
Bulkin et al., 14 Oct. 2018 – preprint copy - BioRxiv 

1 

Hippocampal State Transitions at the Boundaries between Trial Epochs 
 

David A. Bulkin1, David G. Sinclair2, L. Matthew Law3,4, and David M. Smith5 
 
1 Department of Neurobiology and Behavior, Cornell University, Ithaca NY, USA  
2 Department of Statistical Science, Cornell University, Ithaca NY, USA 
3 BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA 
4 Department of Child Health, University of Arizona College of Medicine, Phoenix, Arizona 
5 Department of Psychology, Cornell University, Ithaca NY, USA 
 
Correspondence: David A. Bulkin; bulkin@cornell.edu 

Abstract 

The hippocampus encodes distinct environmental and behavioral contexts with unique patterns of activity. Representational shifts 
with changes in the context, referred to as remapping, have been extensively studied. However, less is known about the nature of 
transitions between representations. In this study, we leverage a large dataset of 2056 neurons recorded while rats performed an 
olfactory memory task with a predictable temporal structure involving trials and inter-trial intervals, separated by salient 
boundaries at the trial start and trial end. We found that trial epochs were associated with stable hippocampal population 
representations, despite moment to moment variability in stimuli and behavior. Representations of trial and inter-trial interval 
epochs were far more distinct than spatial factors would predict and the transitions between the two were abrupt, with a sharp 
boundary suggestive of a dynamic shift in the representational state. This boundary was associated with a large spike in multi-
unit activity, with many individual cells specifically active at the start or end of each trial. Both epochs and boundaries were 
encoded by hippocampal populations, and these representations carried information on orthogonal axes readily identified using 
principal component analysis. We suggest that the activity spike at trial boundaries might serve to drive hippocampal activity 
from one stable state to another, and may play a role in segmenting continuous experience into discrete episodic memories.  
 

Introduction 

For animals to successfully interact with their environment they need to 
construct neural representations that allow them to identify the current 
context and select appropriate behavioral responses, and they need to 
rapidly transition between these representations when the context 
changes. A large literature has suggested that hippocampal activity 
patterns represent the environmental context (Colgin et al., 2008; 
Holland and Bouton, 1999; Nadel, 2008; Rudy, 2009) and we have 
shown that distinct hippocampal representations are essential for the 
ability to retrieve context-appropriate memories while avoiding 
interference from memories that belong to other contexts (Bulkin et al., 
2016; Butterly et al., 2012; Smith and Bulkin, 2014). The hippocampus 
has the capacity to generate many distinct representations (Alme et al., 
2014) and the environmental factors that induce the formation of a new 
representation (i.e. remapping) have been studied extensively 
(Anderson and Jeffery, 2003; Colgin et al., 2008; Leutgeb et al., 2007, 
2005; Muller and Kubie, 1987; Schlesiger et al., 2018). Changes in the 
non-spatial characteristics of the context, such as behavioral demands, 
strategy and motivation, are also known to induce remapping (Eschenko 
and Mizumori, 2007; Ferbinteanu and Shapiro, 2003; P. J. Kennedy and 
Shapiro, 2009; Skaggs and McNaughton, 1998; Smith and Mizumori, 
2006; Terrazas et al., 2005; Wood et al., 2000). Studies of hippocampal 
representations during context transitions have shown patterns that are 
rapid and abrupt, rather than a gradual progression through intermediate 
representations (Jezek et al., 2011; Kelemen and Fenton, 2010; T. J. 
Wills et al., 2005). However, these studies necessarily involved 
artificial experimental conditions unlike those commonly encountered 
in day to day experience (e.g. an unexpected and dramatic change in the 
visual environment, described as ‘teleportation’ by the authors (Jezek et 
al., 2011)). Much less is known about more mundane and highly 
predictable changes in the context such as walking from the living room 

into the kitchen. Indeed, it is not clear whether the hippocampus treats 
contiguous spaces as distinct contexts and if so, how hippocampal 
representations transition from one to the other.  

In this paper we leverage a large dataset of 2056 neurons recorded 
during a complex multi-stimulus olfactory discrimination task with two 
behaviorally and spatially distinct areas (a trial area and an inter-trial 
waiting area) and a predictable trial structure to interrogate the 
dynamics of hippocampal representations. We discovered that 
hippocampal populations form two distinct representations of the trial 
and ITI epochs, and that the shift between these representations was 
accompanied by a surge of activity among subsets of hippocampal 
neurons. These firing patterns resembled a phase transition: the 
hippocampal state before trials transformed to a distinct state during 
trials, and then transformed back at the end of trials, with an identifiable 
transitory activity pattern between states.  

Results 

We recorded the responses of hippocampal CA1 neurons while rats 
were engaged in a memory-guided odor discrimination task (Butterly et 
al., 2012). On each trial, a removable divider was lifted and rats ran 
from an inter-trial waiting area to approach two cups containing scented 
digging medium (Fig.1A). Odors were drawn from a set of 16 distinct 
odors, presented in 8 pairings with one odor in each pair always 
rewarded with a buried sucrose pellet. On some trials (Fig. 1B, E), rats 
approached the rewarded cup and dug for a reward. On other trials rats 
approached the unbaited cup first (Fig. 1F), and either correctly rejected 
the stimulus (Fig. 1C) or incorrectly dug for a reward (Fig. 1D) after 
which the trial continued until they obtained the reward in the baited 
cup. Following the reward, rats returned to the inter-trial waiting area. 
Recordings took place over a period of up to 10 days, as rats learned 
reward contingencies for two sequentially presented sets of odor 
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pairings in a task design used to probe for mnemonic interference. 
Results of the investigation into interference have been reported 
previously (Bulkin et al., 2016). 

Individual Neurons Respond at Trial Boundaries 
Many neurons showed transient increases in activity at the start and end 
of trials, often selective for one of these two epochs.  Figure 1G-H show 
the responses of example ‘trial start’ and ‘trial end’ neurons. The upper 

panels show responses that are strongly time-locked to the start and end 
of trials, despite considerable variability in timing of behavior (Fig. 1E-
F). The lower panels of Figure 1G-H show the trajectory of the rat with 
color indicating the instantaneous firing rate. These data show that 
elevation in activity was spatially unrestricted, and that the rat often 
traversed similar territory during these two epochs, suggesting that 
activity was better explained by a temporal description of firing rate 
than by a spatial account. 

