome and outcome weighted learning approaches. In 65

addition, the high dimensionality of the data leads us to use stability selection [18,19] to 66

select the regularization parameter of the `1-penalized regressions. 67

In summary, we develop a new framework to study epistasis by solely focusing on 68

the synergies with a predetermined target. By proceeding this way, our methods 69

improve the recovery of interacting SNPs compared to standard methods like GBOOST 70

or a LASSO with interaction terms. We demonstrate the performance of our methods 71

against both of them for several types of disease models. We also conduct a case study 72

on a real GWAS dataset of type II diabetes to demonstrate the scalability of our 73

methods and to investigate the resulting differences between them. 74

1 Materials and methods 75

1.1 Setting and notations 76

We jointly model genotypes and phenotypes as a triplet of random variables (X,A, Y ) 77

with distribution P , where Y is a discrete (e.g. in case-control studies) or continuous 78

phenotype, X = (X(1), · · · , X(p)) ∈ {0, 1, 2}p represents a genotype with p SNPs, and A 79

is the (p+ 1)-th target SNP of interest. The reason why we split the p+ 1 SNPs into X 80

and A is that our goal is to detect interactions involving A and other SNPs in X. 81

Several selection strategies are possible for the anchor target A: eQTL SNPs for genes 82

with proven effect on the phenotype Y , deleterious splicing variants, or among 83

significant SNPs in previous GWAS. In classical GWAS, the SNPs are identified on the 84

basis of the significance of their main effects. A SNP with interaction effects only can 85

then be overlooked. To detect such SNPs, we can use association measures such as 86

distance correlation [20] and mutual information [21] which can better capture 87

second-order interaction effects. Alternatively, for the genotype X, we can choose the 88

rest of the genome (the whole genome except the target A) or a given set of SNPs. The 89

SNP set may correspond to a genomic region of interest e.g. gene, promoter region, or a 90

pathway. 91

We restrict ourselves to a binary encoding of A in {−1,+1}, which allows us to 92

study both recessive and dominant phenotypes, depending on how we binarize the SNP 93

represented in A. For instance, to model dominant effects, we respectively map {0} and 94

{1, 2} to {−1} and {+1}. We also introduce a second binarized version of the target 95

SNP A taking values in {0, 1} by letting Ã = (A+ 1)/2. SNP binarization is a common 96

procedure in GWAS in particular for the study of epistasis. Prabhu and Pe’er [22] and 97

Llinares-López [23] implement binarized genotypes, while Achlioptas et al. [24] use 98

locality-sensitive hashing (LSH) to transform the original genotypes into binary vectors. 99

The question is moot in doubled haploid organisms, where the SNPs are homozygous 100

only. 101

The target SNP A being symmetric and binary, it is always possible to decompose 102

the genotype and phenotype relationship as: 103

Y = µ(X) + δ(X) ·A+ ε, (1)
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where ε is a zero mean random variable and, 104
µ(X) =

1

2
[E(Y |A = +1, X) + E(Y |A = −1, X)] ,

δ(X) =
1

2
[E(Y |A = +1, X)− E(Y |A = −1, X)] .

(2)

If we further decompose δ(X) = δ0 + δ1(X) with E(δ1(X)) = 0, then δ0 represents 105

the main effect of A, and δ1(X) the synergistic effects between A and all SNPs in X. In 106

the context of genomic data, we can interpret these synergies as pure epistatic effects: 107

the main effects are accounted for by µ(X) and δ0. Furthermore, if δ1(X) is sparse, 108

meaning that it only depends on a subset of elements of X, referred to as the support of 109

δ1(X), then the SNPs in this support are the ones interacting with A. In other words, 110

searching for epistatic interactions between A and SNPs in X amounts to searching for 111

the support of δ. 112

A GWAS dataset is a set of n triplets (Xi, Ai, Yi)i=1,...,n, which we model as 113

independent random variables identically distributed according to P . To estimate the 114

support of δ(X) from a GWAS dataset, we propose several models based on sparse 115

regression. The common thread between them is the use of propensity scores to 116

estimate δ(X) and its support without estimating µ(X). We borrow the notion of 117

propensity score from the causal inference literature, where we are interested in 118

estimating the effect of a treatment on individuals characterized by covariates x. In that 119

context, the propensity score e(x) is defined as the conditional probability of being 120

treated for an individual with covariates x. The propensity score can be used to 121

compensate the differences in covariates between the two groups in observational 122

studies, where, by contrast with randomized controlled trials, investigators have no 123

control over the treatment assignment [25]. In our case, by analogy, we define the 124

propensity score e(x) for a configuration of SNPs X = x as the probability that the 125

target SNP A is equal to 1, i.e., e(x) = P (A = 1|X = x). This score allows us to model 126

linkage disequilibrium (LD) between A and other nearby SNPs within X. Based on this 127

notion of propensity score, the first family of methods we propose (Sections 1.2) falls 128

under the modified outcome banner [14]. In these models, an outcome that combines 129

the phenotype Y with the target SNP A and the propensity score e(X) is fit linearly to 130

the genomic covariates X. We propose several variants of this approach, which differ in 131

their control of estimation errors. Our second proposal (Sections 1.3) is a case-only 132

method based on the framework of outcome weighted learning [15]. In this model, which 133

is a weighted binary classification problem, the outcome is the target SNP A, the 134

covariates are the rest of the genotype X, while the phenotype Y and the propensity 135

score e(X) are incorporated in the sample weights. 136

The following subsections (Sections 1.2 and 1.3) elaborate on those methods. 137

Section 1.4 details our approach for the estimate of the propensity score e(X). Finally, 138

