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Abstract

Motivation: Markov models with contexts of
variable length are widely used in bioinformatics
for representing sets of sequences with similar
biological properties. When models contain
many long contexts, existing implementations
are either unable to handle genome-scale train-
ing datasets within typical memory budgets, or
they are optimized for specific model variants
and are thus inflexible.
Results: We provide practical, versatile repre-
sentations of variable-order Markov models and
of interpolated Markov models, that support a
large number of context-selection criteria, scor-
ing functions, probability smoothing methods,
and interpolations, and that take up to 4 times
less space than previous implementations based
on the su�x array, regardless of the number
and length of contexts, and up to 10 times less
space than previous trie-based representations,
or more, while matching the size of related,
state-of-the-art data structures from Natural
Language Processing. We describe how to
further compress our indexes to a quantity
related to the redundancy of the training data,
saving up to 90% of their space on repetitive
datasets, and making them become up to 60
times smaller than previous implementations
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based on the su�x array. Finally, we show
how to exploit constraints on the length and
frequency of contexts to further shrink our
compressed indexes to half of their size or
more, achieving data structures that are 100
times smaller than previous implementations
based on the su�x array, or more. This allows
variable-order Markov models to be trained on
bigger datasets and with longer contexts on
the same hardware, thus possibly enabling new
applications.
Availability and implementation:
https://github.com/jnalanko/VOMM

1 Introduction

Building statistical models for large sets of se-
quences that share biological properties is a fun-
damental problem in bioinformatics, with con-
nections to coding, compression, and machine
learning. In many biological sequences, the em-
pirical probability distribution of the next char-
acter does not change significantly if one takes
into account a subsequence of the recent history
(called the context of the character) that is longer
than a fixed threshold, thus Markov models in
which all states are strings of uniform length
k, called the order of the model, are routinely
used. Choosing the order of a Markov model
asks one to balance between conflicting issues.
Longer contexts imply estimating exponentially
more parameters, which might not be feasible
with the available data and which might hurt
generalization. However, while most long con-
texts might be too infrequent to yield accurate
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probability estimates, a few of them might still
occur frequently enough to be used as predic-
tors in practice. Shorter contexts, on the other
hand, yield models of tractable size, but they
might lead to inaccurate predictions, since they
are unable to capture long-range dependencies.
Variable-order Markov models (VOMMs, [42])
aim at solving such issues by allowing the length
of the context used to predict the next charac-
ter to depend on the recently observed characters
themselves. This dependency, called local order,
has indeed been observed in a number of natu-
ral sources [8]. A VOMM can thus be seen as
a compression of a fixed-order Markov model of
large order, in which all states that yield similar
character distributions are collapsed into a single
state, whose sequence is decided by a number of
statistical criteria.
Variable-order Markov models and their vari-

ants, like interpolated Markov models (IMMs, see
e.g. [46]), are by now a staple of bioinformat-
ics, and have been successfully applied to de-
tect domains in protein sequences [4], to seg-
ment protein sequences into domains [50, 8, 6],
to assign domains and proteins to families [4],
to separate coding from non-coding DNA re-
gions [45], to detect horizontal gene transfer [21],
to identify genes in newly sequenced microbial
genomes after being trained on known open read-
ing frames [46, 24, 25], and to detect eukaryotic
promoters [39]. VOMMs and their variants have
been applied to metagenomic samples as well.
For example, VOMMs have been used to sepa-
rate the reads of a eukaryotic host from those
of an intracellular prokaryotic parasite [24]; to
model known genomes in order to estimate, given
a metagenomic sample, the genome or taxon
a read was sampled from [12]; to define com-
positional distances between metatranscriptomic
samples [32]; and to model the clusters produced
by reference-free binning of metagenomic reads
[28, 56, 58].
As mentioned, a key reason for the intro-

duction of VOMMs is the implicit compression
they perform over a Markov model of fixed,
large order [42, 62]. Space-e�cient implemen-
tations of VOMMs and of their variants are be-
coming increasingly relevant in the post-genome

era, in which one wishes to train them on long
genomes, on large metagenomic samples, or on
massive collections of genomes of similar species
or of proteins with the same function or struc-
ture [6, 7, 8, 28]. When the criteria for decid-
ing whether a subsequence of the training data
should be used as a context are so stringent that
just a small set of short subsequences is chosen,
the space taken by a VOMM is not a practical
issue, and a simple pointer-based trie implemen-
tation like e.g. the one described by [5] su�ces.
In this paper we focus on VOMMs in which the
total length of all contexts is large enough to
make such a simple approach impractical. This is
a concrete scenario, especially in large datasets,
since e.g. increasing the maximum length of a
context does not decrease classification perfor-
mance in practice [4], and in real use cases one
wishes to experiment with multiple selection cri-
teria without worrying about blowups in space
or training time.
The first training algorithms required