The large numbers of neurons with activity patterns like those seen 
in Figure 1G-H led to transient increases in multi-unit firing rate that 
began just before the start of trials (as the divider was lifted) and then 
again at the end of the trials as rats returned to the inter-trial waiting 
area (Fig. 2A-D). Similar to the example responses shown in Figure 1G-
H, this activity was not attributable to purely spatial factors.  Most 
neurons were selective for either the trial start or trial end (Fig. 2E, blue 
and red) even though these epochs occurred in similar locations. Firing 
was not distributed randomly around the environment, but instead we 
observed elevated activity near the boundary between the trial and ITI 
areas (Fig. 2F). These apparent ‘spatial’ regions of elevated firing were 
clearly modulated by the start and end of trials. Firing measured at the 
same locations during epochs associated with the trial start and end was 
distinct (Fig. 2G, red and blue traces), and was elevated compared to 
firing far from trial boundaries (Fig. 2G, black trace), indicating that 
activity was not modulated solely by spatial location.  

Transient activity at the start and end of the trials was not likely 
associated with sharp-wave ripples. Rats were rarely immobile at these 
times, and field potentials showed robust theta oscillations, and so 
ripples were infrequent at the start and end of trials (Buzsáki et al., 
1992). Increased activity at the trial start/end was also not attributable to 
increased running speed at the start and end of trials. Although activity 
was correlated with running speed overall, we found that firing rates 
were higher at the time of the trial start and trial end than at instances of 
similar running speed occurring during the trial and ITI epochs, 
suggesting that trial start/end activity was above what would be 
expected based on running speed alone (Supplemental Fig. 1).  To 
statistically confirm this, we computed a series of linear regressions for 
each session defining multi-unit firing rate as a function of running 
speed, separately for data selected from the trial start and trial end and 
the inter-trial interval (ITI). The slopes of the resulting regression lines 
taken from the trial start/end data were similar to the slopes based on 
ITI data (paired t-test, p>.01 for start and end), yet the intercept was 
significantly higher for data selected from the trial start (paired t-test, 
p<10-6) and end (paired t-test, p<10-6). This suggests that activity at 
these times showed a global increase unrelated to running speed.  

Interestingly, the magnitude of the trial start response (average 
firing rate +/- 500ms around trial start) was somewhat larger on trials in 
which the rat made the correct choice on the subsequent trial (Fig. 2H; 
641units, paired t-test: p<.001). This effect was probably not driven by 
reward related activity, or a reduction in the reward prediction error 
when rats identified the odor and could therefor predict an impending 
reward. Rats rarely arrived at the first cup within 500ms (Fig. 1E-F), 
and we saw no evidence of a decision (e.g. a change in trajectory) 
before this time. 

To assess the relative contributions of spatial and temporal factors 
in shaping the activity of individual neurons, we modeled the firing rate 
of each neuron as a function of the rat’s location and the time of the 
nearest trial start and end. Because position and time partially covaried 
(i.e. position was not random at times near the trial start and end), we 
used an extension of a constrained Poisson generalized linear model 
(GLM) that orthogonalizes covariates to disambiguate the independent 
contributions of factors affecting firing rate (Truccolo et al., 2004). This 
strategy has been previously used specifically for distinguishing effects 

Figure 1. Reliable neuronal responses to the start and end of
trials despite large variability in spatiotemporal patterns of
behavior. Rats performed trials in 60cm x 46cm wooden boxes (A).
The boxes were bisected by a removable divider (dotted line in A).
One side of the box served as the inter-trial waiting area, and rats
performed trials in the other side. During the trials, rats dug for a
reward buried in one of two cups, placed in cup holders indicated by
the two circles in A. Panels B through D show example positional
trajectories, beginning 3 seconds before the trial start (black squares)
and extending 3 seconds after the trial end (black circles). B shows a
trial where the rat first approached the cup on the right, which was
the baited cup for this trial, and dug for a reward. C shows a trial
where the rat approached and sampled the unbaited cup (on the left),
correctly rejected it, and then dug for a reward in the baited cup on
the right. D is similar to C, except that the rat made an error by
digging in the cup on the left, but then approached the baited cup on
the right and found the reward. Panels E and F illustrate the time line
and variability in how the trials proceeded. The median time of arrival
at the cup (blue), the time spent retrieving the reward and returning to
the ITI side of the box (black), and the duration of the ITI (red) are
given. The histograms illustrate the variability in the duration of these
epochs. Panel F shows the same data for trials in which the rats
approached both cups (i.e. trials with trajectories like those shown in
C and D). Note the use of a log scale for the abscissa in E and F.
Panels G and H show data from an example trial start and trial end
neuron. At the top the average firing aligned on the start (left) and
end (right) is shown. Below a heatmap shows the firing on each trial.
At the bottom, the trajectory of the rat is shown for a period matching
the above plots, with color indicating the instantaneous firing rate of
the neurons. 
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in the face of nuisance correlations between factors shaping 
hippocampal activity (Lepage et al., 2012; MacDonald et al., 2011). For 
each neuron we fit three Gaussian functions to the average activity: two 
one dimensional curves that described firing rate as a function of time 
with respect to trial start and end, and a two dimensional surface that 
described firing rate as a function of the location of the rat. We then 
described the firing rate of the neuron as the weighted sum of these 
three functions (effects of trial start, trial end, and position), using the 
projection described in Lepage et al (2012) to form estimates of 
temporal effects that could not be accounted for by covariation between 
the times of trials and the location of the rat. Finally, we computed the 
statistical significance of each coefficient via a normal approximation of 
the bootstrap estimate (Efron and Tibshirani, 1994). Supplementary 
Figure 2A-F show responses and fits of example temporally and 
spatially modulated neurons that were disambiguated by this analysis.  

