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Abstract

Anxiety  results  in  sub-optimal  motor  performance  and  learning;  yet,  the  precise  mechanisms
through which these modifications occur remain unknown. Using a reward-based motor sequence
learning paradigm, we show that concurrent and prior anxiety states impair learning by biasing
estimates  about  the  hidden  performance  goal  and  the  stability  of  such  estimates  over  time
(volatility). In an electroencephalography study, three groups of participants completed our motor
task,  which  had  separate  phases  for  motor  exploration  (baseline)  and  reward-based  learning.
Anxiety was manipulated either during the initial baseline exploration phase or while learning. We
show that anxiety induced at baseline reduced motor variability, undermining subsequent reward-
based learning. Mechanistically, however, the most direct consequence of state anxiety was an
underestimation of the hidden performance goal and a higher tendency to believe that the goal was
unstable over time. Further, anxiety decreased uncertainty about volatility, which attenuated the
update  of  beliefs  about  this  quantity.  Changes  in  the  amplitude  and  burst  distribution  of
sensorimotor  and  prefrontal  beta  oscillations  were  observed  at  baseline,  which  were  primarily
explained by the anxiety induction. These changes extended to the subsequent learning phase,
where phasic increases in beta power and in the rate of long (> 500 ms) oscillation bursts following
reward feedback were linked to smaller updates in predictions about volatility, with a higher anxiety-
related increase explaining the biased volatility estimates.  These data suggest that state anxiety
alters the dynamics of beta oscillations during general performance, yet more prominently during
reward  processing,  thereby  impairing  proper  updating  of  motor  predictions  when  learning  in
unstable environments.
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Introduction

Anxiety involves anticipatory changes in physiological and psychological responses to an uncertain
future threat  (Bishop, 2007; Grupe and Nitschke,  2013).  Previous studies established that  trait
anxiety interferes with prefrontal  control  of  attention in perceptual tasks,  whereas state anxiety
modulates the amygdala during detection of threat-related stimuli (Bishop, 2007; Bishop, 2009).
Computational modeling work has started to examine the mechanisms through which anxiety might
impair learning, revealing that highly anxious individuals do not correctly estimate the degree of
uncertainty in the environment during aversive learning (Browning et al. 2015). In the area of motor
control,  research  has  shown that  stress  and  anxiety  have  detrimental  effects  on  performance
(Baumeister,  1984;  Beilock  and  Carr,  2001).  These  results  have  been  interpreted  as  the
interference of anxiety with information-processing resources; also as a shift towards an inward
focus of attention and an increase in conscious processing of the movement (Eysenck & Calvo,
1992;  Pijpers  et  al.,  2005).  The  effects  of  anxiety  on  motor  learning,  however,  are  often
inconsistent,  and a mechanistic  understanding is  still  lacking.  Delineating mechanisms through
which anxiety influences motor learning is important to ameliorate its impact in different settings,
including in motor rehabilitation programs. 

Motor variability could be one component of motor learning that is affected by anxiety; it is
defined as the variation of performance across repetitions (van Beers et al., 2004), and is affected
by various factors including sensory and neuromuscular noise (He et al., 2016). As a form of action
exploration, movement variability is increasingly recognized to benefit motor learning (Todorov and
Jordan, 2002; Wu et al., 2014; Pekny et al., 2015), particularly during reward-based learning, with
discrepant  effects in  motor  adaptation  paradigms (He et  al.,  2016;  Singh et  al.,  2016).  These
findings are consistent with the vast amount of research on reinforcement learning, demonstrating
increased learning following initial exploration (Sutton and Barto, 1998). 

Yet contextual factors can reduce variability. For instance,  state anxiety leads to ritualistic
behavior, characterized by movement redundancy, repetition, and rigidity (Lang et al., 2015). This
finding  resembles  the  reduction  in  behavioral  variability  and  exploration  that  manifests  across
animal species in stressful environments (Morgan and Tromborg, 2007). Based on these results,
we set out to test the hypothesis that state anxiety modulates motor learning through a reduction in
motor variability.

A  second  component  that  could  be  influenced  by  anxiety  is  the  flexibility  to  adapt  to
changes in the task structure during learning. Individuals affected by anxiety disorders exhibit an
intolerance  of  uncertainty,  which  contributes  to  excessive  worry  and  emotional  dysregulation
(Ouellet et al., 2019). Turning to non-clinical populations, computational studies established that
highly  anxious  individuals  exhibit  difficulties  in  estimating  environmental  uncertainty  both  in
aversive and reward-based tasks (Browning et al., 2015; Huang et al., 2017). Failure to adapt to
volatile or unstable environments thus impairs learning of action-outcome contingencies in these
settings. Accordingly, in the context of motor learning, and more specifically, reward-based motor
learning, we proposed that an increase in anxiety would affect individuals’ estimation of uncertainty
about the stability of the task structure, such as the rewarded movement.  

On the neural  level,  we  posited  that  changes  in  motor  variability  are  driven  by  neural
variability in premotor and motor areas. Support for our hypothesis comes from animal studies
demonstrating that  variability in  the primate premotor cortex tracks behavioral  variability during
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motor planning (Churchland et al., 2006). Further evidence supports that changes in variability in
single-neuron activity in motor cortex drive motor exploration during initial learning, and reduce it
following intensive training (Mandelblat-Cerf  et  al.,  2009;  Santos et  al.,  2015).  Additionally,  the
basal ganglia are crucial for modulating variability during learning and production, as shown in
songbirds and, indirectly, in patients with Parkinson’s disease (Kao et al., 2005;  Ölveczky et al.,
2005; Pekny et al., 2015).

In the present study, we analyzed sensorimotor beta oscillations (13-30Hz) as a candidate
mechanism driving motor exploration and variability. Beta oscillations modulate different aspects of
performance and motor learning (Herrojo Ruiz et al., 2014; Bartolo and Merchant, 2015; Tan et al.,
2014),  as well  as  reward-based learning (Haji  Hosseini  et  al.,  2012).  Increases in  beta  power
following movement have been proposed to signal higher reliance on prior information about the
optimal  movement  (Tan et  al.,  2016),  which would reduce the impact  of  new evidence on the
update of motor commands. We therefore tested the additional hypothesis that changes in beta
oscillations mediate the effect of anxiety on belief updates and the estimation of uncertainty driving
reward-based  motor  learning.  Although  power  changes  were  traditionally  the  primary  focus  of
research on oscillations,  there  is  a renewed interest  towards  assessing dynamic  properties  of
oscillatory activity, such as the presence of brief bursts (Poil et al., 2008). Brief oscillation bursts
are considered to be a central feature of physiological beta in motor-premotor cortex and the basal
ganglia (Feingold et al., 2015; Tinkhauser et al., 2017; Little et al., 2018). The assessment of power
and burst distribution of beta oscillations thus allows us to capture dynamic changes in neural
activity induced by anxiety and their link to behavioral effects.

To test  our  hypotheses,  we recorded electroencephalography (EEG) in  three groups of
participants  while  they  completed  a  reward-based  motor  sequence  learning  paradigm,  with
separate  phases  for  motor  exploration  (baseline)  and  reward-based  learning.  We manipulated
anxiety by informing participants about an upcoming public speaking task (Lang et al., 2015). Using
a between-subject design,  the anxiety manipulation targeted either the baseline or  the reward-
based learning phase. Analysis of the EEG signals aimed to assess anxiety-related changes in the
power and burst distribution in beta oscillations in relation to changes in behavioral variability and
reward-based learning.  

Results

Sixty participants completed our  reward-based motor sequence learning task, consisting of three
blocks of 100 trials each over two phases (Figure 1): a baseline motor exploration (block 1) and a
reward-based learning phase (blocks 2 and 3: termed training thereafter). Prior to the experimental
task, we recorded in each participant 3 min of EEG at rest with eyes open. Next, on a digital piano,
participants played two different sequences of seven and eight notes during the exploration and
training phases respectively (Figure 1A). The sequence patterns were designed so that the key
presses would span a range of four neighboring keys on the piano. Participants were explicitly
taught the tone sequences prior to the start of the experiment, yet precise instructions about the
timing or loudness (keystroke velocity,  Kvel)  were not  provided.  The rationale for  selecting two
different sequences for the baseline and training phases was to avoid carry-over effects of learning
or a preferred performance pattern from the baseline period into the reward-based learning phase
(following Wu et al., 2014).
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During the baseline exploration phase, participants were informed they could freely change
the pattern of temporal intervals between key presses (inter-keystroke intervals, IKIs) and/or the
loudness of the performance every trial, and that no reward or feedback would be provided. During
training performance-based feedback in the form of a 0-100 score was provided at the end of each
trial. Participants were informed that the overall average score would be translated into monetary
reward. They were directly instructed to explore the temporal or loudness dimension (or both) and
to use feedback scores to discover the unknown performance objective (which, unbeknownst to
them, was related to the pattern of IKIs). The task-related dimension was therefore timing (Figure
2), whereas keystroke velocity was the non-task related dimension.

The performance measure that was rewarded during training was the vector norm of the
pattern of temporal differences between adjacent IKIs (See  Materials and Experimental design).
Similar combinations of IKIs could lead to the same rewarded norm of IKI-difference values, and
therefore to the same score. Participants were unaware of the existence of these multiple solutions.
The multiplicity in the mapping between performance and score could lead participants to perceive
an increased level  of  volatility  in  the environment (changes in  the rewarded performance over
time). This motivated us to assess their estimation of volatility during reward-based learning and its
modulation by anxiety. In addition, we investigated whether higher baseline variability would lead to
higher scores during subsequent reward-based learning, independently of changes in variability
during this latter phase. If initial baseline exploration improves learning of the mapping between the
actions and their sensory consequences, then participants could learn better from performance-
related feedback during the training phase regardless  of  their  use of  variability  in  this  phase.
Alternatively, it could be that participants who also use more variability during training discover the
hidden goal by chance. 

Participants were pseudo-randomly allocated to either a control  group or to  one of  two
experimental groups (Figure 1B): anxiety during exploration (anx1); anxiety during the first block of
training (anx2).  We measured changes in  heart-rate variability  (HRV) and heart-rate (HR) four
times throughout  the experimental  session:  resting  state  (3 min,  prior  to  performance blocks);
block1; block2; block3. In addition, the state subscale from the State-Trait Anxiety Inventory (STAI,
state scale X1, 20 items; Spielberger, 1970) was assessed four times:  prior to the resting state
recording and also immediately before the beginning of each block, and thus after the induction of
anxiety in the experimental groups. The HRV index and STAI state anxiety subscale were able to
dissociate in each experimental  group the phase targeted by the anxiety manipulation and the
initial  resting  phase  (within-group  effects,  Figure  2A-B).  These  results  confirmed  that  the
experimental manipulation succeeded in inducing physiological and psychological responses within
each experimental group consistent with an anxious state during the targeted phase, as reported
previously (Feldman et al., 2004).

Statistical analysis of behavioral and neural measures focused on the separate comparison
between  each  experimental  group  and  the  control  group  (contrasts:  anx1  –  controls,  anx2  –
controls). See Methods and Materials.