O(k|T |2) time for building a VOMM from a
sequence T , where k is an upper bound on
context length, and O(|S|2) time to compute
the probability of a query sequence S accord-
ing to the model [45]. Later, [1] described a
general-purpose data structure, based on the
su�x tree of T , that can be built in O(|T |)
time for alphabets of constant size � and for
a large number of context selection criteria,
and that allows one to score a query S in
O(|S|) time for constant alphabets. Such data
structure was the first to take O(|T | log |T |)
bits of space, regardless of the number and
length of contexts, and it was later implemented
using lazy su�x trees or enhanced su�x arrays
[48, 49]. However, such implementations are
not available any more [47]. [33] designed and
implemented another data structure, based on
the su�x array and the inverse su�x array
of T , that takes again O(|T | log |T |) bits of
space, but that allows scoring a query using as
context just the longest match with the training
data at each position. Meanwhile, IMMs with
ad hoc emission probability formulas were
being deployed in natural language processing
(NLP), and compact indexes for computing a
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specific family of such probabilities have been
developed and implemented at scale by [52, 53].
Such data structures rely on compressed su�x
trees, and thus need just O(|T | log �) bits of
space. However, they do not implement general-
purpose VOMMs, and they are optimized to
answer queries on the probability of observing
a character after an arbitrarily large number
` of other characters specified in the query,
rather than to score an entire sequence S, thus
they take O(`|S|) time to compute such global
score in the worst case (although practical
implementations try to reuse counts across
adjacent sliding windows). More recently, [10]
described a general-purpose data structure that
takes just 3|T | log � + o(|T | log �) bits of space
to implement a VOMM or an IMM, regardless
of the number and length of contexts and for a
large set of context selection criteria, and that
can be trained in O(|T |) time using O(|T | log �)
bits of working space. In theory the space taken
by such data structure is similar to the space
taken by the data structures by [52, 53], while
at the same time supporting a variety of context
selection and probability smoothing criteria,
and allowing one to score a query S in O(|S|)
time using 2|S|+ o(|S|) bits of space.
This paper is concerned with building practi-

cal, general-purpose representations of VOMMs
and IMMs that are as small as possible. Opti-
mizing query time and the construction of such
representations is outside the scope of the pa-
per. Our first contribution is an implementa-
tion of the theory described in [10]: we pro-
vide a general-purpose framework of practical
data structures and algorithms that allows bioin-
formaticians to implement a large number of
VOMMs and IMMs in small space, including
many context-selection criteria, scoring func-
tions, probability smoothing methods, and in-
terpolations, without a↵ecting the accuracy of
the models and scaling to large datasets. No
such framework currently exists, either because
available implementations cannot handle large
datasets within typical memory budgets, or be-
cause they support just few specific Markov mod-
els. We implement a representative subset of
all the variants that our framework supports,

achieving up to approximately 4 times less space
than [33] and 10 times less space (or even less, de-
pending on context selection criterion) than [5],
while matching the space of the NLP data struc-
tures in [52, 53]. Since VOMMs are generative
statistical models, their training datasets consist
typically of positive examples of a class, and are
thus likely to be repetitive. The second contri-
bution of this paper is an extension of the ap-
proach in [10] which, for the first time, reduces
the size of a VOMM to a quantity related to the
redundancy of the training data. In repetitive
datasets, this allows saving up to approximately
90% of the space of our index, without any ef-
fect on accuracy, making our data structures be-
come up to approximately 60 times smaller than
[33]. Finally, we describe a way of shrinking our
data structures even further when the user sets
an upper bound on context length, or a lower
bound on context frequency, which are common
in applications (see e.g. [18, 45, 46]). This can
shrink our already compressed index to half of
its size and beyond, depending on the dataset,
yielding a data structure that is up 100 times
or more smaller than [33], again without a↵ect-
ing accuracy. Such space reductions apply to a
large number of VOMM and IMM variants, al-
beit not to all of them, and, as expected, they
come at the cost of increased scoring time: even
the basic version of our index is between 35 and
60 times slower than [5], and between 3 and 12
times slower than [33].