The majority of neurons were significantly modulated by space 
(1601/2056; Fig. 3A). Yet many of these neurons showed additional 
modulation by the trial start or end (859/1601; Bonferroni corrected for 
tests of trial start and end responses). Importantly, because the model 
orthogonalized spatial and temporal covariates, the trial start/end 
responses were not spuriously identified due to rats traversing through a 
place field at the beginning or end of trials. Rather, neurons represented 
both location and time with respect to the trial boundaries. 
Approximately half of the neurons showed some modulation by one of 

the temporal factors (1004/2056, Bonferroni corrected), and a similar 
quantity of cells had activity that was affected by the trial start and trial 
end (start: 688 neurons; end: 757 neurons). Plotting the average firing 
rate for start/end responsive and spatially sensitive neurons revealed 
that firing patterns were similar for neurons with a trial start/end 
response whether or not the neuron was also modulated by space, and 
that spatially sensitive neurons that lacked a trial start/end response 
showed larger firing rates during ITI epochs (Fig. 3B-C; Supplemental 
Fig. 2G-H). In order to control for the possible contribution of running 
speed to trial start/end firing, we repeated the GLM and included a 
linear term for running speed. Firing was modulated by running speed 
for many neurons (773/2056), but accounting for variance due to 
running speed had little effect on the number of neurons marked as 
responsive to the trial start/end (Supplemental Fig. 2I-J). 

Distinct Population States Represent Trial and ITI Epochs 
Inspection of the neural activity in Figure 2 revealed two important 
details about the dynamics of hippocampal firing as rats started and 
ended trials: a prominent increase in firing at the trial boundaries (Fig. 
2A-B), and distinct populations of neurons were recruited during trial 
and ITI epochs (Fig. 2 C-D). Unlike the transient activity increases at 
the trial boundaries, non-overlapping populations during trials and ITIs 
are potentially consistent with spatial models of hippocampal activity as 

Figure 2 Increase in activity of hippocampal neurons at trial start and end. Panels A and B show average multi-unit firing rate aligned on trial start 
and end. Firing rates of each unit were binned (100ms bins) and smoothed with a 5 bin moving average. The shaded region indicates SEM over units.
Panels C and D show average normalized firing rate aligned on trial start and end for all units. Binned activity was normalized by z-scoring using the 
average and standard deviation of each unit’s rate over the entire session. The trial-averaged traces were then sorted based on the time of the 
maximum rate. Panel E shows a scatter plot of peak firing rate of each neuron in a window +/- 3s with respect to trial start (abscissa) versus trial end 
(ordinate). For each unit a single crosshair is plotted, centered on the average peak rate, and extending +/- one SEM (over trials). Units with SEM
overlapping with unity are shown in gray (513/2056 units), those above unity are shown in blue (810/2056 units), and those that fall below unity are
shown in red (733/2056 units). Panel F shows the average firing rate in 1.5 cm square spatial bins. Points between the centers of the bins have been 
linearly interpolated. The horizontal line indicates the location of the removable divider (see Fig. 1A). Panel G shows average multi-unit firing rate for 
locations in 3cm bins in the axis orthogonal to the divider (i.e. vertical in F), calculated separately for rates occurring within 2 seconds of the start of the
trial (red) or end of the trial (blue) or more than 2 seconds from either (black). Panel H shows average firing rate around the start of the trial plotted 
separately for correct (green) and error (pink) trials, only neurons with trial start responses have been included (688 neurons, Fig. 3A). The inset shows 
the average activity in a window +/-500ms on the trial start. Shaded region and error bars indicate SEM over units. 
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these two epochs were necessarily in distinct spatial locations (Fig. 1A). 
This presents an essential challenge of comparing temporal and spatial 
dynamics in the hippocampus: distinct events often occur in distinct 
locations. We next performed a series of population analyses to 
understand whether the extent of neural dissimilarity between trials and 
ITIs could be explained based on differences in the rat’s position, or 
whether trial boundaries marked a state transition such that neuronal 
dissimilarity exceeded what would be expected based on positional 
disparity alone.  
 

 
Figure 3 Independent Spatial and Temporal Responses in 
Overlapping Neuronal Populations. Panel A shows a Venn diagram 
indicating the classified responses of neurons. Each unit was submitted 
to a generalized linear model (GLM) which orthogonalized components 
defined by spatial and temporal Gaussian fits to average response data. 
The diagram tallies the number/percent of neurons with a significant term 
in the model for the noted component. Panels B and C show average 
normalized firing rate for units with (+) and without (-) significant spatial 
and trial start (B) or trial end (C) coefficients. The GLM successfully 
identified start and end responsive neurons, evidenced by the clear peak 
in the average firing rate of these neurons compared with unresponsive 
neurons. Units classified as exclusively spatial (i.e. Start-/End- Space+) 
showed somewhat elevated firing rates in the inter-trial interval (before 
the trial start in B and after the trial end in C). 
 

To measure ensemble similarity, we tabulated population vectors 
(PVs; vectors containing firing rates in 100ms bins) and computed 
pairwise correlations between them. We averaged the pairwise 
correlation coefficients between PVs drawn from different trials, at 
times surrounding the start and end of trials (+/- 3s). Figures 4A-B show 
the average values (across recording sessions) for each pair of 
comparisons. The color of each point in the images indicates the 
average cross-trial correlation between one temporal bin and another. 
Points lying on unity quantify the similarity of ensemble activity from 
trial to trial at the same time with respect to the trial start/end, while off-
unity points indicate cross-trial similarity at proximal times.   

Examination of the cross trial correlation plots (Fig. 4A-B) reveals 
several striking characteristics of large scale hippocampal activity 
patterns. Both plots show a strong peak at the center, indicating that trial 
start/end firing patterns are similar from one trial to the next, an 
outcome which reflects the reliable bursts of firing seen at the trial 
boundaries (Fig. 2A-B). Correlations along the unity line declined from 
this peak as time passed from the trial start, but remained high 
throughout the trial epoch. For example, firing patterns occurring ~1.5 
sec into the trials (see ●, Fig. 4A) were surprisingly well correlated 
across trials. At that time, the rats had typically arrived at the first odor 
cup (Fig. 1E-F), encountered one of the sixteen possible odor cues, and 
decided whether to dig or proceed to the second cup, depending on the 
valence of the odor cue. Even more noteworthy, firing patterns taken 
from quite distant times within the trials were also well correlated. For 
example, the firing patterns occurring 0.5 sec into the trial were 
surprisingly similar to firing occurring two seconds later (i.e. 2.5 sec 
into the trial, see ♦, Fig. 4A), despite the fact that the rats were engaged 
markedly different and highly variable behaviors at those two time 
points (Fig. 1E-F). Rats were nearly always approaching the first odor 
cup at 0.5 sec, but at the 2.5 sec time point they could be digging in the 
first cup, investigating or digging in the second cup (if the first cup was 
not rewarded), consuming the reward, or returning to the ITI side of the 
chamber. This was not likely driven by spatial location since the trial 
structure meant that rats rarely occupied the same location at these two 
different time points (Fig. 1B-D). Firing patterns within the ITI epoch 
also showed a large degree of similarity (Fig. 4A lower left and 4B 
upper right), although these correlations were significantly lower than 
those for population vectors taken from the trial epoch (Fig. 4C; paired 
t-test: T(83)=4.59, p<10-4). Another important feature that is apparent 
in these plots is the sharp boundary between the trial and ITI epochs. In 
contrast to the remarkable self-similarity of firing patterns taken from 
within an epoch, correlations were significantly lower for vectors drawn 
from different epochs (Fig. 4C; paired t-tests: ITI vs. cross 
T(83)=18.89, p<10-31; trial vs. cross T(83)=14.27, p<10-23). This 
suggests that activity was distinct across the two epochs (Fig. 4A-B, 
upper left and lower right). Indeed, correlations for vectors taken only 1 
sec apart but from different epochs (i.e. 0.5 sec before and 0.5 sec after 