Section 1.5 explains how we perform model selection through stability selection. If not 139

stated otherwise, the full data pipeline is written in the R language. The methods 140

presented in this work are implemented in the R package epiGWAS, which is directly 141

available via CRAN. The source code can also be downloaded from the GitHub 142

repository https://github.com/EpiSlim/epiGWAS. 143

1.2 Modified outcome regression 144

Depending on the underlying target value and the binarization rule, only one of the two
possibilities A = +1 or A = −1 is observed for a given sample. In other words, as in
randomized controlled trials where, for each sample, either the treatment is applied or it
is not, here, for any given sample, we do not observe the phenotype associated with the
same genotype except in A which takes the other value. Hence δ(X) cannot be
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estimated directly from GWAS data using Eq. (2). The propensity score comes into
play to circumvent this problem. By considering the new binarized variable
Ã = (A+ 1)/2 ∈ {0, 1}, we can indeed use the fact thatE

[
Y Ã |X

]
= E

[
Y |X, Ã = 1

]
e(X) ,

E
[
Y (1− Ã) |X

]
= E

[
Y |X, Ã = 0

]
(1− e(X)) ,

to rewrite Eq. (2) as: 145

δ(X) =
1

2
E
[
Ỹ |X

]
, (3)

where we define the modified outcome Ỹ of an observation (X,A, Y ) as: 146

Ỹ = Y

(
Ã

e(X)
− 1− Ã

1− e(X)

)
. (4)

Our definition of modified outcome in Eq. (4) generalizes that of Tian et al. [14], 147

where it is defined as Ỹ = Y Ã; both definitions are equivalent in the specific situation 148

considered by Tian et al. [14] where A and X are independent, i.e., e(x) = 1/2 for all x. 149

Our definition (4) remains valid even when A and X are not independent, and can 150

therefore accommodate the diversity of the LD landscape and of the broad range of 151

minor allele frequencies. 152

Given Eq. (3), we propose to estimate the support of δ from GWAS data by first 153

transforming them into genotype-modified outcome pairs (Xi, Ỹi)i=1,...,n, and then 154

applying a sparse least-squares regression model for support recovery. For that purpose, 155

we use an elastic net linear regression model, combined with a stability selection 156

procedure for support selection, as detailed in Section 1.5. 157

In practice, however, creating the modified outcome Ỹi from a triplet (Xi, Ai, Yi) 158

using (4) raises two issues: (i) the propensity score e(Xi) must be known, and (ii) when 159

the propensity score is close to 0 or 1, then the propensity score weighting may create 160

numerical instability and large variance in the estimation of δ. Similar problems arise in 161

the causal inference literature, particularly for techniques based on inverse propensity 162

score weighting techniques (IPW) [25] and we consider four standard approaches to 163

form modified outcomes with inverse propensity score weights. They all start with an 164

estimate ê(X) of the true propensity score, which we discuss in Section 1.4. 165

• Modified outcomes are simply obtained by replacing e(Xi) by its estimate ê(Xi) in
(4):

Ỹi = Yi

(
Ãi

ê(Xi)
− 1− Ãi

1− ê(Xi)

)
.

• Shifted modified outcomes are obtained by simply adding a small term ξ = 0.1 to
the denominators in order to limit the inverse propensity score weight of each
individual to a maximum of 1/ξ:

Ỹi = Yi

(
Ãi

ê(Xi) + ξ
− 1− Ãi

1− ê(Xi) + ξ

)
.

• Normalized modified outcomes are obtained by scaling differently the inverse
propensity scores of individuals with Ã = 0 and Ã = 1, so that the total weights of
individuals in each group is the same. This normalization was shown to be
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beneficial empirically for the estimation of average treatment effect in causal
inference with IPW estimators [26]:

Ỹi = Yi

(
w1

Ãi
ê(Xi)

− w0
1− Ãi

1− ê(Xi)

)
,

where, for t = 0, 1,

wt =

 n∑
j=1

t
Ãj

ê(Xj)
+ (1− t) 1− Ãj

1− ê(Xj)

−1

.

• Robust modified outcomes are also borrowed from the causal inference literature,
and were shown to have small large-sample variance when used for average
treatment effect prediction with IPW estimators [26]:

Ỹi = Yi

(
w1

(
1− C1

ê(Xi)

)
Ãi

ê(Xi)
− w0

(
1− C0

1− ê(Xi)

)
1− Ãi

1− ê(Xi)

)
,

where, for t = 0, 1,

Ct =

∑n
j=1

Ãj−ê(Xi)
tê(Xi)+(t−1)(1−ê(Xi))∑n

j=1

[
Ãj−ê(Xi)

tê(Xi)+(1−t)(1−ê(Xi))

]2 ,
and

wt =

 n∑
j=1

t

(
1− C1

ê(Xi)

)
Ãj

ê(Xj)
+ (1− t)

(
1− C0

1− ê(Xi)

)
1− Ãj

1− ê(Xj)

−1

.