2 Preliminaries and notation

2.1 Strings and string indexes

Let ⌃ = [1..�] be an integer alphabet, let # = 0
be a separator not in ⌃, and let S and T be
strings in [1..�]⇤. The matching statistics ar-
ray MSS,T is an array of length |S| such that
MSS,T [i] is the largest ` such that S[i� `+ 1..i]
occurs in T . We denote by W the reverse of a
string W , i.e. string W read from right to left.
We denote by fT (W ) the number of (possibly
overlapping) occurrences of a string W in T , we
denote by ⌃r

T (W ) the set of distinct characters
that occur to the right of W in T , and we de-
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note by ⌃r
T (W, t) (respectively, by ⌃r

T (W,� t))
the set of distinct characters that occur exactly
(respectively, at least) t times to the right of
W in T . The characters in ⌃r

T (W ) are called
right-extensions ofW , and ⌃`

T (W ), ⌃`
T (W, t) and

⌃`
T (W � t) are defined symmetrically for the

left side of W . We use small sigma as a short-
hand for the cardinality of every such set, e.g.
�r
T (W ) = |⌃r

T (W )|. We call empirical emission
probability of a character a from a substring W
of T the quantity PT (a|W ) = fT (Wa)/fT (W ),
although a number of other estimates have been
proposed, for example the modified Laplace rule
P (a|W ) = (f(Wa) + 0.5)/(f(W ) + �/2) and
P (a|W ) = f(Wa)/(f(W ) + �r(W )) (see e.g.
[1, 3, 62, 64, 40, 8, 4, 2, 18]). We call empir-
ical probability of a string W in T the quan-
tity PT (W ) = fT (W )/(|T | � |W | + 1). A re-
peat W of T is a substring of T that satisfies
f(W ) > 1. W is right-maximal (respectively,
left-maximal) i↵ �r

T#(W ) > 1 (respectively, i↵

�`
T (W ) > 1). We call right-deterministic (re-

spectively, left-deterministic) a string that is not
right-maximal (respectively, left-maximal). It is
well known that T can have at most |T |�1 right-
maximal repeats and at most |T |�1 left-maximal
repeats. A maximal repeat is a repeat that is
both left- and right-maximal.

We assume the reader to be familiar with stan-
dard notions from text indexes, including the
su�x tree STT and the su�x-link tree SLTT of
a string T , Weiner links, the Burrows-Wheeler
transform BWTT , the lexicographic interval of
a right-maximal repeat in the BWT, backward
steps, rank and select queries, wavelet trees, and
compact representations of tree topologies. See
Section 9 in the supplement for more details and
for pointers to the literature. In the rest of
the paper, we omit subscripts whenever they are
clear from the context.

2.2 Variable-order Markov models

We assume the reader to be familiar with fixed-
order Markov models, which we do not define or
further describe here. Given a Markov model of
fixed order k on alphabet [1..�], let P(a|X) be the
emission probability of state X, i.e. the proba-

bility of observing character a after the length-k
context X. Given a string W of length h < k,
it might happen that P(a|UW ) = P(a|VW ) for
all strings U and V of length k � h and for all
characters a: in other words, adding up to k� h
characters before W does not alter the probabil-
ity of seeing any character afterW . This is called
variable-order Markov model (VOMM), and it
can be represented more compactly by storing
just W (rather than all k-mers with W as a suf-
fix) and the emission probabilities of W [42]. In
what follows we assume that a Markov model is
built from a training string T . The set of con-
texts is typically stored in a trie T , called context
tree or probabilistic su�x tree (see e.g. [23, 7] and
references therein), where contexts are inserted
from right to left, and in which every node that
corresponds to a context is marked and stores
emission probabilities [45]. We denote by C the
set of nodes of T that are marked as contexts
(abusing notation, we use symbol C to denote
also the set of contexts).
In the following sections we survey a num-

ber of criteria used to assign a probability to a
query, and to select contexts from substrings of
the training data. As we will see in Section 4,
most such criteria can be implemented with a
small setup of space-e�cient data structures.