Behavioral Results 
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Lower baseline task-related variability is associated with poorer reward-based learning

All  groups of  participants demonstrated significant  improvement  in  the achieved scores during
reward-based  learning, confirming they effectively used feedback to approach the hidden target
performance (changes in average score from block 2 to block3; anx1: P = 0.008, non-parametric
effect size estimator for dependent samples,  dep 0.93, confidence interval or CI = [0.86, 0.99];
anx2: P = 0.004, dep= 0.83, CI  = [0.61, 0.95]; controls:  P = 0.001, dep= 0.92, CI  = [0.72, 0.98]). 

Assessment  of  motor  variability  was  performed  separately  in  the  task-related  temporal
dimension  and  the  non-task-related  keystroke  velocity  dimension.  Temporal  variability  –  and
similarly for keystroke velocity – was estimated using the across-trials coefficient of variation of IKI
(termed  cvIKI  thereafter;  Figure  3A-B).  This  index  was  computed  in  bins  of  25  trials,  which
therefore provided four values per experimental block. We hypothesized that in the total population
a higher degree of task-related variability at baseline (that is, playing different temporal patterns in
each trial), and therefore higher cvIKI, would improve subsequent reward-based learning, as this
latter phase rewarded the temporal dimension. A non-parametric rank correlation analysis across
the 60 participants revealed that participants who achieved higher scores in the training phase
exhibited a larger across-trials cvIKI at baseline (Spearman  = 0.45,  P = 0.003;  Figure 3C). A
similar  result  was  obtained  when  excluding  anx1  participants  from  the  correlation  analysis,
supporting that in the subsample of 40 participants who did not undergo the anxiety manipulation
at baseline there was a significant association between the level of task-related variability and the
subsequent  score  (0.41,  P =  0.04).  No significant  rank correlation  was found between the
scores and cvKvel. 

We also assessed whether the degree of  cvIKI during training was associated with the
average score and found an inverted pattern: There was a significant negative non-parametric rank
correlation between the cvIKI  index and the mean score (= -0.44,  P = 0.002;  Figure 3D).  A
significant effect was not found for the cvKvel parameter (P > 0.05). 

Notably, the amount of variability in timing and keystroke velocity used by participants was
not correlated (cvIKI and cvKvel:  = 0.021, P = 0.788). This indicates that in our task participants
could vary the temporal and velocity dimensions separately.  Finally,  the degree of cvIKI during
training and baseline were not  correlated ( = 0.029,  P = 0.848).  These findings support  that
achieving higher scores during reward-based learning in our paradigm cannot be accounted for by
a general tendency to explore more throughout all experimental blocks. In fact, larger variability
during  training  was  detrimental  to  discover  and  maintain  the  performance  close  to  the  target
(Figure 3D).

Anxiety at baseline reduces task-related variability and impairs subsequent reward-based
learning

We assessed pair-wise differences in the behavioral measures between the control group and each
experimental  group (anx1,  anx2),  separately.  Participants  affected by  state anxiety  at  baseline
(anx1) achieved significantly lower scores in the subsequent reward-based learning phase relative
to control participants (Figure 4A: PFDR < 0.05,  = 0.78, CI = [0.54, 0.92]). By contrast, in the anx2
group scores did not statistically differ from the scores in the control group (PFDR > 0.05). A planned
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comparison between both experimental groups demonstrated significantly higher scores in anx2
than in anx1 (PFDR < 0.05, = 0.67, CI = [0.51, 0.80]).

At baseline, anx1 used a lower degree of cvIKI than the control group (Figure 4B;  PFDR  <
0.05;   = 0.67, CI = [0.52, 0.85]).  There was no between-groups (anx1, controls) difference in
cvKvel (Figure 4C;  PFDR > 0.05). Performance at baseline in anx2 did not significantly differ from
performance in the control group, both for cvIKI or cvKvel (PFDR > 0.05). 

During the training blocks, there were no significant between-group differences in cvIKI or
cvKvel (PFDR > 0.05). There was, however, a significant and very pronounced drop in the use of
temporal variability from the baseline to the training phase in control and anx2 participants (large
effect sizes:  P = 0.0078,  dep = 0.81, CI = [0.62, 0.95], in controls;  P = 0.0026,  dep = 0.83, CI =
[0.61, 0.90], in anx2). This drop corresponded to a change from a largely explorative regime at
baseline (characterized by higher cvIKI)  to  a more constrained explorative regime early  during
training, followed by a gradual transition to the exploitation of the rewarded options in these groups
(significant drop in cvIKI from block2 to block 3 in control and anx2 participants, respectively; P =
0.04, dep = 0.77, CI  = [0.53, 0.87], in controls; P = 0.0054, dep = 0.83, CI  = [0.62, 0.94], in anx2).
In anx1 participants, by contrast, there was no significant change in cvIKI from the baseline to the
training  phase,  or  from  block  2  to  block3  during  training.  This  outcome  indicated  that  anx1
participants did not adapt their use of temporal variability to the task requirements. 

Detailed analyses of the trial-by-trial changes in scores and performance using a Bayesian
learning model and their modulation by anxiety are reported below.

General performance parameters, such as the average performance tempo or the mean
keystroke velocity did not differ between groups, either during baseline exploration or training (P >
0.05). Participants completed sequence1 on average in 3.0 (0.1) seconds, between 0.68 (0.05) and
3.68 (0.10) s after the GO signal (non-significant differences between groups,  P > 0.05). During
training, they played sequence2 with an average duration of 4.7 (0.1) s, between 0.72 (0.03) and
5.35 (0.10) s (non-significant differences between groups, P > 0.05). The mean learned solution in
each group was not significantly different, either during the first or second training block (P > 0.05;
Figure 4 – figure supplement 1; but see trial-by-trial changes below). 

These outcomes demonstrate that in our paradigm state anxiety reduced task-related motor
variability  when  induced  at  baseline  and  this  effect  was  associated  with  lower  scores  during
subsequent reward-based learning. State anxiety, however,  did not modulate task-related motor
variability or the achieved scores when induced during reward-based learning. Finally, the different
experimental manipulations did not affect the mean learned solution in each group. 

State  anxiety  during  reward-based  learning  reduces  learning  rates  if  there  is  no  prior
baseline exploration

Because anx2 participants performed at a level not significantly different from that found in control
participants  during  training,  we  asked  whether  the  initial  unconstrained  motor  exploration  at
baseline might have counteracted the effect of anxiety during training. Alternatively, it could be that
the anxiety manipulation was not salient enough in the context of reward-based learning. To assess
these alternative scenarios,  we performed a control  behavioral  experiment  with new anx2 and
control groups (N =13 each, see sample size estimation in Methods and Materials). Participants in
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each  group  performed  the  two  training  blocks  2  and  3  (Figure  1),  but  without  completing  a
preceding baseline exploration block. In anx2, state anxiety was induced exclusively during the first
training block, as in the original experiment. We found that the HRV index was significantly reduced
in anx2 relative to controls during the manipulation phase (PFDR < 0.05,  = 0.72, CI = [0.62, 0.83]),
but not during the final training phase (block 3,  PFDR > 0.05).  STAI state subscale scores rose
during the anxiety manipulation in anx2 – not in controls – relative to the initial scores (within-group
effect, PFDR < 0.05,  = 0.68, CI = [0.59, 0.78]).

Overall the anx2 group achieved a lower average score (and final monetary reward) than
control participants (P = 0.0256;  = 0.64, CI = [0.50, 0.71]). In addition, anx2 participants achieved
significantly lower scores than control participants during the first training block (PFDR < 0.05,   =
0.68, CI = [0.54, 0.79] Figure 4D), yet not during the second training block (PFDR > 0.05). Notably,
however, the degree of cvIKI or cvKvel did not differ between groups (PFDR < 0.05, Figure 4E-F).
The mean performance tempo, loudness and  the mean learned solution during training did not
significantly differ between groups, as in the main experiment (P > 0.05).  Thus, removal of the
baseline exploration phase led to the anxiety manipulation impairing reward-based learning, and
this  effect  was  not  associated  with  a  change  in  the  use of  task-related  variability  or  average
performance parameters. 

Bayesian learning modeling  reveals  the effects of  state  anxiety  on reward-based motor
learning

To assess our hypotheses regarding the mechanisms underlying participants’ performance during
reward-based learning we used three different versions of a Bayesian learning model, which were
based on the hierarchical Gaussian filter  for  continuous input  data (HGF; Mathys et  al.,  2011,
2014). The HGF was introduced by Mathys and colleagues (2011) to model how an agent infers a
hidden state in the environment (a random variable), x1, as well as its rate of change over time (x2,
environmental volatility). This corresponds to a perceptual model, which is further coupled with a
response model to generate responses based on those inferred states. In the HGF, beliefs about
those two hierarchically-related hidden states (x1, x2) are updated given new sensory input (scores)
via prediction errors (PEs). Crucial to the HGF is the weighting of the PEs by the ratio between the
uncertainty  of  the  current  level  and the lower  level;  or  the inverse ratio  when using precision
(inverse variance or uncertainty of a distribution).  Further details are provided in  Methods and
Materials.

Different  implementations  of  the  HGF  have  been  recently  used  in  combination  with
neuroimaging data to investigate how the brain processes different types of hierarchically-related
prediction errors (PEs) within the framework of predictive coding (Diaconescu et al., 2017; Weber
et al.,  2019). The HGF can be fitted to the behavioral data of each individual participant,  thus
providing dynamic estimates of uncertainty and hierarchical PEs weighted by precision (precision-
weighted PE or pwPE). In predictive coding models, precision is viewed as crucial for representing
uncertainty and updating the posterior expectations about the hidden states (Sedley et al., 2016).
In  the HGF,  time-varying  pwPEs reflect  how participants  learn  stimulus-outcome or  response-
outcome associations and their changes over time (Mathys et al., 2011, 2014; Diaconescu et al.,
2017).
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Here  we  adapted  the  HGF  to  model  participants’  estimation  of  quantity  x1,  which
represented  their  beliefs  about  the  value  of  the  performance  measure that  was  rewarded  (a
measure  of  timing,  keystroke  velocity  or  a  combination  of  both).  This  model  also  estimated
participant’s beliefs about environmental volatility, x2. Volatility in our paradigm emerged from the
multiplicity of performance-to-score mappings, as different temporal patterns of the performance
with identical IKI-difference values led to the same scores. The model generated belief trajectories
about the external states x1  and x2  , which were further used to estimate the most likely response
corresponding with those beliefs. 

We implemented three HGF models corresponding with participants’ decision to modify on
a  trial-by-trial  basis  a  specific  performance  measure  –  thus  linking  it  to  the  rewarded  hidden
performance.  The  performance  measure  was  (1)  the  degree  of  temporal  differences  between
consecutive  IKI  values  (HGF1 model),  (2)  the  degree  of  differences between the loudness  of
subsequent keystrokes (alternative HGF2 model), or (3) a combination of both previous measures,
reflecting changes both in loudness and timing (alternative HGF3 model). The rationale for using
these  measures  in  the  response  model  was  that  participants  were  informed  that  the  target
performance was related to either a specific pattern of short and long temporal intervals, a pattern
of soft and loud key presses (small and large keystroke velocities) or a combination of both. We
therefore expected that participants would link the differences in IKI or Kvel (or both)  between
consecutive key presses to the feedback scores. In each model, the feedback scores and the trial-
based performance measure were used to update model parameters, and the log model-evidence
was used to optimize the model fit (Diaconescu et al., 2017; Soch and Allefeld, 2018). More details
on the modeling approach can be found in the Methods and Materials section.