 much lower than those for vectors taken 
twice as far apart but within the trial epoch (see ♦, Fig. 4A). Similar 
patterns were found when correlations were measured using Kendall’s 
rank correlation coefficient, which is arguably more robust to the 
relatively sparse firing patterns seen in hippocampus (Neymotin et al., 
2017) (Supplementary Fig. 3A-C). 
The striking self-similarity of firing patterns within each epoch, and the 
sharp decline in similarity when rats transitioned from the trial epoch to 
the ITI, suggest that hippocampus treats these two epochs as distinct 
contexts. Consistent with this idea, we could accurately decode 
population activity as belonging to the trial or ITI using linear 
discriminant analysis. We used an iterative process wherein we trained 
linear classifiers using a randomly selected subset of half of the PVs and 
measured performance of the classifiers on the remaining half. We 
repeated this process 1000 times, providing a distribution of 
performance values (proportion of PVs correctly classified). Classifier 
performance (Fig. 4D) was virtually always above chance, and showed 
high accuracy: on average 85% of vectors surrounding the trial start and 
84% of vectors surrounding the trial end were correctly classified. 
Classification errors were most likely to occur near the trial boundaries 
(Supplementary Fig. 3F-G), a period when ensembles encoded the 
boundary itself rather than the surrounding epoch.  
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While hippocampal output reliably differentiated the task epochs, 
the increased similarity of ensemble activity within epochs could simply 
be due to spatial factors since any two PVs drawn from a single epoch 
were more likely to correspond nearby locations than two PVs selected 
from different epochs. Even the greater similarity within trials than 
within the ITI could have been influenced by spatial factors since 
spatial behavior was more constrained during trials. In order to 
determine whether these spatial factors did, in fact, account for the 
within-epoch similarity, we compared PV correlations for subsets of 
data with fixed ranges of spatial distance. We labeled each pair of PVs 
using the distance between the associated positions (locations occupied 
by the rat at the time of the PV) and binned pairwise correlation values 
based on distances (Fig. 3E). If ensemble activity was governed purely 
by space, the selected epoch would make no difference in the 
correlation values and an overall decrease in correlation with distance 
would be expected. In fact, even at very low distances, PVs were more 
similar within epochs than across epochs, and within trial similarity was 
higher than within ITI similarity (repeated measures ANOVA: main 
effect of epoch F(2,166)=19.15, p<10-7; main effect of distance 
F(21,1743)=182.9, p<10-15; interaction F(42,3486)=6.053, p<10-15). 
Indeed, correlations for population vectors taken 10-20 cm apart during 
a trial were as similar as population vectors taken just 1 cm apart but 
which spanned the trial start boundary (Fig. 4E, dashed line). This 
increased similarity between vectors selected from trial epochs persisted 
at larger distances, with a noticeable ‘bump’ in the similarity curve for 
PVs that occurred when positions were separated by about 20cm. This 
distance is of particular note as the odor stimuli used in the experiment 
were presented in cups separated by 20cm (Fig. 1A) and we 
occasionally observed examples of individual neurons that showed 
increased activity as rats sampled the odors and dug in the cups, 
regardless of which cup (see also (Eichenbaum et al., 1987; Muzzio et 
al., 2009)). The observation that the trial and ITI epochs were more 
similar than would be suggested by spatial considerations alone is 
consistent with the idea that the hippocampus represents the two epochs 
as distinct contexts and differentiates them accordingly. 

Dynamics of Hippocampal Ensembles during State Transitions 
The dissimilarity between population activity in trial and ITI epochs, 
above what is predicted from space alone, suggests that hippocampal 
ensembles undergo a comprehensive state transition at the boundaries of 
each trial event. Under a phase transition framework, the increase in 
hippocampal multiunit activity at the start and end of trials might serve 
to drive this transition, pushing the hippocampal state past a critical 
point to allow a shift in representational state (Steyn-Ross et al., 2010). 
As such, we next sought to characterize the hippocampal state itself 
rather than relying on pairwise correlations to make inferences about the 
clustering of hippocampal representations. We took a dimension 
reduction strategy using principal components analysis (PCA). Because 
PCA produces an orthogonal transformation to a set of linearly 
uncorrelated variables accounting for descending quantities of variance, 
it allows for a representation of high dimensional neural activity that 
captures important covariation among ensembles. However, while the 
individual components identify a mapping of the raw data based on 
variance, the sign of PC scores is irrelevant. Thus, averaging PC scores 
across sessions provides no information on how a typical ensemble 
changes. To circumvent this issue we built a large matrix of pseudo-
population vectors containing the firing rates of all of the units in our 
dataset (n=2056). To combine PVs across multiple sessions, we labeled 
vectors based on their time relative to the trial start and trial end. We 
took activity from 100ms bins extending +/-5 seconds around each 
trial’s start and end. We then randomly sampled (with replacement) a 
vector from a given bin from each session 200 times, generating typical 
2056 dimensional vectors for that moment in time. Repeating this 
process across bins produced a matrix with 40000 observations (200 
time points x 200 iterations). We subjected this entire matrix to PCA. 
Importantly, although the pseudo population vector matrix was 
assembled using temporal labels, PCA is blind to these labels and 
simply provides loadings (i.e. a coefficient for each neuron) such that 
the first principal component accounts for maximal variance and each 
additional component accounts for a decreasing amount of variance.  