2.2.1 Scoring a query

The probability of a query string S according to
the VOMM is computed character by character,
as follows: at every position j of S, the probabil-
ity of character S[j] = b is decided by finding a
context w 2 C based on S[1..j�1], and by access-
ing the empirical probability P (b|W ) stored at w
[43, 42]. The function that returns the context to
be used at position j is called structure function
[43], and it typically returns the longest context
that is a su�x of S[1..j � 1]. The probability of
S is then the product of the probability of every
character of S (in the rest of the paper we focus
on computing log-probabilities, thus all products
become additions). Some variants multiply the
probability of S by the average value of �r(W )
over all contexts W used for prediction [37].
In most applications, when W does not emit
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b in the model, the probability of character S[j]
should still be set to a nonzero value: deciding
such nonzero value is called the zero-frequency
or the sparse data problem [18, 64, 4], and tak-
ing this into account to adapt the probability
of characters that are emitted by the model is
called smoothing. Such nonzero value can be a
user-defined constant, a function of f(b), f(W ),
�, �r(W ) or �r(W, 1), like the Good-Turing esti-
mator (see e.g. [42, 4, 18, 17]), or it can be com-
puted recursively. For example, in the concep-
tually similar PPM compression algorithm [18],
one assigns to S[j] a probability P̃ (b|W ) de-
fined as follows [3]: P̃ (b|W ) = P (b|W ) · (1 �
P̂ (W )) if W 2 C and P (b|W ) > 0, P̃ (b|W ) =
P̂ (W ) · P̃ (b|W [2..|W |]) otherwise, where P̂ (W ),
called escape or backo↵ probability, is an esti-
mate of the probability of observing a charac-
ter that does not follow W in the model, for
example the Good-Turing estimator mentioned
above (see e.g. [3, 18, 64] and references therein).
In some approaches, recursion stops when the
su�x reaches a user-specified minimum length
[39, 46, 13] or frequency [46].
A similar approach can be applied even when

W emits b, to compute a mixture of probabil-
ity estimates (see e.g. [16, 46]), possibly with
weights that depend on the length of the con-
texts [23]: this is also called blending [35]. An
interpolated Markov model (IMM) is a fixed-
order Markov model in which emission probabil-
ities are a weighted mixture of lower-order con-
texts [46, 39], for example P̃ (b|W ) = �(W ) ·
P (b|W ) + (1 � �(W )) · P̃ (b|W [2..|W |]) if |W | >
0, and otherwise it is a function of quantities
like f(b), |T |, � and �r(W ) (see e.g. [16]).
Weights �(W ) can represent the confidence in
the accuracy of an emission probability estimate
(longer contexts yield stronger predictions, but
shorter contexts have more accurate statistics),
or the prior that correlation decreases with dis-
tance [23, 22, 17]. Weights can be a fixed vec-
tor of constants (which might sum to one), or
a given function of the frequency, length, and
number of right-extensions of every su�x (see
e.g. [39, 60, 46, 44, 16]). More complex vari-
ants of recursive emission probability functions
have been designed in natural language model-

ing and information retrieval, e.g. Kneser-Ney
smoothings (see e.g. [52, 53, 51, 30] and refer-
ences therein). Non-recursive ways of interpo-
lating the probabilities of di↵erent contexts have
also been proposed. For example, one can set
P̃ (a|W ) = (f(Wa) � x)/f(W ) + ↵(W )�(W,a)
if f(Wa) > 0, and P̃ (a|W ) = ↵(W )�(W,a)
otherwise, where x is a parameter such that
x < f(Wc) for all c 2 ⌃r(W ), �(W,a) =
�`(W [2..|W |]a)/f(W [2..|W |]) is a back-o↵ func-
tion, and ↵(W ) = �r(W ) · x/f(W ) [29]. Yet
other variants take the maximum emission prob-
ability over all possible contexts, rather than
blending context probabilities together [37].

2.2.2 Selecting contexts

A number of algorithms for learning context trees
optimally in a statistical sense have been de-
scribed (see e.g. [22, 63, 45, 27, 15], including
methods that exploit connections with the suf-
fix tree and BWT [2, 35]. Here we focus on
criteria that select a substring W of the train-
ing data as a context based only on properties
of W . Combinatorial approaches mark all sub-
strings as contexts [33] and select the longest
context at each position of the query, or alter-
natively mark all right-deterministic substrings
as contexts [59, 19], and start prediction from
the shortest context at each position of the query
(if any). Statistical approaches mark as contexts
all the frequent substrings aW (where a 2 [1..�]
and W 2 [1..�]⇤) having at least one charac-
ter b with high emission probability from aW ,
and such that the emission probability of b from
aW is significantly di↵erent from the emission
probability of b from W (see e.g. [7] and ref-
erences therein). Specifically, for user-defined
thresholds ⌧1 > 0, ⌧2 > 0, ⌧3 < 1 and ⌧4 > 1,
they require P (aW ) � ⌧1, P (b|aW ) � ⌧2, and
P (b|aW )/P (b|W ) 2 (0..⌧3] [ [⌧4.. + 1). Al-
ternatively, contexts are all the substrings aW
of T with high Kullback-Leibler divergence be-
tween the probability distribution of the charac-
ters that follow aW , and the probability distribu-
tion of the characters that follow W [15, 62, 14],
i.e.