1.3 Outcome weighted learning 166

Inspired by the outcome weighted learning (OWL) model of Zhao et al. [15], developed 167

in the context of randomized clinical trials, we now propose an alternative to the 168

modified outcome approach to estimate δ(X) and its support using a weighted binary 169

classification formulation. As with OWL, this formulation mathematically amounts to 170

predicting A from X, where prediction errors are weighted according to Y in the fitting 171

process. In the original OWL proposal, the goal is to determine an optimal individual 172

treatment rule d∗ that predicts treatment A from prognostic variables X so as to 173

maximize the clinical outcome Y . In our context, this translates to determining an 174

optimal predictor d∗ that predicts target SNP A from genotype X, so as to maximize Y 175

(which is larger for cases than controls). We expect such a predictor to rely on the SNPs 176

that interact with A towards predicting the phenotype Y . We assume in this section 177

that Y only takes nonnegative values, e.g., Y ∈ {0, 1} for a case-control study. To take 178

into account the dependency between A and X, we replace P (A) with P (A|X) in the 179

original OWL definition [15] and look for the following decision rule: 180

d∗ ∈ argmin
d:{0,1,2}p→R

E
[

Y

P (A|X)
φ (Ad(X))

]
, (5)

where φ is a non-increasing loss function such as the logistic loss: 181

∀u ∈ R , φ(u) = log
(
1 + e−u

)
. (6)

The reason to consider this formulation is that: 182
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Lemma 1. The solution d∗ to (5)-(6) is:

∀x ∈ {0, 1, 2}p , d∗(x) = ln
E [Y |A = +1, X = x]

E [Y |A = −1, X = x]
.

Proof. For any x ∈ {0, 1, 2}p, we see from Eq. (5) that d∗(x) must minimize the
function l : R→ R defined by

∀u ∈ R , l(u) = E
[

Y

P (A|X = x)
φ (Au)

∣∣∣∣X = x

]
= φ(u)E [Y |A = 1, X = x] + φ(−u)E [Y |A = −1, X = x] .

This function is minimized when l′(u) = 0, that is, when
φ′(u)E [Y |A = 1, X = x] = φ′(−u)E [Y |A = −1, X = x] , which is equivalent to:

E [Y |A = 1, X = x]

E [Y |A = −1, X = x]
= eu.

183

Lemma 1 clarifies how d∗ is related to δ as defined in Eq. (2): while δ is half the 184

difference between the expected phenotype conditioned on the two alternative values of 185

A, d∗ is the log-ratio of the same two quantities. In particular, both functions have the 186

same sign for any genotype X. Hence we propose to estimate d∗ and its support, as an 187

approximation and alternative to estimating δ and its support, in order to capture 188

SNPs in epistasis with A. 189

For any given (X,A, Y ), if we define the weight W = Y/P (A|X), we can interpret 190

d∗ in Eq (5) as a logistic regression classifier that predicts A from X, with errors 191

weighted by W . Hence d∗ and its support can be estimated from GWAS data by 192

standard tools for weighted logistic regression and support estimation. We use an elastic 193

net logistic regression model, combined with a stability selection procedure for model 194

selection, detailed in Section 1.5. 195

In the case of qualitative GWAS studies, we encode Y as 0 for controls and 1 for 196

cases. The sample weights W of controls thus become 0, resulting in a case-only 197

approach for epistasis detection. Tools such as PLINK [27] and INTERSNP [28] 198

similarly implement case-only analyses, which can be more powerful in practice than a 199

joint case-control analysis [4, 29–31]. In the case of PLINK and INTERSNP, additional 200

hypotheses such as the independence of SNP–SNP frequencies are nonetheless needed to 201

ensure the validity of the statistical test. In our case, the family of weights 202

{Wi = 1/P (Ai|Xi)}i=1,··· ,n accounts for the dependency between the target A and the 203

genotype X. We can therefore forego such hypotheses on the data. We may even argue 204

that the controls are indirectly included in the regression model through P (A|X). It 205

represents the dependency pattern within the general population, which consists of both 206

cases and controls. 207

1.4 Estimate of the propensity score 208

In causal inference, the estimation of propensity scores e(X) = P (A = 1|X) is often 209

achieved thanks to parametric models such as a logistic regression between A and X. 210

Because of the risk of overfitting in such an ultra high-dimensional setting, we turn 211

instead towards hidden Markov models, which are commonly used in genetics to model 212

linkage disequilibrium and were initially developed for imputation [32]. In this model, 213

the hidden states represent contiguous clusters of phased haplotypes. The emission 214

states correspond to SNPs. 215
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Since the structural dependence is chromosome-wise, we only retain the SNPs 216

located on the same chromosome as the SNP A – which we denote here by XA – for the 217

estimate of P (A|X). Mathematically, this is equivalent to the independence of the 218