Between-group comparison focused on four variables, the mean trajectories of perceptual
beliefs (1, 2, means of the posterior distributions for x1, x2;  Figure 5 – figure supplement 1), and
the uncertainty about those beliefs (variances 1, 2; note that the inverse variance is the precision,
termed  1,  2,  corresponding  with  the  confidence  placed  on  those  beliefs).  In  addition,  the
parameter characterising the response model was also compared between groups. Larger values
of   penalize  choosing  the  response  that  matches  current  expectations  for  the  performance
measure, 1.

We used Random Effects Bayesian Model Selection (BMS) to assess at the group level the
three models of learning (Stephan et al., 2009; code freely available from the MACS toolbox, Soch
and Allefeld, 2018). BMS provided stronger evidence for the HGF1 model, as compared to the
alternative HGF2 and HGF3 models. The exceedance probability of the winner model was 0.78,
and the model frequency was 62% (similar  values when looking within each experimental  and
control group).

Using  the  winner  model  in  the  total  population,  we  next  evaluated  between-group
differences in relevant model variables across trials throughout training (Figure 5A-C). The main
result was that anx1 relative to control participants underestimated the tendency for x1, that is, the
degree of temporal differences between successive IKIs linked to the hidden target performance
(PFDR < 0.05,   = 0.71, CI = [0.59, 0.86]). This indicates a tendency towards a more isochronous
performance (same IKI in consecutive intervals). By contrast, the belief estimate for phasic volatility
was significantly higher in anx1 than in control participants (PFDR < 0.05,  = 0.72, CI = [0.63, 0.83]).
The uncertainty about environmental volatility was smaller in anx1 relative to control participants
(PFDR < 0.05,   = 0.67, CI = [0.52, 0.83]). Because smaller uncertainty normally leads to smaller
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learning rates in the HGF update equations (and smaller precision-weights on the PEs), this last
outcome supports that the anx1 group did not adequately update their estimates of environmental
volatility. No differences between anx2 and control participants in the estimates for x1 or x2 or their
uncertainties were found. In addition, the response model parameter  was significantly larger in
anx1 than in control participants (0.034 [0.005] and 0.026 [0.006], respectively; P = 0.043,  = 0.62,
CI = [0.51, 0.82]; no differences between anx2 and control groups). Participants in the anx1 group
were therefore less likely to choose the response that matched their current expectations for  1

(smaller posterior probability for a response y = 1). 

In the second, control experiment, in which anx2 participants demonstrated a pronounced
drop in scores relative to controls during the anxiety manipulation, we found that the winner model
on the group level was also the HGF1 model (exceedance probability of 0.86, and model frequency
of 62%). Between-group comparisons in relevant model parameters demonstrated that, similarly to
anx1 participants in the main study, anx2 participants in this control experiment underestimated the
tendency for x1 (PFDR < 0.05,   = 0.75, CI = [0.67, 0.83];  Figure 5D-F), and overestimated the
degree  of  phasic  volatility  (PFDR <  0.05,   = 0.64,  CI  =  [0.55,  0.73]).  In  addition,  the  anxiety
manipulation  led  participants  to  have  lower  uncertainty  about  their  phasic  volatility  estimates
relative to control  participants (PFDR < 0.05,   = 0.72,  CI  = [0.45,  0.91]).  No differences in  the
uncertainty  about  estimates  for  x1  were found.  The response model  parameter  did  not  differ
between groups, either.

Electrophysiological Analysis

State anxiety prolongs beta bursts and enhances beta power during baseline exploration

The  results  in  Figure  4 establish  that  state  anxiety  at  baseline  reduced  task-related  motor
variability, but also subsequently led to impaired reward-based learning. We therefore sought to
assess whether the anxiety-related reduced use of motor variability at baseline was associated with
altered dynamics in beta-band oscillatory activity at specific time intervals during trial performance.
But before investigating the dynamics of beta oscillations over time, we first looked at  general
averaged properties of beta activity throughout the baseline phase and their modulation by anxiety.
The first measure we used was the standard averaged normalized power spectral density (PSD) of
beta  oscillations.  Normalization  of  the  raw  PSD  into  decibels  (dB)  was  carried  out  using  as
reference  the  average  PSD from  the  initial  rest  recordings  (3  min).  This  analysis  revealed  a
significantly higher beta-band power in a small contralateral sensorimotor region in anx1 relative to
control  participants  at  baseline  (P <  0.025,  two-sided  cluster-based  permutation  test,  FWE-
corrected.  Figure 6A-B). In anx2 participants, the beta power in this phase was not significantly
different than in controls (Figure 6C,  P  > 0.05). No significant between-group changes in PSD
were found in lower (<13Hz) or higher (>30Hz) frequency ranges (P > 0.05).

Next, we analyzed the between-group differences in the distribution of beta bursts extracted
from the  amplitude envelope of  beta oscillations during baseline exploration  (Figure 7A).  This
analysis was motivated by evidence from recent studies supporting that differences in the duration,
rate and onset of beta bursts could account for the association between beta power and movement
in humans (Little et al.,  2017; Torrecillos et al., 2018).  To identify burst events and assess the
distribution of their duration, we applied an above-threshold detection method, which was adapted
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from previously described procedures (Poil et al., 2008; Tinkhauser et al., 2014; Figure 7B). Bursts
extending for at least one cycle were selected. Using a double-logarithmic representation of the
probability distribution of burst durations, we obtained a power law and extracted the slope, , also
termed “life-time” exponent (Poil et al., 2008). Modeling work has revealed that a power law in the
burst-duration  distribution,  reflecting  that  the  oscillation  bursts  have  no  characteristic  scale,
indicates that the underlying neural dynamics operate in a state close to criticality, and thus are
beneficial for information processing (Poil et al., 2008; Chialvo, 2010).

In  all  our  participants  the  double-logarithmic  representation  of  the  distribution  of  burst
duration followed a decaying power-law with slope values in the range 1.4-1.9. Beta bursts lasted
significantly  longer  in  a  contralateral  sensorimotor  region  in  anx1  as  compared  to  control
participants (Figure 7C, P < 0.025, FWE-corrected). The mean burst duration in these electrodes
was 147 (2) ms in control participants and 168 (10) ms in the anx1 group. A further between-group
comparison focusing on the distribution of burst duration demonstrated that shorter bursts were
more frequent in control relative to anx1 participants (130-194ms, PFDR < 0.05, = 0.70, CI = [0.56,
0.84];  Figure 7D-E).  By contrast,  long bursts of 630-1130ms were more frequent in anx1 than
control participants (PFDR < 0.05, = 0.92, CI = [0.86, 0.98]). The life-time exponents were smaller
in anx1 than in the control group at left sensorimotor electrodes, corresponding with a long-tailed
distribution (1.43 [0.30]; 1.70 [0.15];  PFDR < 0.05, = 0.81, CI = [0.75, 0.87]). No differences in
bursts properties were found between anx2 and control participants. 

We next turned to our main goal and asked whether there were between-group differences
in  the beta  oscillatory  properties  at  specific  periods  throughout  the  baseline  exploration  trials,
above and beyond the general block-averaged changes reported above. This was addressed by
analyzing the time course of the beta power and the beta burst rate during trial performance. Beta
bursts of shorter (< 300 ms) and longer (> 500 ms) duration were assessed separately, which was
motivated by  previous studies  linking longer  beta  bursts  to detrimental  performance (e.g.  beta
bursts longer than 500 ms in the basal ganglia of Parkinson’s disease patients are associated with
worse  motor  symptoms;  Tinkhauser  et  al.,  2017).  In  anx1  participants  the  mean  beta  power
increased after completion of the sequence performance and further following the STOP signal,
and these changes were significantly more pronounced than in control participants (PFDR < 0.05,
=  0.72,  CI  =  [0.63,  0.80];  Figure  8A).  This  significant  effect  was  localized  to  contralateral
sensorimotor and right prefrontal channels. The rate of long oscillation bursts displayed a similar
time course and topography to those of the power analysis,  with an increased burst rate after
movement termination and after the STOP signal in anx1 relative to control participants (PFDR <
0.05, = 0.69, CI = [0.61, 0.78]; Figure 8B). By contrast, brief burst events were less frequent in
anx1 than in control participants, albeit exclusively during performance (PFDR < 0.05, = 0.74, CI =
[0.65, 0.82]; Figure 8C). No significant effects were found when comparing any of these measures
between anx2 to control participants.

Additional control analyses were carried out to dissociate the separate effect of anxiety and
motor  variability  on  the  time  course  of  the  beta-band  oscillation  properties  during  baseline
exploration. These analyses demonstrated that, when controlling for changes in motor variability,
anxiety alone could explain the findings of larger post-movement beta-band PSD and rate of longer
bursts, while also explaining the reduced rate of brief bursts during performance (Figure 8 – figure
supplement  1).  Motor  variability  did  also  partially  modulate  the  beta  burst  rate  and  power
measures, after excluding anxious participants. This effect, however, had a moderate effect size
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and was limited to the interval after the STOP signal and contralateral sensorimotor electrodes
(Figure 8 – figure supplement 2).

Reduced presence of long beta bursts promotes the update of beliefs about the volatility of
motor predictions: Modulation by anxiety

During training, the general level of PSD did not differ between groups (PFDR > 0.05;  Figure 9 –
figure  supplement  1A-C),  but  beta-band  oscillation  bursts  were  indeed  discriminative  of  the
different experimental and control groups. Long bursts continued to be more frequent (brief bursts
were  less  frequent)  in  anx1  relative  to  control  participants  in  sensorimotor  and  prefrontal
electrodes, despite  the  anxiety  manipulation  having  finished  in  this  group  (Figure  9  –  figure
supplement  1D-E;  PFDR <  0.05,  =  0.75,  CI  =  [0.65,  0.86];  anx1  had  also  smaller  scaling
exponents, 1.6 [0.3], than control participants, 1.9 [0.2];  PFDR < 0.05,  = 0.73, CI = [0.62, 0.84]).
Compared to the control group, anx2 participants exhibited a burst distribution with a longer tail,
albeit exclusively in prefrontal electrodes (smaller scaling exponents in anx2, 1.69 [0.20];  PFDR <
0.05,  = 0.71, CI = [0.55, 0.87];  Figure 9 – figure supplement 2).  The mean burst duration in
these prefrontal electrodes was also larger in anx2 participants (158 [20] ms in anx2, 150 [20] ms
in controls, PFDR < 0.05, = 0.69, CI = [0.56, 0.82]). The lack of beta burst effects in sensorimotor
electrode regions in anx2 could explain the lack of behavioral effects in this group when compared
to controls. 

Although Figure 4 had established that there were no between-group differences in motor
variability during training blocks (or other motor output variables), we assessed whether alterations
in the beta-band measures over time during trial performance could explain the drop in scores in
anx1 participants. In this group, the mean beta power increased towards the end of the sequence
performance  more  prominently  than  in  control  participants,  and  this  effect  was  significant  in
sensorimotor and prefrontal  channels (PFDR < 0.05,  = 0.67,  CI  = [0.56,  0.78];  Figure 9A).  A
significant increase with similar topography and latency was observed in the anx2 group relative to
control  participants  (PFDR <  0.05,  =  0.61,  CI  =  [0.56,  0.67]).  A  additional  and  particularly
pronounced enhancement in beta power appeared in anx1 and anx2 participants within 400 – 1600
ms following presentation of the feedback score. This post-feedback beta increase was significantly
larger in anx1 than in the control group (PFDR < 0.05, = 0.65, CI = [0.55, 0.75]; no significant effect
in anx2, P > 0.05).