Figure 4 Distinct population states in trials and inter-
trial intervals. Panels A and B show cross trial population 
vector correlations around trial start and end. For each 
session, firing rates were tabulated to form population 
vectors and pairwise correlations were computed using 
vectors in a 6 second window around the trial start (A) or 
end (B) from different trials (each pairwise correlation 
involved two unique trials at two time points). Correlation 
values were averaged to form a map for each recording 
session, the average of these maps is shown. Points in the 
image between bins have been linearly interpolated. The 
symbols overlaid on the plot in A highlight times of interest 
discussed in the text. Panel C shows a summary of cross-
trial correlations. The height of the bars indicates the 
average value in the corresponding quadrant of the maps 
shown in A-B. Error bars indicate SEM across sessions. 
Panel D measures the performance of a linear discriminant 
classifier trained with a subset (50%) of population vectors 
selected from trials and ITIs to classify the epoch of the 
vector (i.e. whether it occurred in an ITI or a trial). The 
classifier was tested separately on vectors selected from a 
window 3 seconds before/after the trial start (red points) 
and trial end (blue points). Confidence intervals were 
estimated using an iterative process, randomly selecting 

vectors 1000 times, with the 5% lower C.I. identified as the 5th percentile of the iterated dataset. Lines span from this point to the median performance 
across iterations for each session. The abscissa indicates the number of simultaneously recorded neurons in the session. Panel E shows pairwise 
correlations between population vectors as a function of the distance between positions that the rat occupied when the activity occurred. Correlations 
were computed separately for pairs in which both vectors were selected from trial epochs (cyan), ITI epochs (blue), or when one vector was selected 
from each epoch (green). Error bars indicate SEM. 
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Figure 5 Principal component analysis indicates a phase transition 
at event boundaries. Using a bootstrap approach, a pseudo-population 
vector matrix was assembled to simulate typical firing vectors at time 
points +/- 5 seconds around the trial start and end. This matrix was 
submitted to PCA to obtain principal component scores for each time 
sample. (A) Three dimensional plot of the first three principal component 
scores. Colored squares and circles indicate scores of the principal 
components around the trial start and end respectively, warmer colors 
indicate points selected from time bins in the trial while cooler colors 
indicate time points selected from the ITI. The event boundaries are 
indicated with black markers. A line traces the trajectory through PC 
space, computed by applying the coefficients obtained by PCA and taking 
the weighted mean of average peri-event firing (Fig. 1C-D). The colored 
surface is shown to aid interpretation of the three-dimensional structure, 
and was formed by linear interpolation. Projections of the three-
dimensional data into each two-dimensional pair are shown on the axis 
boundaries. (B-D) The PC data shown in A, plotted as a function of time 
for each principal component. As with the line shown in A, these values 
were computed by applying the coefficients obtained from PCA to the 
average firing rate traces for each unit. (E-G) Spatial PC heatmaps 
computed using the same strategy as in panel A, but assembling a 
pseudo-population matrix based on spatial location rather than the time of 
individual population vectors (see text). Coefficients from PCA were 
applied to the individual unit spatial firing heatmaps to compute a 
weighted average. The maps have been linearly interpolated between 
sampled locations. 
 

Figure 5A shows the scores of the first three principal components 
for each vector in the pseudo-population vector. Points taken from the 
ITI (before trial start or after trial end) are shown in cooler colors, and 
points during trials (after trial start or before trial end) are shown in 
warmer colors. A curve showing the trajectory through PC-space was 
constructed by applying the coefficients identified from PCA back to 
the (raw) average firing rates in the time +/- 5s around the trial start and 
end. The projections of this three-dimensional representation to each of 
the two-dimensional planes are shown as ‘shadows’ on the axes. PC1, 

capturing the largest amount of variance, distinguished the epochs: trials 
and ITIs formed completely non-overlapping clusters (Fig. 5B; see blue 
vs. red clusters in 5A). PC2 identified trial boundaries, clearly distinct 
from the trial and ITI epochs, but not from each other (Fig. 5C). PC3 
made this distinction, differentiating trial start activity from trial end 
activity (Fig. 5D).  

These results provide a view of the state transition of hippocampal 
ensembles over the course of trials. Despite a variety of individual 
neural firing patterns in the trial and ITI epochs, clear clusters of 
ensemble activity form that identify these distinct contexts. At the start 
and end of trials, ensembles must transition from one representation to 
the other, and they do this by traversing orthogonally through the trial 
start and trial end PC space. This pattern is similar to a phase transition 
in that one steady state of population activity moves to another state 
indirectly: the ensemble passes through a specific and reliable 
intermediary.  

To confirm that this approach yielded a view of the hippocampal 
state that was not artificially imposed by grouping vectors based on 
time with respect to events, we repeated the analysis but combined 
vectors across sessions using a purely spatial method. To do this, we 
formed a matrix of PVs for each session, and labeled each vector with 
the position of the rat at the time associated with the activity. We then 
sampled PVs from each session (with replacement), concatenating 
vectors that occurred when the rat was in the same spatial bin (3 cm 
square bins). In this manner, we formed a large matrix of vectors in 
2056 dimensional space, each vector marking typical population firing 
rates for a particular spatial location. This is an identical procedure to 
the method described above but here vectors were combined based on 
spatial location of the rat rather than the time with respect to trial start 
and end. We subjected the spatial pseudo-population vector to PCA to 
obtain coefficients for each neuron, and used the coefficients to create 
average spatial maps in PC space (Fig. 5E-G). The pattern is strikingly 
similar to what we found with our time locked analysis. PC1 
distinguished the trial and ITI epochs, it was most distinct between 
regions associated with trials and ITIs (compare Fig. 5E top and 
bottom). PC2 marked the event boundaries, values near the divider are 
distinct from values far from the divider (Fig. 5F). In contrast to the 
time locked analysis where PC3 distinguished the trial start and end 
(Fig. 5D), the spatially binned PCA did not clearly distinguish them 
(Fig. 5G). This was expected because the trial start and end occurred in 
the overlapping locations.  