SNPs A and XA from the SNPs of other chromosomes. 219

The pathological cases P (A|XA) ≈ 1 and P (A|XA) ≈ 0 can be avoided by the 220

removal of all SNPs within a certain distance of A. In our implementation, we first 221

perform an adjacency-constrained hierarchical clustering of the SNPs located on the 222

chromosome of the target A. We fix the maximum correlation threshold at 0.5. To 223

alleviate strong linkage disequilibrium, we then discard all neighboring SNPs within a 224

three-cluster window of SNP A. Such filtering is sensible since we are looking for 225

biological interactions between functionally-distinct regions. The neighboring SNPs are 226

not only removed for the estimation of the propensity score, but also in the regression 227

models searching for interactions. 228

After the filtering and the fitting of the unphased genotype model using fastPHASE, 229

the last remaining step is the application of the forward algorithm [33] to obtain an 230

estimate of the two potential observations (A = 1, XA) and (A = −1, XA). Bayes 231

theorem then yields the desired probability 232

P (A|X) = P (A|XA) = P (A,XA)/(P (A = +1, XA) + P (A = −1, XA)). 233

1.5 Support estimation 234

In order to estimate the support of δ in the case of modified outcome regression (3), and 235

of d∗ in the case of OWL (5), we model both functions as linear models and estimate 236

non-zero coefficients by elastic net regression [34] combined with stability 237

selection [18,19]. 238

More precisely, given a GWAS cohort (Xi, Ai, Yi)i=1,...,n, we first define empirical
risks for a candidate linear model x 7→ γ>x for δ and d∗ as respectively

R1(γ) =
1

n

n∑
i=1

(
Ỹi − γ>Xi

)2

, R2(γ) =
1

n

n∑
i=1

Yi
P (Ai|Xi)

φ(Aiγ
>Xi) .

For a given regularization parameter λ > 0 and empirical risk R = R1 or R = R2, we
then define the elastic net estimator:

γ̂λ ∈ argmin
γ

R(γ) + λ

[
(1− s)||γ||1 +

1

2
s||γ||22

]
,

where we fix s = 10−6 to give greater importance to the L1-penalization. Over a grid of
values Λ for the penalization parameter λ, we subsample N = 50 times without
replacement over the whole cohort. The size of the generated subsamples I1, · · · , IN is
bn/2c. Each subsample I provides a different support for γ̂λ, which we denote Ŝλ(I).
For λ ∈ Λ, the empirical frequency of the variable Xk entering the support is then given
by:

ω̂λk =
1

N

N∑
j=1

1(k ∈ Ŝλ(Ij)).

In the original stability selection procedure [18], the decision rule for including the 239

variable k in the final model is max
λ∈Λ

ω̂λk ≥ t. The parameter t is a predefined threshold. 240

For noisy high-dimensional data, the maximal empirical frequency along the stability 241

path max
λ∈Λ

ω̂λk may not be sufficiently robust because of its reliance on a single noisy 242

measure of ω̂λk to derive the maximum. Instead, we used the area under the stability 243

path,
∫
λ
ω̂λk dλ, as propsed by Haury et al. [19]. The main intuition behind the better 244

performance is the early entry of causal variables into the LASSO path. 245
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Finally, to determine the grid Λ, we use the R package glmnet [35]. We generate a 246

log-scaled grid of 200 values (λl)l=1,··· ,200 between λ1 = λmax and λ200 = λmax/100, 247

where λmax is the maximum λ leading to a non-zero model. To improve inference, we 248

only retain the first half of the path comprised between λ1 and λ100. The benefit of a 249

thresholded regularization path is to discard a large number of irrelevant covariates that 250

enter the support for low values of λ. 251

2 Results 252

2.1 Simulations 253

2.1.1 Disease model 254

We simulate phenotypes using a logit model with the following structure:

logit(P (Y = 1|Ã = i,X)) = βTi,VXV + βTWXW +XT
Z1

diag (βZ1,Z2)XZ2 ,

where V,W,Z1 and Z2 are random subsets of {1, · · · , p}. The variables within the 255

vector XV interact with A. The variables in XW corresponds to marginal effects, while 256

XZ1
and XZ2

correspond to pairs of quadratic effects between SNPs that exclude A. 257

The effect sizes β0,V , β1,V , βW and βZ1,Z2
are sampled from N (0, 1). Given the 258

symmetry around 0 of the effect size distributions, the simulated cohorts are 259

approximately equally balanced between cases and controls. 260

To account for the diversity of effect types in disease models, we simulate four 261

scenarios with different overlap configurations between XV and (XW , XZ1): 262

• Synergistic only effects, |V ∩W | = 0, |V ∩ Z1| = 0, |V | = |W | = |Z1| = |Z2| = 8; 263

• Partial overlap between synergistic and marginal effects, 264

|V ∩W | = 4, |V ∩ Z1| = 0, |V | = |W | = |Z1| = |Z2| = 8; 265

• Partial overlap between synergistic and quadratic effects, 266

|V ∩W | = 0, |V ∩ Z1| = 4, |V | = |W | = |Z1| = |Z2| = 8; 267

• Partial overlap between synergistic and quadratic/marginal effects, 268

|V ∩W | = 2, |V ∩ Z1| = 2, |V | = |W | = |Z1| = |Z2| = 8. 269

For each of the above scenarios, we conduct 125 simulations: 5 sets of causal SNPs 270