Further, we found that the time course of the beta burst rate exhibited a significant increase
in  anx1 relative  to  control  participants  within  400 –  1600 ms following  feedback presentation,
similar to the power results (Figure 9B; PFDR < 0.05, = 0.82, CI = [0.70, 0.91]). The rate of brief
oscillation bursts was, by contrast, smaller in anx1 than in control participants, albeit exclusively
during performance and not during feedback processing (Figure 9C;  PFDR < 0.05,  = 0.70, CI =
[0.56, 0.84]). The significant effects in anx1 participants were observed in left sensorimotor and
right prefrontal  electrodes,  similar to the general burst effects reported in the previous section.
There were no significant differences between anx2 and control groups in the rate of brief or long
bursts throughout the trial (P > 0.05). 

Having established that anx1 relative to control participants exhibited a phasic increase in
beta activity and in the rate of long bursts 400 – 1600 ms following feedback presentation, we next
investigated whether these post-feedback beta changes could account for the biased belief and
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volatility estimates in the anx1 group (Figure 5).  In the proposed predictive coding framework,
superficial pyramidal cells encode PEs weighted by precision (precision-weighed PEs or pwPEs),
and these are also the signals that are thought to dominate the EEG (Friston and Kiebel, 2009). A
dissociation between high (gamma > 30 Hz) and low (beta) frequency of oscillations has been
proposed to correspond with the encoding of bottom-up PEs and top-down predictions, respectively
(Arnal and Giraud, 2012). Operationally, however, beta oscillations have been associated with the
change in predictions (i) rather than with predictions themselves (Sedley et al, 2016). In the HGF
the update equations for 1 and 2 are detemined exclusively by the pwPE term in that level, such
that the change in predictions,  i, is equal to pwPE (see Methods and Materials). Accordingly,
we  assessed  whether  the  trialwise  feedback-locked  beta  power  or  burst  rate  represented  the
magnitude of  pwPEs in  that  trial  that  serve to update  belief  estimates about  the performance
measure (1) or the environmental volatility (2). 

In each participant,  we did a three-way split  on the single-trial  pwPE values for level 1
(termed 1) and level 2 (2) and analyzed their effect on the corresponding feedback-locked  beta
power as a function of the participant group. This analysis focused on the interval 400-1600 ms
following the feedback presentation. Figure 10  shows as a general  tendency that  larger post-
feedback  beta  activity  was  associated  with  smaller  pwPEs.  A 2  x  3  non-parametric  factorial
analysis with factors Group (anx1, controls) and Magnitude of 1 (small, medium, large) revealed a
significant  main  effect  of  Group,  as  expected  (P =  0.01; factorial  analysis  with  synchronized
rearrangements,  Basso  et  al.,  2007;  Figure  10A).  No  significant  main  effect  of  Magnitude  or
interaction effect was found (P > 0.05). A similar analysis carried out for 2 indicated that the main
effects of Group and Magnitude of 2  were significant (P = 0.01 and 0.045, respectively). Thus, in
addition  to  the  post-feedback  beta  power  being  modulated  by  the  group  factor,  the  results
supported  that  the  increase  in  beta  activity  following  feedback  presentation  represented  the
magnitude  of  the  precision-weighted  PEs  that  drive  updates  about  volatility  estimates;  and
independently of the group factor. 

The analysis of the rate of long oscillation bursts revealed a pattern consistent with the beta
power results, with smaller pwPEs being associated with a larger burst rate. A 2 x 3 non-parametric
factorial analysis with factors Group (anx1, controls) and Magnitude of  1 revealed a significant
main  effect  of  Group (P =  0.028;   Figure  10C).  A  trend  of  significance was found  for  factor
Magnitude (P  = 0.065). Both main effects were significant when considering the pwPEs of the
second level, 2  (P = 0.032 and 0.027, for Group and Magnitude factors, respectively; Figure 10D).
The results highlight that the more frequent presence of long-lived beta bursts following feedback,
as found in anx1 (Figure 10C-D), could be linked to a reduced update in predictions about volatility
estimates and, to a lesser degree (trend), estimates about the performance measure. The rate of
brief oscillation bursts following the outcome presentation was not modulated by pwPEs (Figure 10
–  figure  supplement  1).  Neither  did  we  find  an  association  between  raw  changes  in  (non-
weighted) PEs and changes in beta burst or power properties (P > 0.05).
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Discussion

The results revealed several interrelated mechanisms through which state anxiety impairs reward-
based motor learning. First, state anxiety induced biases about the hidden performance goal and
it's  stability  throughout  time.  Second,  anxiety  led  to  an  underestimation  of  uncertainty  about
volatility, thereby attenuating the update of beliefs about this quantity. In addition, we found that
state anxiety  reduced motor  variability  at  baseline,  decreasing performance in the subsequent
reward-based learning phase. On the neural level, bursts sensorimotor beta oscillations, a marker
of  physiological  beta  (Feingold  et  al.,  2015),  lasted  longer  under  the  effect  of  anxiety  during
baseline exploration, resembling recent findings of abnormal burst duration in movement disorders
(Tinkhauser  et  al.,  2017).  The  anxiety-induced  higher  rate  of  long  burst  events  at  baseline
extended to prefrontal electrodes and also to the following training phase, where additional phasic
trial-by-trial feedback-locked increases in this measure accounted for the biases in the update of
beliefs about volatility. These results provide the first evidence for state anxiety inducing changes in
the distribution of sensorimotor and prefrontal beta bursts, thereby leading to deficits in the update
of beliefs about volatility during reward-based motor learning. 

Evidence from our main experiment supported that the finding of anxiety-related reduced
motor variability at baseline was associated with the outcome of subsequently impaired learning
from reward. These results validate previous accounts on the relationship between motor variability
and Bayesian inference (Wu et al. 2014). In addition, the association between larger baseline task-
related variability  and higher scores during the following training phase extends results on the
faciliatory  effect  of  exploration  on  motor  learning,  at  least  in  tasks  that  require  learning  from
reinforcement (Wu et al., 2014; Pekny et al., 2015; Dhawale et al., 2017; see also critical view in He
et al., 2017). 

Crucially,  however,  the  lack  of  between-group  differences  in  the  use  of  task-related
variability during training in both experiments indicates that this measure could not account for the
anxiety-related deficits in reward-based learning. In fact, the evidence from the control experiment
supported that state anxiety can impair learning from reward by directly influencing computations of
uncertainty and belief estimates independently of changes in prior or concurrent variability.  Our
Bayesian  learning  model  revealed  that  what  impaired  participants  subjected  to  the  anxiety
manipulation in both experiments from achieving high scores was an underestimation of the target
performance measure, as well as an overestimation of environmental volatiliy, which led them to
estimate the hidden goal as being more unstable throughout time. In addition, they had smaller
uncertainty  about  environmental  volatility.  This  implies  that  they  considered their  estimation of
volatility  to  be more precise,  and requiring  smaller  updates  (the update  equations  are  directly
proportional  to  the  uncertainty  estimate  at  that  level).  The  results  align  well  with  recent
computational work in decision-making tasks, showing that high trait anxiety leads to deficits in
uncertainty  estimates  and  adaptation  to  the  changing  statistical  properties  in  the  environment
(Browning  et  al,  2015;  Huang  et  al.,  2017).  Our  findings  thus  provide  the  first  evidence  that
computational  mechanisms  similar  to  those  described  for  trait  anxiety  and  decision-making
underlie the effect of temporary anxious states on motor learning. This might be particularly the
case in the context of learning from rewards, such as feedback about success or failure, which is
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considered  one  of  the  fundamental  processes  through  which  motor  learning  is  accomplished
(Wolpert et al., 2011). 

Previous studies manipulating psychological stress and anxiety to assess motor learning
showed both a deleterious and faciliatory effect (Hordacre et al., 2016; Vine et al., 2013; Bellomo et
al., 2018). Differences in experimental tasks, which often assess motor learning during or after
high-stress situations but not during anxiety induction in anticipation of a stressor, could account for
the previous mixed results.  Here,  we adhered to the neurobiological  definition of  anxiety  as a
psychological and physiological response to an upcoming diffuse and unpredictable threat (Bishop,
2007;  Grupe  and  Nitschke,  2013).  Accordingly,  anxiety  was  induced  using  the  threat  of  an
upcoming public speaking task (Feldman et al., 2004; Lang et al., 2015), and was associated with
a drop in the HRV and an increase in state anxiety scores during the targeted blocks. Although the
average state anxiety scores were not particularly high, they were significantly higher during the
targeted phases than during the initial  resting state phase.  Future studies should however use
more impactful stressors to study the effect of the full spectrum of state (and trait) anxiety on motor
learning (Bellomo et al., 2018). 

What is the relationship between the expression of motor variability and state anxiety? As
hypothesized, state anxiety at baseline reduced the use of variability across trials. This converges
with recent evidence demonstrating that anxiety leads to ritualistic behavior (repetition, redundancy,
rigidity of movements) to regain a sense of control (Lang et al., 2015). The outcome also aligns
well with animal studies where evidence shows a reduction in motor exploration when stakes are
high (high-reward situations, social context; Dhawale et al., 2017; Kao et al., 2008; Woolley et al.,
2014).  These  interpretations,  however,  seem  to  stand  in  contrast  with  our  findings  in  anx2
participants, which were affected by the anxiety manipulation during training yet this had no effect
on  their  use  of  motor  variability  or  achieved  scores  when  compared  to  controls.  The  control
experiment clarified this issue by demonstrating that removal of a baseline motor exploration phase
leads  to  anxiety  diminishing  reward-based  learning  through  changes  in  belief  and  volatility
estimates and deficits in processing uncertainty – and independently of changes in concurrent
motor variability. Thus, the evidence combined supports that the normal use of baseline variability
in anx2 participants in the main experiment might  have protected them from the effects of  the
anxiety manipulation, favouring the interpretation that initial unconstrained exploration is important
for subsequent successful motor learning.

Some considerations should be taken into account. Task-related motor variability might be
pivotal for learning from reinforcement or reward signals (Sutton and Barto, 1998; Wu et al., 2014;
Dhawale et al., 2017), whereas in other contexts, such as during motor adaptation, the evidence is
conflicting (He et al., 2017, Shin et al., 2016). An additional consideration is that higher levels of
motor  variability  could  reflect  both  an  intentional  pursuit  of  an  explorative  regime;  or,  an
unintentional higher level of motor noise, similarly to previous work (Wu et al., 2014; Pekny et al.,
2015).  A  recent  study  established  that  motor  learning  is  improved  by  the  use  of  intended
exploration, not motor noise (Chen et al., 2017). Our paradigm cannot dissociate between intended
and unintended exploration. This limitation will be addressed in future work by using a separate
baseline phase with regular  performance to assess motor noise as a measure of   unintended
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exploration.  Lastly,  we  used  a  reward-based  motor  learning  paradigm  in  which  different
performances could provide the same feedback score.  Thus,  a high expression of task-related
motor variability during training could lead the participants to perceive the task as volatile.  The
rationale for using this task was to explore the effect of state anxiety on volatility estimates, as
recent work demonstrates that anxiety primarily affects learning in volatile conditions (Browning et
al.,  2015; Huang et al.,  2017). Volatility in our task, however, could be detrimental  for learning
regardless  of  the  participant  group,  which  the  correlation  results  across  all  60  participants
confirmed. Further analyses revealed that the mean learned performance and the degree of motor
variability  during  training  were  not  different  between  groups,  supporting  that  these  are  not
confounding  factors  that  could  explain  the  reward-based-learning  group  results.  Instead,  our
findings underscore that computational mechanisms related to belief and uncertainty estimates are
the main factors driving the effects of concurrent or prior state anxiety on reward-based motor
learning.