The strong hippocampal transitions at trial boundaries were 
specifically dependent on trial start/end responsive neurons. When the 
same analysis was restricted to the subset of neurons with significant 
event boundary responses, as identified with our GLM approach (Fig. 
3), the shape of the resulting pattern in PC-space was virtually identical 
(Supplementary Fig. 4A). Yet the pattern was completely different 
when the neurons without trial start/end responses were analyzed 
(Supplementary Fig. 4B), despite the similarity in sample size (1004 
responsive vs. 1052 un-responsive cells). The separation between ITI 
and trial PVs captured by PC1 was preserved when trial start/end cells 
were excluded, but the transitional signal between these events that was 
evident in PC2 and PC3 was completely eliminated.  

Discussion 

In this paper we examined the responses of 2056 neurons while rats 
engaged in an olfactory memory task with a repeated trial structure. We 
focused our analyses on activity differences between trials and inter-
trial intervals, as well as the transition between these epochs. We 
observed a large-scale shift in the activity state of the hippocampus at 
the start and end of trials, a transient increase in activity that marked a 
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transition between two highly distinct states. We found that individual 
neurons were modulated by both spatial and temporal factors, driving 
an ensemble representation that clearly identified the trial and inter-trial 
interval epochs and the boundaries between them (trial start and trial 
end). The dynamics resembled a phase-transition-like pattern: 
populations transformed from one steady state to another at the moment 
of trial start or end, with a transient increase in firing that co-occurred 
with the transition.  

The self-similarity of hippocampal firing patterns from one trial to 
another was striking. Although different trials shared some behavioral 
and sensory features (an increase in running speed, investigation of 
odors, digging for and consumption of the reward), there was also a 
great deal of variation from one trial to the next. This included the 
trajectory of the rat, the olfactory experience of sixteen distinct odors, 
the left or right position of the reward, and whether the rewarded odor 
was encountered first by chance or the initial odor cup was rejected in 
favor of the second. Thus, the similarity of firing patterns was not 
simply driven by identical sensory input and motor behavior on each 
trial. Because the sequence of events in the trials was determined by the 
voluntary behavior of the rat and the randomization procedures (e.g. the 
left or right location of the rewarded odor cup), the rat’s experience 
became increasingly distinct as the trial progressed. Despite this 
increase in behavioral/environmental variability, firing patterns 
remained quite similar. This is even more striking for correlations of 
time points that were several seconds apart, when behavior and sensory 
experience were virtually always different (Fig. 4A). These results are 
consistent with previous findings that hippocampal firing patterns 
occupy a local minimum in state space where firing patterns are 
relatively stable and insensitive to small changes in the environment, 
until environmental change is sufficient to abruptly push the firing 
patterns into a new state space (T. J. Wills et al., 2005). However, 
previous studies involved subtle changes in the shape of the 
environment and similar foraging behaviors. Here we show that a self-
similar hippocampal state persists even in the face of highly variable 
sensory input and behaviors during the performance of a complex 
memory task.  

The observation of an abrupt shift in the representation when the 
rats transitioned between the trials and ITIs is similar to findings from 
studies that manipulated the environmental context (Jezek et al., 2011; 
Kelemen and Fenton, 2010; T. J. Wills et al., 2005), suggesting that the 
hippocampus treated the trial and ITI areas as distinct contexts even 
though they were both part of a contiguous environment which was 
only divided by a barrier for part of the time. Consistent with this idea, 
firing patterns for different locations were far more distinct than would 
be expected based on spatial distance alone as long as they came from 
different trial and ITI epochs, even for immediately adjacent locations 
(Fig. 3E). This may be due to the markedly different task demands and 
motivational characteristics of the trial and ITI epochs since changes in 
the behavioral context are also known to induce remapping (Eschenko 
and Mizumori, 2007; Griffin et al., 2007; P J Kennedy and Shapiro, 
2009; Skaggs and McNaughton, 1998; Smith and Mizumori, 2006). 
Indeed, Keleman and Fenton (2010) showed that even in a single 
environment, the hippocampus can maintain two distinct maps and 
rapidly shift between them as needed to meet dynamic behavioral 
demands. Our findings are consistent with the idea that the 
hippocampus encodes contextual information, broadly defined to 
include spatial and non-spatial features of the situation (Smith and 
Bulkin, 2014). Indeed, part of the surprising stability of the trial and ITI 
representations could be related to the distinct and stable task 
requirements associated with each epoch.  

The large scale multi-unit discharge at the trial start and trial end 
coincided with the transition between two distinct hippocampal 

representations, which raises the possibility that this burst of firing 
might serve to drive firing patterns out of one attractor space and into 
another (Rolls, 2007; Tom J Wills et al., 2005), pushing activity past a 
critical point to allow a shift in representational state (Steyn-Ross et al., 
2010; Tkačik et al., 2015). Previous studies have identified individual 
neuronal responses near the start or end of trials (Ainge et al., 2007; 
Grieves et al., 2016; Hollup et al., 2001; Smith and Mizumori, 2006), 
but the impact of the response on population dynamics was only 
apparent when we examined the activity of large numbers of neurons. 
An intriguing possibility is that these bursts of firing may be involved in 
demarcating event boundaries. The hippocampus may play a critical 
role in event segmentation, the process of breaking continuous 
experience into discrete episodes (Zacks and Swallow, 2007). 
Hippocampal involvement in encoding the sequence of events (e.g. 
(Allen et al., 2016; Devito and Eichenbaum, 2011; Terada et al., 2017), 
for review see: (Davachi and DuBrow, 2015; Eichenbaum, 2014)) is 
consistent with an event segmentation explanation of ensemble activity, 
and recent work in humans found that an increase in activity in 
hippocampus is associated with event boundaries defined by change in 
distributed cortical representations (Baldassano et al., 2017). Event 
boundaries are often defined by a change in context, such as when a 
subject moves from one room to another or switches from one 
behavioral task to another (Horner et al., 2016), as was the case at the 
trial boundaries in the present study. We also found that a stronger 
representation of the trial start was associated with better performance, 
which is superficially similar to the finding that event segmentation in 
humans is linked to memory performance (Sargent et al., 2013; Zacks et 
al., 2006). However, this work has largely focused on the spontaneous 
segmentation of unique events, unlike the highly predictable and 
structured nature of our training trials so additional study will be needed 
to determine whether the multi-unit bursts we observed at trial 
boundaries are involved in more spontaneous forms of event 
segmentation. 
 