{A, V,W,Z1, Z2} × 5 sets of size effects {β0,V , β1,V , βW , βZ1,Z2} × 5 replicates. Within 271

each scenario, we consider multiple SNP sets to model the range of MAFs and LD 272

which can exist between A and X. 273

Because of the filtering window around the SNP A, the causal SNPs 274

(XV , XW , Z1, Z2) are sampled outside of that window. The second constraint on the 275

causal SNPs is a lower bound on the minor allele frequencies (MAF). We fix that bound 276

at 0.2. The goal is to obtain well-balanced marginal distributions for the different 277

variants. For rare variants, it is difficult to untangle the statistical power of any method 278

from the inherent difficulty in detecting them. The lower bound is also coherent with 279

the common disease-common variant hypothesis [36]: the main drivers of 280

complex/common diseases are common SNPs. 281

2.1.2 Genotype simulations 282

For the sake of coherence, we simulate genotypes using the second release of 283

HAPGEN [37]. The underlying model for HAPGEN is the same hidden Markov model 284

used in fastPHASE. The starting point of the simulations is a reference set of 285
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population haplotypes. The accompanying haplotypes dataset is the 1000 Genomes 286

phase 3 reference haplotypes [38]. In our simulations, we only use the European 287

population samples. The second input to HAPGEN is a fine scale recombination map. 288

Consequently, the simulated haplotypes/genotypes exhibit the same linkage 289

disequilibrium structure as the original reference data. 290

In comparison to the HAPGEN-generated haplotypes, the markers density for SNP 291

arrays is significantly lower. For example, the sequencing technology for the WTCCC 292

case-control consortium [39] is the Affymetrix 500K. As its name suggests, “only” five 293

hundred thousand positions are genotyped. As most GWAS are based on SNP array 294

data, we only extract from the simulated genotypes the markers of the Affymetrix 500K. 295

In the subsequent QC step, we only retain common bi-allelic SNPs defined by a MAF 296

> 0.01. We also remove SNPs that are not in a Hardy-Weinberg equilibrium 297(
p < 10−6

)
. We do not conduct any additional LD pruning for the SNPs in X. For 298

univariate GWAS, LD pruning reduces dimensionality while approximately maintaining 299

the same association patterns between genotype and phenotype. For second order 300

interaction effects, the loss of information can be more dramatic, as the retained SNP 301

pairs can be insufficient to represent the complex association of corresponding genomic 302

regions with the phenotype. 303

For iterative simulations, HAPGEN can be time-consuming, notably for large 304

cohorts consisting of thousands of samples. We instead proceed in the following way: we 305

generate once and for all a large dataset of 20 thousand samples on chromosome 22. To 306

benchmark for varying sample sizes n ∈ {500, 1000, 2000, 5 000}, we iteratively sample 307

uniformly and without replacement n-times the population of 20 000 individuals to 308

create 125 case-control cohorts. On chromosome 22, we then select p = 5 000 SNPs 309

located between the nucleotide positions 16 061 016 and 49 449 618. We do not conduct 310

any posterior pruning to avoid filtering out the true causal SNPs. 311

2.1.3 Evaluation 312

We benchmark our new methods against two baselines. The first method is 313

GBOOST [9], a state-of-the-art method for epistasis detection. For each SNP pair, it 314

implements the log-likelihood ratio statistic to compare the goodness of fit of two 315

models: the full logistic regression model with both main effect and interaction terms, 316

and the logistic regression model with main effects only. The preliminary sure screening 317

step in GBOOST to discard a number of SNPs from exhaustive pairwise testing was 318

omitted, since we are only interested in the ratio statistic for all pairs of the form 319

(A,Xk), where Xk is the k-th SNP in X. The second method, which we refer to as 320

product LASSO, originates from the machine learning community. It was developed by 321

Tian et al. [14] to estimate interactions between a treatment and a large number of 322

covariates. It fits an L1-penalized logistic regression model with A×X as covariates. 323

The variable of interest A is symmetrically encoded as {−1,+1}. Under general 324

assumptions, Tian et al. [14] show how this model works as a good approximation to 325

the optimal decision rule d∗ (see Section 1.3). 326

We visualize the support estimation performance in terms of receiver-operating 327

characteristic (ROC) curves and precision-recall (PR) curves. For a particular method 328

in a given scenario, a single ROC (resp. PR) curve allows to visualize the ability of the 329

algorithm to recover causal SNPs. For each SNP, the prediction score is the area under 330

its corresponding stability path. The ground truth label is 1 for the SNPs interacting 331

with the target A, and 0 otherwise. In the high-dimensional setting of GWAS, the use 332

of raw scores instead of p-values lends more robustness to our methods, by avoiding 333

finite-sample approximations of the score distributions and multiple hypothesis 334

corrections. 335

The covariates and the outcome differ between our methods. That implies a different 336
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regularization path for each method and as a result, incomparable stability paths. For 337

better interpretability and comparability between the methods, we use the position l on 338

the stability path grid Λ = (λl) s.t. λl > λl+1 instead of the value of λl for computing 339

the area under the curve. 340

In Figure 1, we provide the ROC and PR curves for the fourth scenario which 341

corresponds to a partial overlap between synergistic and quadratic/marginal effects and 342

for a sample size n = 500. Because of space constraints, all ROC/PR figures and 343

corresponding AUC tables are listed in Appendix 3. The figures represent the average 344