On the neural level, an important finding was that anxiety at baseline increased the power
of  beta  oscillations,  the  duration  of  beta  bursts  and  the  rate  of  long  beta  bursts  (long-tailed
distribution). The increases in power and rate of long-lived bursts manifested after completion of
the  sequence,  reflecting  an  anxiety-related  enhancement  of  the  post-movement  beta  rebound
(Kilavik et al., 2012, 2013). This effect was observed in a region of contralateral sensorimotor and
right prefrontal channels, and could be explained by anxiety alone, despite a small effect of motor
variability  on  the  modulation  of  these  neural  changes  across  sensorimotor  electrodes.  Our
analyses  did  not  provide  a  detailed  anatomical  localization  of  the  effect,  yet  the findings  in
sensorimotor  regions partly  contributing to changes in  motor  variability  are  consistent  with the
involvement of premotor and motor cortex in driving  motor variability and learning, as previously
reported in animal studies (Churchland et al., 2006; Mandelblat-Cerf et al,  2009; Santos et al.,
2015). The results also converge with the representation in the premotor cortex of temporal and
sequential  aspects of  rhythmic performance (Crowe et  al.,  2014;  Kornysheva and Diedrichsen,
2014). 

During training, the concurrent anxiety manipulation in anx2 participants affected the HRV
and increased the presence of long bursts exclusively in prefrontal electrodes. This outcome aligns
with the finding of prefrontal involvement in the emergence and maintainance of anxiety states
(Davidson,  2002;  Bishop  et  al.,  2007;  Grupe  and  Nitschke,  2013).  Here  we  showed  that
manipulating state anxiety shifts the physiological distribution of beta bursts in prefrontal regions
towards a long-tailed distribution, characterized by more frequent long bursts. In addition, the lack
of beta burst effects in sensorimotor regions in this group is in agreement with the absence of
behavioral  effects  when  compared  with  control  participants.  An  unexpected  result  was  the
mainteinance in anx1 of higher rates of long bursts across sensorimotor and prefrontal electrodes
during training, which extended from the previous phase. Thus, our results revealed that in the
context of motor learning anxious states can induce changes in sensorimotor beta power and burst
distribution, which are maintained after physiological measures of anxiety return to baseline, thus
continuing to affect relevant behavioral parameters. Anxiety has been shown to modulate different
oscillatory bands depending on the context, such as gamma activity in visual areas and amygdala
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during processing fearful faces (Schneider et al., 2018), alpha activity in response to processing
emotional faces (Knyazev et al., 2008) or theta activity during rumination (Andersen et al., 2009).
Beta-band  oscillations  could  be  particularly  relevant  to  flesh  out  the  effects  of  anxiety  on
performance during motor tasks.

Mechanistically, phasic trial-by-trial feedback-locked changes in the burst distribution were
related to the computational  biases in  belief  updates  and uncertainty  estimates  found in  anx1
participants, and explained their poorer performance during reward-based learning. Specifically, a
higher  rate  of  long  beta  bursts  and  increased  power  following  feedback  in  this  group  were
associated  with  a  reduced  update  in  predictions  about  volatility  estimates.  The  post-feedback
increase in the long burst rate also showed a tendency (trend) to represent updates in predictions
about  the  performance  measure.  The  computational  quantity  that  determines  the  update  of
predictions in our Bayesian model is the precision-weighted PEs, which here were inversely related
to the rate of long beta bursts and beta power. Raw  changes in (non-weighted) PEs were not
associated  with  changes  in  beta  burst  or  power  properties.  This  outcome  is  in  line  with  the
predictive  coding hypothesis  that  PEs are  mediated by  gamma oscillations,  whereas neuronal
signalling of predictions is mediated by lower frequencies (e.g., alpha 8-12Hz, Friston and Litvak,
2015).  Further  studies  point  to  beta  oscillations  as  the  relevant  cortical  oscillatory  rhythm
associated with encoding predictions, although the evidence so far is scarce (Arnal and Giraud,
2012). More recently,  beta oscillations have been associated with the change to predictions rather
than with predictions themselves (Sedley et al, 2016), which is consistent our findings. In line with
these results, a post-performance increase in beta power during motor adaptation is considered to
index confidence in priors and thus a reduced tendency to change the ongoing motor comand (Tan
et al.,  2014).  More generally,  beta oscillations along cortico-basal  ganglia networks have been
proposed  to  gate  incoming  information  to  modulate  behavior  (Leventhal  et  al.,  2012)  and  to
maintain the current motor state (Engel and Fries, 2010). Consequently, the phasic increase in beta
power and the rate of beta bursts following feedback presentation could represent neural states
facilitating encoding of pwPEs and update in predictions about relevant quantities.

Our  findings support  that  assessing neural  activity  in  sensorimotor  regions is  crucial  to
understand the effects of  anxiety  on motor learning and to determine mechanisms above and
beyond the role of prefrontal control of attention in mediating the effects of anxiety on cognitive and
perceptual tasks (Bishop et al., 2007; 2009; Eyseneck, 2007). Our data imply that the combination
of Bayesian learning models and analysis of oscillation burst properties can help better understand
the mechanisms through which anxiety modulates motor learning. Future studies should investigate
how the brain circuits involved in anxiety interact with motor regions to affect motor learning. In
addition, assessing burst properties across both beta and gamma frequency ranges would further
allow  us  to  delineate  and  dissociate  the  neural  mechanisms  responsible  for  anxiety  biasing
decision-making and motor learning.
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Methods and Materials

Participants and sample size estimation

Sixty  right-handed  healthy  volunteers  (37  females)  aged  18  to  44  (mean  27  years,  SEM,  1)
participated  in  the  main  study.  In  a  second,  control  experiment,  26  right-handed  healthy
participants (16 females, mean age: 25.8, SEM 1, range 19-40) took part in the study. Participants
gave written informed consent prior to the start of the experiment, which had been approved by the
local Ethics Committee at Goldsmiths University. Participants received a base rate of either course
credits or money (£15; equally distributed across groups) and were able to earn an additional sum
up to £20 during the task depending on their performance. 

We used pilot  data from a behavioral  study using the same motor task to estimate the
minimum sample sizes for a statistical power of 0.95, with an of 0.05, using the MATLAB (The
MathWorks, Inc., MA, USA) function sampsizepwr. In the pilot study we had one control and one
experimental group of 20 participants each. In the experimental group we manipulated the reward
structure during the first reward-based learning block (in this block feedback scores did not count
towards the final average monetary reward). For each behavioral measure (motor variability and
mean score), we extracted the standard deviation (sd) of the joint distribution from both groups and
the mean value of each separate distribution (e.g. m1: control, m2: experimental), which provided
the following minimum sample sizes:

Between-group  comparison  of  behavioral  parameters  (using  2-tailed  t-test):  MinSamplSizeA  =
sampsizepwr('t',[m1 sd],m2, 0.95) = 18-20 participants. 

Accordingly, we recruited 20 participants for each group in the main experiment. Next, using the
behavioral data from the anxiety and control groups in the current main experiment, we estimated
the minimum sample size for the second, behavioral control experiment:

Between-group  comparison  of  behavioral  parameters  (using  2-tailed  t-test):  MinSamplSizeA  =
sampsizepwr('t',[m1 sd],m2, 0.95) = 13 participants. 

Therefore for the second control experiment we recruited 13 participants in each group.

Apparatus

Participants were seated at a digital piano (Yamaha Digital Piano P-255, London, United Kingdom)
and in front of a PC monitor in a light-dimmed room. They sat comfortably in an arm-chair with their
forearms resting on the armrests of the chair. The screen displayed the instructions, feedback and
visual cues for start and end of a trial (Figure 1A). Participants were asked to place four fingers of
their  right  hand  (excluding  the  thumb)  comfortably  on  4  pre-defined  keys  on  the  keyboard.
Performance information was transmitted and saved as Musical Instrument Digital Interface (MIDI)
data, which provided time onsets of keystrokes relative to the previous one (inter-keystroke-interval
–  IKI  in  ms),  MIDI  velocities  (related  to  the  loudness,  in  arbitrary  units,  a.u.),  and  MIDI  note
numbers that corresponded to the pitch. The experiment was run using Visual Basic and additional
parallel port and MIDI libraries.
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Materials and Experimental design

In all blocks, participants initiated the trial by pressing a pre-defined key with their left index finger.
After a jittered interval of 1-2 s, a green ellipse appeared in the centre of the screen representing
the GO signal for task execution (Figure 1). Participants had 7 s to perform the sequence which
was ample time to complete it before the green circle turned red indicating the end of the execution
time. If participants failed to perform the sequence in the correct order or initiated the sequence
before the GO signal, the screen turned yellow. In blocks 2 and 3 during training, performance-
based feedback in form of a score between 0 and 100 was displayed on the screen 2 s after the
red  ellipse,  that  is,  9  s  from the beginning  of  the  trial.  The scores  provided participants  with
information regarding the target performance. 

The performance measure that was rewarded during training was the Euclidean norm of the
vector corresponding with the pattern of temporal differences between adjacent IKIs for  a trial-
specific  performance.  Here  we  denote  the  vector  norm by  ||z||,  with  z  being  the  vector  of
differences, z = (z2 - z1, z3 – z2, …, zn- zn-1), and zi representing the IKI at each keystroke (i = 1, 2..,
n).  Note that IKI values themselves represent the difference between the onset  of consecutive
keystrokes, and therefore z indicates a vector of differences of differences. Specifically, the target
value  of  the  performance  measure  was  a  vector  norm  of  1.9596  (e.g.  one  of  the  maximally
rewarded performances leading to this vector norm of IKI-differences would consist of IKI values:
[0.2, 1, 0.2, 1, 0,2, 1, 0.2] s; that is a combinaiton of short and long intervals).  The score was
computed in each trial using a measure of proximity between the target vector norm ║zt║ and the
norm of the performed pattern of IKI differences ║zp║, using the following expression: 

In practice, different temporal patterns leading to the same vector norm ║zp║ could achieve the
same score. Participants were unaware of the existence of various solutions. Higher exploration
across trials during training could thus reveal that several IKI patterns were similarly rewarded. To
account for this possibility, the perceived rate of change of the hidden goal (environmental volatility)
during  training  was  estimated  and  incorporated  into  our  mathematical  description  of  the
relationship between performance and reward (see below).