Materials and Methods 

Surgical and recording methods  

Rats were surgically implanted with custom built moveable electrode 
arrays containing 16 insulated platinum iridium tetrodes, each 
composed of four 17 µm wires (California Fine Wire, Grover Beach, 
CA). Arrays were implanted with electrode tips located bilaterally just 
above the dorsal hippocampus (3.5mm posterior and 2.5mm lateral to 
bregma). Following recovery from surgery, the tetrodes were slowly 
lowered into the CA1 cell layer and rats began training on the 
behavioral task. Tetrodes were advanced over initial training and then 
left in place once rats reached asymptotic performance on the 
behavioral task. Multiunit recordings were sorted into constituent units 
using standard clustering techniques. We report on the activity of 2056 
units recorded from 10 rats over 84 sessions (see Supplementary Table 
1), counting individual recordings of units recorded over sessions (i.e. 
some units refer to a single neuron that was recorded on multiple 
sessions). Field potentials were sampled at 32kHz from one wire in each 
tetrode, and filtered between 0.1 and 6kHz, a representative signal was 
chosen from a tetrode located in the cell layer. All procedures complied 
with the guidelines established by the Cornell University Animal Care 
and Use Committee. 

Behavioral Procedure and Apparatus 

Ten adult male Long-Evans rats were trained on a task designed to 
induce proactive mnemonic interference. Details on the task and the 
relationship between hippocampal activity and interference have been 
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described elsewhere (Bulkin et al., 2016; Butterly et al., 2012; Law and 
Smith, 2012; Peters et al., 2013). Recordings took place in wooden 
chambers with a 60cm by 45cm floor and a removable divider 
(Supplementary Figure 1A). One side of the chamber served as an 
intertrial waiting area, the other contained two cups filled with odorized 
digging substrate. One of the cups was baited with a buried sugar pellet, 
reliably marked by odor, and rats learned to discriminate between 8 
pairs of odors to retrieve rewards. On each trial, the divider was lifted, 
rats approached the cups and sampled odors, and dug for the sugar 
pellet. Rats were free to approach the baited cup first and completely 
ignore the unbaited odor (Supplementary Fig. 1B). Trials in which the 
rat sampled the unbaited odor and did not dig were marked as a correct 
rejection (Supplementary Fig. 1C) Trials were marked as errors if the 
rat dug in the unbaited cup (Supplementary Fig. 1D), any displacement 
of bedding was considered a digging response. Once the rat reached a 
behavioral criterion of 90% correct choices, a new set of odor pairs was 
presented, and training on this new set continued for 5 days. A subset of 
rats learned this new set in a distinct context. In the present paper, we 
focused on the responses within each session at the start and end of 
trials, the results of manipulating the context on behavioral performance 
and hippocampal ensemble activity have been described previously 
(Bulkin et al., 2016). Recordings were only taken on sessions with at 
least two units, although in most cases many more units were isolated: 
at least 10 units in 74/84 sessions (mean units/session 24.5; 
Supplementary Table 1 summarizes the number of units by rat/session). 

Data Analysis 
Instantaneous Firing Rate 

For each neuron, spike counts were binned across the entire session 
(100ms bins) and smoothed with a 5 bin moving average to construct a 
vector of instantaneous firing rate (IFR). This trace was normalized by 
subtracting the average and dividing by the standard deviation (i.e. z-
scored) to produce a normalized IFR (IFRz). Because units showed a 
similar range of activity, analyses showed qualitatively similar results 
when using IFR or IFRz, but the latter prevented neurons with higher 
overall firing rates from dominating the analyses. Units with average 
rates greater than 4 spikes/second over the entire session were labeled 
as putative interneurons, and were not included in any of the analyses 
(235/2291 units were eliminated). Population vectors were defined as n 
x 1 vectors of IFRz at a given time, where n is the number of 
simultaneously recorded neurons. 
The start and end of trials were identified as the moment the rat crossed 
an imaginary line corresponding to the location of the removable 
divider. Generally, rats only crossed this line once in each direction on 
each trial, but on those trials in which the rat entered the trial region and 
then returned back to the inter-trial waiting area only the first entry was 
used to mark the start of the trial. Trial start and end firing rate traces 
were calculated by linear interpolation of the IFR vector at times 
spanning +/-3s on each event. Spatial heatmaps were calculated by 
identifying the average firing rate of each neuron in 1.5cm square bins 
spanning the floor of the apparatus. 
 
Local Field Potentials 

The local field potential data was downsampled to 2kHz. The theta-
delta ratio was identified as by filtering the signal (theta: 5-12Hz; delta: 
2-4Hz) with a non-causal FIR filter, calculating RMS power with a 
500ms sliding window, and taking the quotient.  
 
Running Speed 

Running speed was computed by applying a 1 second boxcar average to 
position, to eliminate spurious changes due to detection of the rats 

position or movement of the head. Average firing rate was calculated 
for binned running speeds (15 bins) separately for times near the event 
boundaries (+/- 1 second), in the trial (1 second after the start to 1 
second before the end) and in the ITI (1 second after the trial end to 1 
second before the trial start). A linear regression was calculated for data 
collected in each epoch to describe multi-unit activity as a function of 
running speed. The slope and intercept of these regressions were 
compared for neurons showing a slope that was significantly different 
from 0 (F-test, p<.01). 
 
Generalized Linear Model 

The strategy for applying a generalized linear model (GLM) that 
orthogonalized the contributions of spatial and temporal covariates was 
adapted from (Lepage et al., 2012; Truccolo et al., 2004). This approach 
relies on a geometry in the Fisher information of the GLM likelihood 
estimator to disambiguate activity due to a combination of multiple 
covariates. Applying this method to two-dimensional spatial data 
required a parameterization of spatial firing functions as activity 
depends on an interaction between the x and y co-ordinates defining the 
rat’s position. As such, we first described the both the temporal and 
spatial firing rate by fitting Gaussian curves and surfaces to the average 
firing data: 

𝑓 𝑥, 𝑦 𝛽 𝑒
   

𝐶 

𝑓 𝑡 𝛽 𝑒 𝐶 

𝑓 𝑡 𝛽 𝑒 𝐶 

We modeled the coefficients 𝛽 , 𝛽 , 𝛽  by fitting a Poisson family GLM 
with a linear link function.  Given the rat’s location 𝑥, 𝑦 , and the time 
relative to trial start 𝑡  and end (𝑡 ), the firing rate for each neuron 
was modeled as: 
  