ROC and PR curves of the 125 simulations in each of the four scenarios. To generate 345

those figures, we used the R package precrec [40]. It performs nonlinear interpolation in 346

the PR space. The AUCs are computed with same package. 347

Regardless of the scenario and the sample size, the areas under all ROC curves are 348

higher than 0.5. This confirms that all of them perform better than random, yet with 349

varying degrees of success. By contrast, the overall areas under the precision-recall 350

curves are low. The maximum area under the precision-recall curve is 0.41, attained by 351

modified outcome with shifted weights for n = p. This can be attributed to the 352

imbalanced nature of the problem: 8 synergistic SNPs out of 5 000. We also check that 353

the AUCs increase with the cohort size for both ROC and PR domains. 354

The best performing methods are robust modified outcome and GBOOST. Robust 355

modified outcome has a slight lead in terms of ROC AUCs, notably for low sample sizes. 356

The latter setup is the closest to our intended application in genome-wide association 357

studies. Of special interest to us in the ROC space is the bottom-left area. It reflects 358

the performance of highly-ranked instances. For all scenarios, we witness a better start 359

for robust modified outcome. The other methods within the modified outcome family 360

behave similarly. Such a result was expected because of their theoretical similarities. 361

Despite the model misspecification, product LASSO performs rather well. On average, 362

it comes third to GBOOST and robust modified outcome. The outcome weighted 363

learning approach which is an approximation to estimating the sign of δ has consistently 364

been the worst performer in the ROC space. 365

In PR space, the results are more mixed. For low sample sizes, robust modified 366

outcome is still the best performing method. As the sample size increases, we observe 367

that other methods within the modified outcome family, notably shifted modified 368

outcome, surpass the robust modified outcome approach. Surprisingly, the good 369

performance of GBOOST in ROC space was not reproduced in PR space. This might 370

be explained by the highly imbalanced nature of the problem and the lower performance 371

of GBOOST, compared to robust modified outcome in the high specificity region of the 372

ROC curves (lower left). By contrast, product LASSO is always trailing the best 373

performer of the modified outcome family. As for ROC curves, we are also interested in 374

the beginning of the PR curves. For a recall rate of 0.125, the highest precision rate is 375

near 0.5 for the first, third and fourth scenarios. That implies that we detect on average 376

one causal SNP in the first two SNPs. For the second scenario, the highest precision 377

rate is even higher at approximately 0.68. The area under the stability path is then a 378

robust score for model selection in the high dimensional setting. 379

It is worth noting the homogeneous behavior of the different methods across the four 380

scenarios. For a given sample size, and for a given method, the ROC and PR AUCs are 381

similar. This suggests they all successfully filtered out the common effects term µ(X) 382

even in presence of an overlap between the causal SNPs within µ(X) and δ(X). 383

2.2 Case study : type II diabetes dataset of the WTCCC 384

As a case study, we selected the type II diabetes dataset of the WTCCC [39] to 385

illustrate the scalability of our methods to real datasets. To the best of our knowledge, 386

no confirmed epistatic interactions exist for type II diabetes. We instead propose to 387
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study the synergies with a particular target: rs41475248 on chromosome 8. We focus on 388

this target SNP because (i) GBOOST finds that it is involved in 3 epistatic interactions, 389

when controlling for a false discovery rate of 0.05, and (ii) it is a common variant, with 390

a MAF of 0.45. 391

Before running our methods on the WTCCC dataset, we applied the same QC 392

procedures with the following thresholds: 0.01 for minor-allele frequencies and p > 10−6
393

for the Hardy-Weinberg equilibrium. No additional pruning is performed. The number 394

of remaining variants is 354 439 SNPs. The number of samples is 4 897, split between 395

1 953 cases and 2 944 controls. 396

To solve the different L1-penalized regressions, we abandoned the glmnet package in 397

favor of another one, biglasso [41]. Indeed, glmnet does not accept as input such 398

ultra-high dimensional design matrices. On the other hand, biglasso was specifically 399

developed for similar settings thanks to its multi-threaded implementation and 400

utilization of memory-mapped files. Because biglasso does not implement sample 401

weighting, it cannot be used to run outcome weighted learning. Since this approach 402

performs worse than the modified outcome approaches on simulated data, we simply 403

exclude it from this case study. 404

The main difficulty for the evaluation of GWAS methods is the biological validation 405

of the study results. We often lack evidence to correctly label each SNP as being 406

involved or not in an epistatic interaction. Evaluating the real model selection 407

performance of the different methods on real datasets is then impossible. However, we 408

can study the concordance between them. A common way to proceed is Kendall’s tau 409

which is a measure of rank correlation. In Table 1, we give the correlation matrix of our 410

four variants of modified outcome methods, and of the two baseline methods GBOOST 411

and product LASSO. All elements are positive which indicates a relative agreement 412

between the methods. While methods using different mathematical definitions of 413

epistasis cannot be expected to return the same results, those with similar or identical 414

underlying models should capture similar genetic architectures and return more similar 415

results. Modified outcome, normalized modified outcome and shifted modified outcome 416

have the highest correlation coefficients. Such a result was expected because of their 417

theoretical similarities. We also note that the lowest score is for robust modified 418

outcome and GBOOST. In the previous section, these two methods were the best 419

performing. This suggests those two methods can make different true discoveries. 420