Anxiety Manipulation

Anxiety was induced during block1 performance in group anx1, and during block2 performance in
the anx2 group by informing participants about the need to give a 2-minute speech to a panel of
experts about an unknown art object at the end of that block (Lang et al., 2015). We specified that
they  would  first  see  the object  at  the  end  of  the  block  (it  was  a  copy  of  Wassily  Kandinsky'
Reciprocal Accords [1942]) and would have 2 min to prepare for the presentation. Participants
were told that the panel of experts would take notes during their speech and would be standing in
front of the testing room (due to the EEG setup participants had to remain seated in front of the
piano).  Following  the  2-min  preparation  period,  participants  were  informed  that  due  to  the
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momentary absence of panel members they instead had to present in front of the lab members.
Participants in the control group had the task to describe the artistic object to themselves, not in
front of a panel of experts. They were informed about this secondary task before the beginning of
block1.

Assessment of State Anxiety 

To assess state anxiety we acquired two types of data: (1) the short version of the  Spielberger
State-Trait  Anxiety  Inventory  (STAI,  state  scale  X1,  20  items;  Spielberger,  1970)  and  (2)  a
continuous electrocardiogram (ECG, see EEG, ECG and MIDI recording session). The STAI X1
subscale was presented four times throughout the experiment. A baseline assessment at the start
of the experiment before the resting state recording was followed by an assessment immediately
before each experimental block to determine changes in anxiety levels. In addition, a continuous
ECG recording was obtained during the resting state and three experimental  blocks to assess
changes  in  autonomic  nervous  system responses.  The  indexes  of  heart  rate  variability  (HRV,
coefficient of variation of the inter-beat-interval) and mean heart rate (HR) were evaluated, as their
reduction has been linked to changes in anxiety state due to a stressor (Feldman, 2004).

Computational Model

Here we provide details on the computational Bayesian model we adopted to estimate participant-
specific  belief  trajectories,  their  uncertainty  and  the  precision-weighted  PEs.  The  model  was
implemented  using  the  HGF  toolbox  for  MATLAB®

(http://www.translationalneuromodeling.org/tapas/).  The  model  consists  of  a  perceptual  and  a
response  model,  representing  an  agent  (a  Bayesian  observer)  who  generates  behavioral
responses based on a sequence of sensory inputs (scores) it receives. As general notation, we let
lower case italics denote scalars (x), which can be further characterised by a trial superscript  xk

and a subscript i  denoting the level in the hierarchy xi
k  (i = 1, 2). We use lower case bold font for

vectors with n components, x.

The HGF corresponds to the perceptual model, representing a hierarchical belief updating
process,  i.e.,  a  process that  infers  hierarchically  related environmental  states  that  give  rise to
sensory inputs (Stefanics, 2011; Mathys et al., 2014). It then generates belief trajectories about
external states, such as the reward value of an action or a stimulus. In the version for continuous
inputs we use here (see Mathys et  al.,  2014;  function  tapas_hgf.m),  learning occurs in  two
hierarchically coupled levels (x1,  x2),  one for “perceptual” beliefs (x1:  the rewarded performance
measure),  and  the  phasic  volatility  of  those  beliefs  (x2).  These  two  levels  evolve  as  coupled
Gaussian random walks,  with  the lower  level  coupled  to  the  higher  level  through its  variance
(inverse precision). The Gaussian random walk at each level xi is determined by its posterior mean
(i  ) and its variance (i  ). Further,  the variance of the lower level,  x1, depends on  x2 through an
exponential function 
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 and 1  are model parameters that are estimated in each participant by fitting the HGF model to
the  experimental  data  (scores  and  responses)  using  Variational  Bayes.  At  the  top  level,  the
variance is typically fixed to a constant parameter, ϑ. The specific coupling between levels indicated
above has the advantage of allowing simple variational inversion of the model and the derivation of
one-step update equations under a mean-field approximation. Importantly, the update equations for
the posterior mean at level i and for trial k depend on the prediction errors weighted by precision (or
uncertainty) according to the following expression:

The first term in the above expression is the change in the expectation or current belief μi
k  for

state xi, and the previous expectation in triak k-1 μi
k −1

. This difference term is proportional to the
prediction error of the level below,  δ i− 1

k , representing the difference between the expectation
μi−1

k  and the prediction μ̂i−1
k of the level below x i− 1

k . The prediction error is weighted by the
ratio between the prediction of the precision of the level below,  π̂ i

k , and the precision of the
current belief, π i−1

k . This expression illustrates that higher uncertainty in the current level ( σ i
k ,

lower π i
k in the denominator) leads to faster update of beliefs.  

Next,  we  selected  the   posterior  mean  1  of  the  continuous  variable  x1,  representing
participants’ beliefs about the value of the performance measure that was rewarded (a measure of
timing, keystroke velocity or a combination of both; see below), and fed it to a separate continuous
response model to link those estimates to participant’s responses. As response model we chose
the Gaussian noise model for responses on a continuous scale (function gaussian_obs.m in the
TAPAS toolbox).  This  model  is  defined  by  a  Gaussian  distribution  centered  at  the  difference
between participants’ current estimates for x1, 1, and their responses y:  

The posterior probability for a participant choosing response  y in this model is therefore
largest when the response matches the most likely value of 1 according to its current belief. This
Gaussian distribution is  normalized with parameter   which penalises the choice of  a specific
response y (decreasing the posterior probability). The participant-specific estimates of parameter 
were also provided by the HGF toolbox. 

Each  of  the  three  implemented  full  (perceptual  +  response)  models  corresponded  to
participants’  decision to modify on a trial-by-trial  basis a specific performance measure – thus
linking it to the rewarded hidden performance. The performance measure was (1) the degree of
temporal differences between consecutive keystrokes (HGF1 model), (2) the degree of differences
between loudness of subsequent keystrokes (alternative HGF2 model),  or (3) a combination of
both previous measures, reflecting changes both in loudness and timing (alternative HGF3 model).
The rationale for using these measures in the response model was that participants were informed
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that the target performance was related to either a pattern of short and long temporal intervals,
small  and  large  keystroke  velocities  or  a  combination  of  both.  We  therefore  assummed  that
participants would link the differences in IKI or Kvel (or both) between consecutive key presses to
the feedback scores. Accordingly, for model HGF1 we fed as responses the following normalized
quantity (range 0-1).

Here,  ||z||  represents the norm of the vector of  differences between adjacent IKI (≡  z)
values for a trial-specific performance (See  Stimulus Materials and score computation). Model
HGF2 corresponded to participants’ decision to modify the pattern of differences in loudness (z ≡
Kvel) between successive keystrokes:  z = (Kvel2  -  Kvel1,  Kvel3  – Kvel2,  …,  Kveln-  Kveln-1).  MIDI
velocity values within 0-127 were normalized to the range 0-1 (Kvel/127), as IKI values fell within 0-
1 s. Lastly, model HGF3 implemented the scenario in which participants decided to vary both the
pattern of IKIs and differences in Kvel on a trial by trial basis. In this case, the argument of the
exponential was the mean between the norm of  z in model HGF1 and HG2, respectively: 

                                   

The priors on the model parameters (ϑ) and on the initial expected states (1
0, 2

0) are
provided in Table 1. All priors are Gaussian distributions in the space in which they are estimated
and are therefore determined by their mean and variance. The variance is relatively broad to let the
priors be modified by the series of inputs (scores). Quantities that need to be positive (e.g. variance
or uncertainty of belief trajectories) are estimated in the log-space, whereas general unbounded
quantities are estimated in their original space.

We used Random Effects Bayesian Model Selection (BMS) to assess at the group level the
three models of learning (Stephan et al., 2009; code freely available from the MACS toolbox, Soch
and Allefeld, 2018). BMS provided the estimated model frequencies, that is, how frequently each
model is  optimal  in  the sample of  participants and the exceedance probabilities,  reflecting the
posterior probability that one model is more frequent than the others (Soch et al., 2016).

EEG, ECG and MIDI recording

EEG and ECG signals were recorded using a 64-channel (extended international 10–20 system)
EEG system (ActiveTwo, BioSemi Inc.) placed in an electromagnetically shielded room. During the
recording, the data were high-pass filtered at 0.16 Hz. The vertical and horizontal eye-movements
(EOG) were monitored by electrodes above and below the right eye and from the outer canthi of
both eyes, respectively. Additional external electrodes were placed on both left and right earlobes
as reference.  The ECG was recorded using two external  channels with a bipolar  ECG lead II
configuration.  The sampling frequency was 512 Hz.  Onsets of  visual  stimuli,  key presses and
metronome beats were automatically documented with markers in the EEG file. The performance
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was additionally  recorded  as  MIDI  files  using  the  software  Visual  Basic  and  a  standard MIDI
sequencer program on a Windows Computer.

EEG and ECG pre-processing

We used MATLAB and the FieldTrip toolbox (Oostenveld et al., 2011) for visualization, filtering and
independent component analysis (ICA; runica).  The EEG data were highpass-filtered at 0.5 Hz
(Hamming windowed sinc finite impulse response [FIR] filter, 3380 points) and notch-filtered at 50
Hz (847 points). Artifact components in the EEG data related to eye blinks, eye movements and the
cardiac-field  artifact  were identified using ICA.  Following IC inspection,  we used the EEGLAB
toolbox (Delorme  &  Makeig,  2004)  to  interpolate  missing  or  noisy  channels  using  spherical
interpolation. Finally, we transformed the data into common average reference. 

Analysis of the ECG data with FieldTrip focused on detection of the QRS-complex to extract
the R-peak latencies of each heartbeat and use them to evaluate the HRV and HR measures in
each experimental block.

Analysis of power spectral density 

We first assessed the standard power spectral density (PSD, in mV2/Hz) of the continuous raw data
in  each  performance  block  and  separately  for  each  group.  The PSD was  computed  with  the
standard fast Fourier Transform (Welch method, Hanning window of 1s with 50% overlap). The raw
PSD estimation  was  normalized  into  decibels  (dB)  with  the average  PSD from the  initial  rest
recordings (3 min). Specifically, the normalized PSD during the performance blocks was calculated
as ten times the base-10 logarithm of the quotient between the performance-block PSD and the
resting state power.

In  addition,  we  assessed  the  time  course  of  the  spectral  power  over  time  during
performance. Trials during sequence performance were extracted from -1 to 11 s locked to the GO
signal. This interval included the STOP signal (red ellipse), which was displayed at 7 s, and –
exclusively in training blocks – the score feedback, which was presented at 9 s. Thus, epochs were
effectively  also  locked  to  the  STOP  and  Score  signals.  Artefact-free  EEG  epochs  were
decomposed into their time-frequency representations using a 7-cycle Morlet wavelet in successive
overlapping windows of 1 seconds within the total 12s-epoch. The frequency domain was sampled
within the beta range from 13 to 30 Hz at 1 Hz intervals. The time-varying spectral power was
computed as the squared norm of the complex wavelet transform, after averaging across trials
within the beta range. This measure of spectral power was further averaged within the beta-band
frequency bins and normalized by substracting the mean and dividing by the standard deviation of
the power estimate in the pre-movement baseline period ([-1, 0] s prior to the GO signal). 
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Extraction of beta-band oscillation bursts

We assessed the distribution, onset and duration of oscillation bursts in the time series of beta-
band  amplitude  envelope.  We  followed  a  procedure  adapted  from  previous  work  to  identify
oscillation bursts (Poil et al., 2008; Tinkhauser et al. 2017). In brief, we used as threshold the 75%
percentile of the amplitude envelope of beta oscillations. Amplitude values above this threshold
were considered to be part of an oscillation burst if they extended for at least one cycle (50 ms: as
a  compromise  between  the  duration  of  one  13  Hz-cycle  [76  ms]  and  30  Hz-cycle  [33  ms]).
Threshold-crossings that were separated by less than 25 ms were considered to be part of the
same oscillation burst.  As an additional threshold the median amplitude was used in a control
analysis,  which  revealed  similar  results, as  expected  from  previous  work  (Poil  et  al.,  2008).
Importantly, because threshold crossings are affected by the signal-to-noise ratio in the recording,
which could vary between the different performance blocks, we selected a common threshold from
the initial rest recordings separately for each participant (Tinkhauser et al. 2017).  Distributions of
the rate of oscillation bursts per duration were estimated using equidistant binning on a logarithmic
axis with 20 bins between 50-2000 ms.