𝐸 𝐹𝑖𝑟𝑖𝑛𝑔𝑅𝑎𝑡𝑒 |𝑥, 𝑦, 𝑡 , 𝑡
𝑓 𝑥, 𝑦 𝑓 𝑡 𝑓 𝑡  

 
We also computed a model which included an additional factor for 
running speed: 

𝑓 𝑟𝑠 𝛽 𝑟𝑠 𝐶 
 
Because a linear link function in a Poisson GLM includes the possibility 
for negative rates, the 𝛽 , 𝛽 , 𝛽 ,𝛽  parameters were restricted to be 
greater than or equal to 0.  Since the true values could never be exactly 
zero, this does not break down the asymptotic orthogonalization results 
from (Lepage et al., 2012).  The restriction of the parameter space 
means that parameters estimated to be 0 would have a negatively biased 
standard error in comparison to the traditional Wald-test and Likelihood 
Ratio Tests for generalized linear models.  For this reason, we instead 
used a normal approximation significance test adapted from the normal 
theory bootstrap intervals given in (Efron and Tibshirani, 1994) to test if 
each parameter was significantly different than 0. If the bootstrapped 
sample for a parameter contained more than 10% of values selected 
exactly at 0, then a quantile-based significance test was used (Efron and 
Tibshirani, 1994).  The quantile-based significance test was used in this 
case as the normality assumption on the bootstrapped sample no longer 
holds, however the quantile-based tests were not used across all 
observations to allow p-values to be calculated to more than 3 
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significant digits for significant parameters. The bootstrap was 
completed by randomly sampling 1 second blocks of data for each 
neuron with replacement.  The blocking was done to account for the 
temporal dependencies in the data set (Gonçalves and Politis, 2011).    
Within each neuron, 250 bootstrap samples were created for each 
parameter in order to obtain a p-value.  A significant effect was 
tabulated as any coefficient value with p<.01, for comparisons that 
grouped trial start and end responses together these p values were 
Bonferonni corrected.  
 
Cross-Trial Distance Analysis 
To compute cross-trial instantaneous ensemble firing rate similarity (Fig 
3A-C), population vectors of instantaneous firing rate were assembled 
for times spanning +/-3seconds in 100ms intervals around each trial’s 
start and end. For each time point in each trial, the pairwise correlation 
between the associated population vector and all population vectors 
from all other trials at each time point was calculated. The average of 
these values was taken for each rat to form a cross trial correlation map 
for the session, each pixel representing the average correlation between 
population vectors taken from two time points across all pairs of trials. 
Correlation was calculated using both Pearson’s r and Kendall’s τ. 
 
Classification of Trial versus ITI Responses 
To identify the ability of neuronal populations to identify the current 
epoch, we trained linear discriminant classifiers to mark epoch based on 
activity. We first assembled population vectors spanning +/-3 seconds 
around the trial start and trial end, labeling each vector with the epoch 
in which it occurred. We took a random subset of half of these vectors 
and trained a linear discriminant classifier, separately for data occurring 
around the trial start or trial end, and tested the classifier on the 
remaining 50% of the data. This process was repeated 1000 times, on 
each iteration a different random subset was used to train/test the 
performance of the classifier. The overall performance of the classifier 
was measured as the median performance across iterations, and the 5th 
percentile of iterations was used to identify whether the classifier 
performed above chance.  
  
Principal Component Analysis 
To investigate the population dynamics of the event boundaries across 
the entire dataset, we created a synthetic dataset by sampling activity 
from defined time points around the trial start and end. This allowed 
visualization of activity in co-ordinates scaled by key sources of 
variance across a large population of neurons. One strategy for forming 
this synthetic dataset would be to randomly select activity from each 
neuron at a given time with respect to the event boundaries, however 
this approach would randomize covariance between neurons. Instead, 
we selected vectors from each session, preserving information about 
inter-neuron covariance when possible (i.e. within session) and 
randomizing when covariance data was unavailable (i.e. across 
sessions). 
For each recording session ( ), we constructed population vectors 
( ⃑) as the instantaneous firing rate at time points ( ) spanning +/- 5s 
around each trial’s ( ) start and end in 100ms intervals. 
 

⃑
⋮  

 
In the above equation,  indicates the firing rate of neuron 1 from 
recording session , trial number  at the time specified by . For 

instance, ⃑  would contain the firing rates of all neurons 
recorded during session 8, on trial 14, 5.0 seconds before the trial start. 

We then randomly selected a trial from each session and combined 
the population vectors across sessions (  total sessions), holding  
constant, to form pseudo-population vectors ⃑. 
 

⃑

⎣
⎢
⎢
⎢
⎡
⃑ rand
⃑ rand

⋮
⃑ rand ⎦

⎥
⎥
⎥
⎤
 

 
⃑ contains the firing rate of all  neurons ( =2056), on randomly 

selected trial, at some specific time ( ) with respect to the trial start or 
end. It indicates what an ensemble of  neurons might look like at a 
given time.  

We repeated this process over 200 iterations, and over all time 
windows, to form a  matrix. Each column of the matrix contains 
an iteratively selected ensemble firing rate at some time with respect to 
trial start or end.  
 

 ⃑ ⃑ ⃑ ⃑ ⃑  
 
The total number of columns of , denoted as  is the product of 
the number of iterations ( ) and the number of sampled time points 
( ):  
 

 
 
PC scores for the first 3 components of  were plotted directly, and 
a trajectory through PC space was calculated by applying the 
coefficients to produce these components back to the raw peri-event 
firing data. 

An identical approach was taken for space, but here the grouping 
variable we used to combine vectors across sessions was the location of 
the rat associated with the instantaneous activity rather than the time of 
occurrence: 
 

⃑

⎣
⎢
⎢
⎢
⎡
⃑ rand
⃑ rand

⋮
⃑ rand ⎦

⎥
⎥
⎥
⎤

 

 
Rather than selecting randomly across trials, the spatial population 
vectors are selected from the set of firing rates associated with a specific 

 location in space. and  were bins that spanned the range of the 
recording apparatus, in 20 pixel (about 3cm) square bins. After 
eliminating bins that were not visited by all of the rats in the 
experiment, 208 spatial bins remained, producing a spatial pseudo-
population matrix ( ⃑ ) with a similar size as the one used in the 
temporal analysis: 
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