GBOOST Modified
outcome

Normalized
modified
outcome

Shifted
modified
outcome

Robust
modified
outcome

Product
LASSO

GBOOST 1.000 0.200 0.203 0.202 0.070 0.152
Modified outcome 0.200 1.000 0.411 0.405 0.150 0.283

Normalized
modified outcome

0.203 0.411 1.000 0.406 0.153 0.284

Shifted modified
outcome

0.202 0.405 0.406 1.000 0.179 0.301

Robust modified
outcome

0.070 0.150 0.153 0.179 1.000 0.257

Product LASSO 0.152 0.283 0.284 0.301 0.257 1.000

Table 1. Concordance between methods used to determine SNPs synergistic to rs41475248 in type II diabetes, measured by
Kendall’s tau.

In any follow-up work, we will only exploit the highly-ranked variants. A weighted 421

tau statistic that assigns a higher weight to the first instances is therefore more relevant. 422

Weighted nonnegative tau statistics better assess the relative level of concordance 423
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between different pairs of methods, while the sign in Kendall’s tau shows if two methods 424

rather agree or disagree. In Table 2, we list Kendall’s tau coefficients with 425

multiplicative hyperbolic weighting. Similarly, we notice that robust modified outcome 426

is least correlated with GBOOST and most correlated with product LASSO. 427

GBOOST Modified
outcome

Normalized
modified
outcome

Shifted
modified
outcome

Robust
modified
outcome

Product
LASSO

GBOOST 1.000 0.483 0.481 0.517 0.423 0.501
Modified outcome 0.483 1.000 0.851 0.857 0.462 0.586

Normalized
modified outcome

0.481 0.851 1.000 0.860 0.467 0.594

Shifted modified
outcome

0.517 0.857 0.860 1.000 0.504 0.603

Robust modified
outcome

0.423 0.462 0.467 0.504 1.000 0.596

Product LASSO 0.501 0.586 0.594 0.603 0.596 1.000

Table 2. Concordance between methods used to determine SNPs synergistic to rs41475248 in type II diabetes, measured by
Kendall’s tau with multiplicative weights.

Aside from rank correlation, another option to appraise the results is to measure the 428

association between the top SNPs for each method and the phenotype. Table 3 lists the 429

Cochran-Armitage test p-values for the top 25 SNPs for each method in an increasing 430

order. Despite being synthetic univariate measures, the Cochran-Armitage statistics 431

give us an indication of the true ranking performance. Robust modified outcome is 432

clearly the method with the lowest p-values. For instance, the top 14 SNPs have a 433

p-value lower than 0.001. That confirms the result of our simulations that robust 434

modified outcome is the best performer for capturing causal SNPs. The p-values 435

associated to product LASSO and GBOOST are also relatively low, with respectively 5 436

and 4 p-values lower than 0.001. However, we note the overall difficulty in drawing clear 437

conclusions for all methods. Without multiple testing correction, most of the p-values 438

for each method already exceed classical significance levels e.g. 0.05. For 3 out of 6 439

methods, the p-values of the 25th SNP are greater than 0.90. Nonetheless, the existence 440

of such high p-values further demonstrates the capacity of our methods in discovering 441

novel associations undetected by univariate methods. 442

3 Discussion 443

In this paper, we have proposed several methods, inspired from the causal inference 444

literature, to select SNPs having synergystic effects with a particular target SNP 445

towards a phenotype. The consistency of our results across the four disease models show 446

that the proposed methods are rather successful. Indeed, their performance is not 447

strongly impacted by the presence/absence of other marginal and epistatic effects. 448

Among the methods we propose, robust modified outcome is the most suited to real 449

GWAS applications. Its superior performance is partially due to its robustness against 450

propensity score misspecification. The AUCs for robust modified outcome are overall 451

the highest in addition to its retrieval performance for highly-ranked instances. More 452

importantly, robust modified outcome outperforms GBOOST and other 453

regression-based methods. This is particularly true for small number of samples 454

(n = 500), which is the closest setup to real GWAS datasets. However, the low PR 455

AUCs show that there is still room for improvement. The highest observed PR AUC is 456

0.17. Interestingly, we note that several of our methods clearly outperform GBOOST 457
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GBOOST Modified
outcome