General burst properties were assessed in baseline and training blocks separately, first as
averaged values within  the full  block-related recording,  and next  as  phasic  changes over  time
during trial performance. Trial-based analysis focused on the interval 0-11000 ms following the GO
signal,  which included the time window following the STOP signal  (at  7000 ms:  baseline  and
training blocks) and the score feedback (at 9000 ms: training blocks). 

Statistical Analysis

Statistical  analysis  of  behavioral  and  neural  measures  focused  on  the  separate  comparison
between  each  experimental  group  and  the  control  group  (contrasts:  anx1  –  controls,  anx2  –
controls).  Differences  between  experimental  groups  anx1-anx2  were  evaluated  exclusively
concerning the overall achieved monetary reward. When appropriate, we tested main effects and
interactions in factorial analyses using N x M synchronized rearragements (Basso et al., 2007). The
factorial analysis was complemented with non-parametric permutation tests to assess differences
between conditions or between groups in the statistical analysis of behavioral or neural measures.
To evaluate differences between sets of multi-channel EEG signals corresponding to two conditions
or groups, we used two-sided cluster-based permutation tests (Maris & Oostenveld, 2007)  and an
alpha level of 0.025. Control of the family-wise error (FWE) rate was implemented in these tests to
account for the problem of multiple comparison (Maris & Oostenveld, 2007). When multiple testing
was  performed  with  permutation  tests  and  synchronized  rearrangements,  we  implemented  a
control  of  the  false  discovery  rate  (FDR)  at  level  q  =  0.05  using  an  adaptive  linear  step-up
procedure (Benjamini et al.,  2006). This control provided an adapted threshold  p-value (termed
PFDR ). 

Non-parametric  effect  size  estimators  were  used  in  association  with  our  nonparametric
statistics,  following Grissom and Kim (2012).  In the case of  between-subject  comparisons,  the
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standard probability of superiority, , was used.  is defined as the proportion of greater values in
sample B relative to A, when values in samples A and B are not paired: P (A > B).  ranges
within 0-1. The total number of comparisons is the product of the size of sample A and sample B
(Ntot = sizeA*sizeB), and therefore,   N (A > B) / Ntot. In the case of ties,   is corrected by
subtracting in the denominator the number of ties from the total number of comparisons (Ntot -
Nties).  For  within-subject  comparisons,  we  used  the  probability  of  superiority  for  dependent
samples, dep, which is the proportion of all within-subject (paired) comparisons in which the values
for condition B are larger than for condition A. Confidence intervals (CI) for were estimated with
bootstrap methods (Ruscio & Mullen, 2012).
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Figure Legends

Figure  1.  A  Novel  Paradigm  for  Testing  Reward-Based  Motor  Sequence  Learning. (A)
Schematic  of  the  task.  Participants  played  sequence1  during  100  baseline  exploration  trials,
followed by 200 trials over two blocks of reward-based learning performing sequence2. During the
learning blocks, participants received a performance-related score between 0-100 that would lead
to  monetary  reward.  (B)  Pitch  content  of  the  sequences  used  in  the  baseline  exploration
(sequence1) and reward-based learning blocks (sequence2), respectively. (C) Schematic of the
anxiety manipulation. The shaded area denotes the phase in which anxiety was induced in each
group, using the threat of an upcoming public speaking task, which took place immediately after
that block was completed.

Figure 2.  Heart-rate varibility (HRV) modulation by the anxiety manipulation. (A) Average
HRV measured as the coefficient  of  variation  of  the  inter-beat-interval  is  displayed across  the
experimental blocks: initial resting state recording (Pre), baseline exploration (Base), first block of
training (Train1) and, last block of training (Train2). Relative to Pre, there was a significant drop in
HRV in anx1 participants during baseline exploration (PFDR < 0.05,  dep = 0.81, CI = [0.75, 0.87]). In
anx2 participants the drop in HRV was found during the first training phase, which was targeted by
the anxiety manipulation (PFDR < 0.05, FDR-corrected,  dep = 0.78, CI = [0.71, 0.85]). Between-
group comparisons revealed that anx1, relative to the control group, exhibited a significantly lower
HRV during baseline exploration (PFDR < 0.05,  = 0.75, CI = [0.65, 0.85], purple bar at the bottom).
The anx2 group manifested a significant drop in HRV relative to controls during the first training
block (PFDR < 0.05,  = 0.71, CI = [0.62, 0.80], red bar at the bottom). These results demonstrate a
group-specific modulation of anxiety relative to controls during the targeted blocks. The mean HR
did not change within or between groups (P > 0.05).  (B)  STAI state anxiety score in each group
across the different experimental phases. Participants completed the STAI state anxiety subscale
first at the start of the experiment before the resting state recording (Pre) and subsequently again
immediately before each experimental block (and right after the anxiety induction: Base, Train1,
Train2). There was a within-group significant increase in the score for each experimental group
during the phase targeted by the anxiety manipulation (anx1: Bas relative to Pre,  average score
40[2] and 31[2], respectively; PFDR < 0.05, dep = 0.74, CI = [0.68, 0.80]; anx2: Train1 relative to Pre,
average score 39[2] and 34[2], respectively; PFDR < 0.05, dep = 0.78, CI = [0.68, 0.86]). Between-
group differences were non-significant.

Figure 3. Temporal variability at baseline and during reward-based learning. (A-B) Illustration
of timing performance during baseline exploration (A) and training (B) blocks in one representative

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 18, 2019. ; https://doi.org/10.1101/442772doi: bioRxiv preprint 

https://doi.org/10.1101/442772
http://creativecommons.org/licenses/by-nc-nd/4.0/


participant,  s1.  The x-axis represents the position of  the inter-keystroke interval (sequence1:  7
notes, corresponding to 6 inter-keystroke temporal intervals; sequence2: 8 notes, 7 inter-keystroke
intervals). The y-axis shows the inter-keystroke interval (IKI) in ms. Black lines represent the mean
IKI pattern. Task-related temporal variability was measured using the across-trials coefficient of
variation of IKI, cvIKI. (C) Non-parametric rank correlation in the total population (N = 60) between
the across-trials cvIKI at baseline and the average score achieved subsequently during training
(Spearman  0.45, p = 0.003). (D) Same as C but using the individual value of the across-trials
cvIKI from the training phase (Spearman   = -0.44, p = 0.002). Bars around the mean display
±SEM. 

Figure 4. Effects of anxiety on behavioral variability and reward-based learning.  The score
was computed as a 0-100 normalized measure of proximity between the norm of the pattern of
differences in inter-keystroke intervals performed in each trial  and the target  norm.  (A)  Scores
achieved by participants in the anx1, anx2, and control groups across bins 5:12 (bins of 25 trials:
trial range 101-300), corresponding to blocks 2 and 3 and the training phase. Participants in anx1
achieved significantly lower scores than control participants (PFDR < 0.05, denoted by the bottom
purple  line).  (B)  Changes  in  across-trials  cvKvel,  revealing  a  signifcant  drop  in  task-related
exploration at baseline in anx1 relative to control participants (PFDR < 0.05). Anx2 participants did
not differ from control participants. (C) Same as (B) but for the across-trials cvKvel. (D-F) Control
experiment: Effect of anxiety on variability and learning after removal of the baseline exploration
phase. Panels D-F are displayed as panels A-C. Significant between-group differences are denoted
by the black bar at the bottom (PFDR < 0.05,   = 0.71, CI = [0.64, 0.78]). (F) In anx2 participants
there was a significant drop in the mean scores during the first training block relative to control
participants (PFDR < 0.05,  = 0.77, CI = [0.68, 0.86]). Bars around the mean show ±SEM.

Figure 4 – figure supplement 1. Mean learned solution in each group. On average, the learned
performance in each group was not significantly different, either during the first (A) or second (B)
training block (P > 0.05). 

Figure  5.  Computational  modeling analysis. (A) In  the  main  experiment,  anx1  participants
underestimated  the  tendency  for  x1 (meaning  their  belief  estimate  for  the  degree  of  temporal
differences between IKIs in the target performance was lower; PFDR < 0.05,   = 0.71, CI = [0.59,
0.86], purple bar at the bottom).  (B)  By contrast, the belief estimate for environmental (phasic)
volatility (2) was significantly higher in anx1 than control participants (PFDR < 0.05,  = 0.72,  CI =
[0.63, 0.83]). (C) The uncertainty about environmental volatility was lower in anx1 relative to control
participants (PFDR < 0.05,  = 0.67, CI = [0.52, 0.83]), which led to smaller updates of the estimate
2. (D-F) Same as (A-C) but in the separate control experiment. (D) The belief estimate for x1 was
lower in anx2 participants relative to control participants (PFDR < 0.05,  = 0.75, CI = [0.67, 0.83],
black bar  at  the botttom).  (E)  Same as (B),  showing that  anx2 participants overestimated the
degree of environmental volatility (PFDR < 0.05,   = 0.64, CI = [0.55, 0.73]).  (F) Anx2 were less
uncertain about their phasic volatility estimates relative to control participants (PFDR < 0.05,   =
0.71,  CI  =  [0.45,  0.91]).  Thus,  the  anxiety  manipulation  in  the  control  experiment  biased
participants to assign higher precision to their (overestimated) degree of phasic volatility.

Figure 5 – figure supplement 1. HGF Model Trajectories. Single-trial model-based estimates  of
the  belief  trajectories  at  the  lower  and  higher  HGF level  in  a  representative  subject.  Bottom:
Posterior expectation 1 of the target performance measure, x1. Trialwise inputs (scores, denoted by
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the black dots) and responses (normalized degree of temporal differences between consecutive
inter-keystroke-intervals; denoted by the blue dots) are shown. Top: Posterior expectation 2 of the
log-volatility of the environment, x2,  representing the estimated rate of change in the lower quantity,
x1. Shaded areas indicate the standard deviation of the probability distribution. 

Figure 6. Sensorimotor beta power is modulated by anxiety during baseline exploration. (A)
Topographical representation of the between-group difference (anx1-controls) in normalized beta-
band power spectral density (PSD) in dB. A larger beta-band PSD increase was found in anx1
relative to control participants in a small cluster of contralateral sensorimotor electrodes (white dots
indicate significant electrodes, two-tailed cluster-based permutation test,  PFWE < 0.025).  (B)  The
normalized PSD is shown within 4-45Hz for each experimental and control group after averaging
within  the  cluster  shown  in  (A).  The  purple  bottom  line  denotes  the  frequency  range  of  the
significant cluster shown in (A). No significant between-group differences outside the beta range (4-
12 Hz or 31-45 Hz) were found (P > 0.05). Anx2 and control participants did not differ in power
modulations. Shaded areas denote mean ±SEM. (C) Same as (A) but for differences in beta-band
PSD between anx2 and control participants. No significant clusters were found. 