P
b2[1..�] f(aWb) log(P (b|aW )/P (b|W )) � ⌧

for a positive ⌧ . KL divergence is sometimes
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replaced by the squared L1 norm [15], or by
any p-norm, again using a positive threshold.
In yet other variants (e.g. [42, 61, 62]), a sub-
string W of T is called unstable and it is used
as a context if it has high entropy compared
to all its left-extensions, i.e. if f(W )H(W ) �P

a2[1..�] f(aW )H(aW ) � ⌧ , where the entropy
H(W ) equals �

P
b2[1..�] P (b|W ) logP (b|W ) and

⌧ is a positive threshold. This can be extended to
longer left-extensions of a user-specified length.
Alternatively, one can use the shortest stable suf-
fix of the current history as a context [61].

2.3 Variable-order Markov models in
small space

To keep the paper self-contained, we summarize
here the key ideas of [10, Section 6]. It can been
shown that the statistical criteria for choosing
contexts in Section 2.2.2 can only select either a
maximal repeat, or the left-extension by one char-
acter of a maximal repeat (including possibly
strings that occur just once in T ). In Section 1 of
the supplement we show that such property holds
also for a class of IMMs that have been widely
used in gene identification [46]. The algorithm
in [10] supports any selection criterion in which
contexts are maximal repeats or left-extensions
thereof: the context tree of T is then the sub-
graph of the extended su�x-link tree SLT⇤

T , de-
fined by the following procedure: starting from
every node of SLT⇤

T that corresponds to a con-
text, recursively follow reverse Weiner links up
to the root of SLT⇤

T , marking all nodes met in
the process.
Our index on T consists of BWTT and the

topologies of STT and SLTT . We represent
BWTT as a wavelet tree that supports Weiner
links in O(log �) time, and we use standard com-
pact data structures to support constant-time
queries on the balanced parentheses representa-
tions of STT and SLTT (see Section 9 in the sup-
plement). Let idSLT(v) be the position of node
v of SLT in the preorder traversal of SLT. We
build a bitvector mrSLT[1..p], with a bit associ-
ated to each of the p nodes of SLT, such that
mrSLT[idSLT(v)] = 1 i↵ v is a maximal repeat.
Similarly, let idST(v) be the position of node v of

ST in the preorder traversal of ST. We build an-
other bitvector mrST[1..q], with a bit for each of
the q nodes of ST, such that mrST[idST(v)] = 1
i↵ v is a maximal repeat. We index mrSLT to
support select queries, and mrST to support rank
and select queries. Since SLT is a subdivision of
the subgraph of ST induced by maximal repeats,
the i-th one in mrSLT and the i-th one in mrST

correspond to the same maximal repeat. Thus,
if node v is a maximal repeat and if we know
idST(v), we can compute the length of `(v) by
going to the node v0 in SLT with idSLT(v0) =
select(mrSLT, 1, rank(mrST, 1, idST(v))) and by
computing the depth of v0 in the topology of
SLT. In other words, SLT can be seen as a
data structure that stores the lengths of all max-
imal repeats as tree depths. Finally, we include
in the index a bitvector context[1..p] such that
context[idST(v)] = 1 i↵ node v in ST is the locus
of a context, and a lowest marked ancestor data
structure [57] to move in constant time from any
node in the topology of ST to its lowest ancestor
that is as context.
We summarize how to implement just one of

the scoring methods of Section 2.2.1, namely,
starting from the longest context W that ends
at position i of the query S, and using the PPM
recursive scoring P̃ (S[i+1]|W ) = P (S[i+1]|W ) ·
(1� P̂ (W )) if W is a context that emits S[i+1],
and otherwise P̃ (S[i + 1]|W ) = P̂ (W ) · P̃ (S[i +
1]|W [2..|W |]), where P̂ (W ) is either a constant,
or a function of f(S[i + 1]), f(W ), �, �r(W ) or
�r(W, 1). Recursion stops at the longest context
that ends at position i and emits S[i+1]. Section
4 details other variants.
The algorithm maps the process of scoring ev-