Normalized
modified
outcome

Shifted
modified
outcome

Robust
modified
outcome

Product
LASSO

0.0000047 0.0000000 0.0000000 0.0000000 0.0000000 0.0000047
0.0002632 0.0000015 0.0000015 0.0000015 0.0000000 0.0000075
0.0002667 0.0002667 0.0002667 0.0002667 0.0000001 0.0000172
0.0006166 0.0027308 0.0027308 0.0027308 0.0000012 0.0002667
0.0015069 0.0093734 0.0093734 0.0093734 0.0000049 0.0005286
0.0028872 0.0633055 0.0633055 0.0633055 0.0000059 0.0110392
0.0031533 0.0724198 0.0724198 0.0724198 0.0000075 0.0122543
0.0034323 0.0925877 0.0925877 0.0771170 0.0000172 0.0152912
0.0081128 0.1126164 0.1043632 0.0925877 0.0002030 0.0346055
0.0093734 0.1272777 0.1126164 0.1126164 0.0002667 0.0347964
0.0142695 0.2552284 0.1567974 0.1272777 0.0003047 0.0396448
0.0633055 0.2926915 0.2971396 0.1639805 0.0004643 0.0396932
0.0771170 0.3436741 0.3529366 0.2971396 0.0005286 0.0527104
0.1616393 0.3529366 0.5012038 0.3529366 0.0005841 0.0633055
0.2089538 0.5871432 0.5506690 0.5012038 0.0015214 0.0763114
0.2114803 0.5985624 0.5985624 0.5707955 0.0016353 0.1126164
0.2256368 0.6016953 0.7183847 0.5985624 0.0025709 0.1185275
0.2586186 0.6361937 0.7199328 0.7000506 0.0064196 0.1796624
0.2654530 0.7183847 0.7342897 0.7183847 0.0080405 0.2552284
0.4105146 0.7342897 0.7656055 0.7342897 0.0110392 0.3308890
0.4323674 0.7979653 0.7706524 0.7979653 0.0122543 0.3867409
0.4376669 0.8683271 0.7979653 0.7993838 0.0124442 0.5045073
0.4796214 0.8820292 0.7993838 0.8683271 0.0136452 0.5985624
0.5871432 0.9188037 0.8820292 0.8821872 0.0346055 0.6238335
0.9479547 0.9903334 0.8821872 0.9188037 0.0396932 0.8821872

Table 3. Cochran-Armitage test p-values for the top 25 SNPs for each method.

across all scenarios and all sample sizes in the PR space. Nonetheless, GBOOST 458

behaves similarly to our methods in the ROC space. Such differences between ROC and 459

PR curves are common for highly-imbalanced datasets where PR curves are more 460

informative and discriminative [42]. 461

In our simulations, ROC and PR AUCs were relatively close between all methods. 462

On the other hand, according to two rank correlation measures (Kendall’s tau and 463

weighted Kendall’s tau), the results do not strongly overlap between the different 464

methods (values far from 1). For instance, GBOOST least agrees with robust modified 465

outcome. However, the two methods are the best performing in our simulations. 466

Different approaches seem to discover different types of interactions [43]. We conclude 467

that a consensus method combining GBOOST and robust modified outcome could 468

better improve the recovery of interacting SNPs. 469

The carried simulations prove that the highly-ranked SNPs include false positives. 470

This is accentuated by the imbalanced nature of our problem: a handful of causal SNPs 471

for thousands of referenced SNPs. Hopefully, the continual decrease in genotyping costs 472

will result in a dramatic increase in sample sizes and, in consequence, statistical power. 473

For instance, the UK Biobank [44] comprises full genome-wide data for five hundred 474

thousand individuals. 475

The case study that we carried for type II diabetes demonstrates the scalability of 476

our methods to real GWAS. To reduce runtime, one can reduce the number of 477

subsamples used for stability selection; however this may come at the expense of 478
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performance. The development of new and faster LASSO solvers [45, 46] for large scale 479

problems will further help broaden the adoption of our methods by end-users without 480

compromising statistical performance. 481

The main contribution of our work is extending the causal inference framework to 482

epistasis detection by developing a new family of methods. They rely on propensity 483

scores to detect interactions with specific SNP targets. Given our partial understanding 484

of common diseases and the overall lack of statistical power of existing tools, such 485

refocused models can be more useful to further our understanding of disease etiologies. 486

Hundreds of genes have already been associated with several diseases via univariate 487

GWAS. The next step is to leverage such findings to detect additional synergies between 488

these genes and the rest of the genome. Beyond a better understanding of disease 489

mechanisms through new biomarker discovery, we see the development of combination 490

drug therapies as an additional application of our work. 491

A first area of future improvement for our methods is propensity score estimation, 492

which can benefit from a large number of recent methods [47]. A second area is 493

incorporating multiple covariates (whether clinical covariates, variables encoding 494

population structure or other genetic variants) to account for, among other things, 495

higher-order interactions and population structure. A straightforward solution is to 496

include additional variables in X, which encode for the other covariates. However, this 497

will impact the consistency and interpretability of the propensity scores. A second 498

potential solution is the use of modified targets which combine the original target with 499

the other covariates e.g. target × gender. We think that such outcomes have not been 500

explored because of the insufficiency of the representation by a single binary variable. 501

To address this issue we can, for example, borrow some of the ideas in VanderWeele and 502

Hernan [48] to construct richer representations. 503

Figures 504

Fig 1. Average ROC (left) and PR (right) curves for the fourth scenario and n = 500

Supporting information 505

S1 Appendix. Genotypic hidden Markov model. 506

S2 Appendix. Simulation results. 507
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