Figure 7. Anxiety during baseline exploration prolongs the life-time of sensorimotor beta-
band  oscillation  bursts.  (A)  Illustration  of  the  amplitude  of  beta  oscillations  (gray  line)  and
amplitude  envelope  (black  line)  for  one  representative  subject  and  channel.  (B) Schematic
overview of the threshold-crossing procedure to detect beta oscillation bursts. A threshold of 75%
of the beta-band amplitude envelope was selected and beta bursts extending for at least one cycle
were accepted. Windows of above-threshold oscillation bursts detected in the beta-band amplitude
envelope (black line) are denoted by the green lines.  (C)  Scalp topography for  between-group
changes in the mean burst duration during baseline exploration. A significant positive cluster was
found in an extended cluster of left sensorimotor electrodes, due to a longer average burst duration
in anx1 than in control participants (20-30ms longer; Black dots indicate significant electrodes, two-
tailed  cluster-based  permutation  test,  PFWE <  0.025).  (D) Probability  distribution  of  beta-band
oscillation-burst life-times within range 50-2000ms for each group during baseline exploration. The
double-logarithmic representation reveals  a power  law within the fitted range (first  duration bin
excluded from the fit, as in Poil et al., 2008). For each power law we extracted the slope, , also
termed  life-time  exponent.  The  dashed  line  illustrates  a  power  law  with   =  1.5.  Significant
differences between anx1 and control participants in oscillation-burst durations are denoted by the
purple line at the bottom (PFDR < 0.05, = 0.92, CI = [0.86, 0.98] for long bursts;  = 0.70, CI =
[0.56, 0.84] for brief bursts). The rectangle highlights the area enlarged and displayed in the right
panel (E). Data shown as mean and ± SEM.  (E) Enlarged display of the region of between-group
significant differences highlighted by the rectangle in (D).

Figure 8 - Time course of the beta power and burst rate during trials of baseline exploration
(A) The time representation of the beta power throughout trial performance shows two distinct time
windows  of  increased  power  in  participants  affected  by  the  anxiety  manipulation:  following
sequence performance and, additionally, after the STOP signal  (PFDR < 0.05, = 0.72, CI = [0.63,
0.80]; black bars at the bottom indicate the windows of significant differences). Average across
sensorimotor and prefrontal electrode regions as shown in the inset in (B; PFWE  < 0.025). Shaded
areas indicate the SEM around the mean. Performance of sequence1 was completed on average
between 680 (50) and 3680 (100) ms, denoted by the gray rectangle at the top. The STOP signal
was displayed at 7000 ms after the GO signal, and the trial ended at 9000 ms.  (B)  The rate of
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oscillation bursts of longer duration (> 500 ms) exhibited a similar temporal pattern, with increased
burst rate in anx1 participants following movement and the STOP signal (PFDR < 0.05, = 0.69, CI =
[0.61,  0.78]).  (C) In  contrast  to  the rate of  long bursts,  the rate of  brief  oscillation bursts was
reduced in anx1 relative to control participants, albeit during performance (PFDR < 0.05, = 0.74, CI
= [0.65, 0.82]).

Figure 8 – figure supplement 1. Post-movement increases in the beta-band amplitude and
burst rate can be explained by state anxiety. (A-C) A separate control analysis was carried out
to  determine the influence of  the  anxiety  manipulation  alone on the beta  PSD and burst  rate
properties,  after  controlling for  changes in  motor  variability  (cvIKI).  Panels (A-C)  are similar  to
panels (A-C) in Figure 8, but for a comparison between anx1 and participants from an extended
control group (contr*, including control and anx2 participants, who were not affected by anxiety at
baseline),  after  matching  them  in  motor  variability.  Significant  between-group  differences  are
denoted by the black bar at the bottom (PFDR < 0.05, large effect sizes, = 0.81, CI = [0.72, 0.90]).
This analysis revealed effects in the same windows as the primary between-group analysis shown
in Figure 8.

Figure 8 – figure supplement 2. Changes in motor variability without concurrent changes in
state  anxiety  partially  account  for  the  observed  alterations  in  post-movement  beta
amplitude and burst rate. (A-C). Same as Figure 8 and Figure 8 - figure supplement 1, but in a
control  analysis  performed  to  assess  the  effect  of  motor  variability  on  beta  PSD changes  at
baseline, independently of the anxiety manipulation. We compared participants selected from the
extended control group (control + anx2) after doing a median split  of the group based on their
degree of temporal variability (cvIKI). Between-group differences were associated with small effect
sizes (PFDR < 0.05,   = 0.56,  CI  = [0.51,  0.62];  black bars at  the bottom) and  exclusively in
sensorimotor electrodes (topographic map; PFWE < 0.025).

Figure 9.  Time course of the beta power and burst rate throughout trial performance and
following reward feedback. (A) Time course of the feedback-locked beta power during sequence
performance in the training blocks, separately in anx1, anx2 and control groups. Average across
sensorimotor and prefrontal electrode regions as in (B). Shaded areas indicate the SEM around the
mean.  Participants  completed  sequence2  on  average  between  720(30)  and  5350  (100)  ms,
denoted by the top gray box.  The STOP signal was displayed 7000 ms after the GO signal, and
was  followed at  9000  ms by  the feedback  score.  This  representation  shows two distinct  time
windows of significant differences in beta activity between anx1 and control groups: at the end of
the sequence performance and subsequently following feedback presentation  (PFDR < 0.05,  =
0.67, CI = [0.56, 0.78]; and  = 0.65, CI = [0.55, 0.75], respectively, denoted by the purple bar at
the bottom).  Anx2 participants also exhibited an enhanced beta power towards the end of the
sequence performance (PFDR < 0.05,  = 0.61, CI = [0.56, 0.67]).  (B)  Time course of the rate of
longer (> 500 ms) oscillation bursts during sequence performance in the training blocks.  Anx1
participants exhibited a prominent rise in the burst rate 400 – 1600 ms following the feedback
score, which was significantly larger than the rate in control participants (PFDR < 0.05, = 0.82, CI =
[0.70, 0.91]). Data display the mean and ± SEM. The topographic map indicates the electrodes of
significant effects for panels (A-C; PFWE < 0.025). (C) Same as (B) but showing the rate of shorter
beta  bursts  (<  300  ms)  during  sequence  performance  in  the  training  blocks.  Between-group
comparisons  demonstrated  a  significant  drop  in  the  rate  of  brief  oscillation  bursts  in  anx1
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participants relative to control participants at the beginning of the performance (PFDR < 0.05,  =
0.70, CI = [0.56, 0.84]), yet not after the  presentation of the feedback score.  

Figure 9 – figure supplement 1. Beta power spectral density and burst rate during reward-
based learning. (A-C). During training, the general level of normalized PSD did not differ between
groups (PFDR > 0.05). The training-related PSD was normalized into decibels (dB) with the PSD of
the initial resting state recording. (D) Probability distribution of beta-band oscillation-burst life-times
within  range  50-2000  ms  for  each  group  during  training  blocks.  The  double-logarithmic
representation highlights that longer-tailed distributions were observed in anx1 participants, who
exhibited more frequent long bursts and less frequent brief bursts than the control group (PFDR <
0.05, = 0.75, CI = [0.65, 0.86]; purple bars at the bottom). Data shown as mean and ± SEM. (E)
Enlarged display of the region of significant differences for brief oscillation bursts  shown in (D).
The topographic map indicates the electrodes where the significant between-group rate effects
were localized: left sensorimotor and right prefrontal electrode regions (PFWE < 0.025). 

Figure 9 – figure supplement 2. Effect of the anxiety manipulation on prefrontal burts during
training.  (A-B) Similar to Figure 9 – figure supplement 1,  but for the analysis of between-group
differences in anx2 and control participants. Participants in the anx2 group did not show behavioral
differences as compared to the control  group.  Corresponding with this result,  the effect  of  the
anxiety manipulation in the anx2 group on the burst rate was limited to prefrontal electrodes, and
did not extend to sensorimotor regions (PFDR < 0.05, = 0.71, CI = [0.55, 0.87]). 

Figure 10. Post-feedback increases in the rate of long oscillation burst represent attenuated
precision-weighted prediction errors about volatility estimates.  (A) Average beta power within
400-1600  ms  following  feedback  presentation  in  training  blocks,  sorted  by  the  magnitude  of
precision-weighted PEs (pwPEs) for level 1 (1). Although the post-feedback beta power in control
participants decreased with increasing magnitude of 1, and so did the grand-average across all 60
participants (top right inset), our non-parametric 3 x 2 factorial analysis did not reveal significant
main effects for factors Magnitude of  1  or Group (anx1, controls); neither did we find interaction
effects (see main text). No effects when using anx2 in the Group factor either. (B) Same as (A) but
for the magnitude of pwPEs for level 2 (2), driving belief updates about volatility. No significant
main effects or interactions were found. (C) Grand-average of the rate of post-feedback long beta
bursts sorted by the magnitude of trial-wise pwPEs driving belief estimates about the performance
measure. A  2  x  3  non-parametric  factorial  analysis  with  factors  Group  (anx1,  controls)  and
Magnitude of 1 revealed a significant main effect of Group (P = 0.028). A  trend of significance was
found for factor Magnitude (P = 0.065). (D) Both main effects were significant when considering the
pwPEs of the second level,  2   (P = 0.032 and 0.027).  This result links the higher post-feedback
rate of long-lived oscillation bursts in anx1 with reduced updates about volatility.

Figure 10 – figure supplement 1. The rate of brief beta bursts following feedback is not
modulated by the magnitude of precision-weighted prediction errors.  Grand-average of the
rate of post-feedback brief beta bursts sorted by the magnitude of trial-wise precision-weighted
PEs driving belief estimates  (A) and estimates about environmental volatility  (B).  No significant
differences were found  (P > 0.05). 
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Table 1. Means and variances of the priors on perceptual parameters and initial values. 

Priors on the parameters and initial values of HGF perceptual model for continuous inputs were the
default  prior  values  defined  in  function  tapas_hgf_config.m from  the  HGF  toolbox.  The
continuous inputs here were the trial-by-trial scores that participants received, normalized to the 0-
1 range. Quantities estimated in  the logarithmic space are denoted by log(  ).  Prior  mean and
variance for 1

0, as well as the prior mean for 1
0  and 1 were defined by the initial input values. For

the remaining quantities, the prior mean and variance were pre-defined according to the values
indicated in the table. The prior means for 1 and log(1

0) were related as the variance of variable
x1 in the HGF is a function of the upper level according to the expression 1

0 = exp(x2 + 1).

Prior mean Prior variance

log() log(1) 0

1 Log-variance of the first 20 input
scores (median  = log[0.02] = 
-3.9)

16

 log(ϑ)  -4 16

1
0 Value of first input score 

(median = 0.21 in the total 
population of 60 participants)

Variance of the first 20 inputs 
scores (median = 0.05 across all 
participants)

log(1
0) Log-variance of the first 20 input

scores (median  = log[0.02])
1

2
0 1 0

log(2
0) log(0.1) 1
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