ery position i of S onto computing the matching
statistics value MS[i], keeping the invariant of
knowing, for each i, MS[i] itself, and the locus of
the reverse of S[i �MS[i] + 1..i] in ST. The ac-
tual MS array is never fully present in memory,
since MS[i] values are computed on the fly. As-
sume that contexts are a subset of the maximal
repeats of T . We scan S from left to right, issu-
ing Weiner link and parent operations on ST as
done by standard matching statistics algorithms
(see e.g. [38, 9]): such operations can be imple-
mented using just BWT and the topology of ST.
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Assume that, after taking a sequence of success-
ful Weiner links from the first position of S, we
are currently at position i in S. Using the topol-
ogy of ST, we convert the interval of the reverse
of W = S[1..i] in BWT into the idST value of its
locus v in ST. Note that the label of v is either
the reverse of W , or the reverse of XW , where
X is a nonempty string. We then check whether
context[idST(v)] = 1. If this is true, then we
can measure |`(v)| in constant time since v is a
maximal repeat, and if it is equal to i we know
that W is the longest context that ends at posi-
tion i. If |`(v)| > i, or if context[idST(v)] 6= 1,
we move in constant time to the lowest ancestor
v0 of v that is marked as a context: its label is
clearly the longest context that ends at i, and the
length of its label is necessarily smaller than i.
We compute the emission probability of charac-
ter S[i+ 1] by taking the Weiner link with char-
acter S[i+1] from v0. If such Weiner link exists,
or if no such Weiner link exists and we choose
not to back o↵ to shorter contexts, we are done.
Otherwise, we iteratively issue parent operations
from v0, checking whether the nodes we meet are
contexts and if they have a Weiner link by char-
acter S[i+1]. If this is the case, recursion stops.
Otherwise, it continues, and since v0 is a context,
all the nodes we meet are maximal repeats and
we can measure the length of their labels, thereby
implementing the backo↵ formula. Once we have
assigned a score to position i + 1 of S, we con-
tinue as in a standard matching statistics algo-
rithm: we keep increasing i and issuing a Weiner
link with character S[i+1] from the locus of the
reverse of S[1..i] in ST. When a Weiner link fails
with character S[i + 1], we keep issuing parent
operations on ST until we reach a node with a
Weiner link labeled by S[i+1]: the label of such
node is a maximal repeat of T , its length isMS[i],
and we can measure such length using SLT: we
have thus re-established the invariant for the new
value of i, and we can repeat the whole process.
Just minor modifications are required when con-
texts are left-extensions by one character of max-
imal repeats: see Section 2 in the supplement for
details. It can be shown that all the operations
of the algorithm, including those in the recur-
sive backo↵, map onto operations performed by

a matching statistics algorithm, and this num-
ber is O(|S|); each operation takes O(log �) time,
since Weiner links are the bottleneck.

3 Smaller variable-order
Markov models

Recall that the algorithm in Section 2.3 works
for contexts that are maximal repeats or left-
extensions thereof. In repetitive strings, the
number of maximal repeats can be significantly
smaller than the number of su�x tree nodes [11],
thus one could try to shrink the size of the data
structures to a quantity related to the number of
maximal repeats of the training data. We first
show how to do this for computing MSS,T :

Lemma 1. MSS,T can be computed using data
structures of size proportional to the number of
left extensions of maximal repeats of T .

Proof. Let V be the set of nodes of STT , let
M ⇢ V be the set of nodes that correspond to
maximal repeats, and let L ⇢ V be the set of
leaves. We replace the topology of ST with the
topology of the subgraph G of ST induced by
M [L, then we collapse into the same leaf every
maximal interval of leaves of G that are consec-
utive in preorder and that have the same parent
in M . The size of G is clearly upper bounded by
the number of left extensions of maximal repeats
of T . We use a bitvector leafToMaxrep[1..|T |]
to mark such intervals of leaves in BWTT , then
we run-length compress it, i.e. we represent ev-
ery maximal substring of the same character, as
one occurrence of the character followed by the
length of the substring (see e.g. [55] for more de-
tails). We also run-length encode the bitvector
that represents open and closed parentheses in
the topology of SLTT : a maximal run of open (or
closed) parentheses corresponds to a unary path
in SLT, i.e. to an edge between two maximal re-
peats. Finally, we run-length encode mrSLT and
BWT: the latter can be shown to take a number
of words that is upper bounded by the number
of left extensions of maximal repeats [11]. Note
that we don’t need bitvector mrST, since all nodes
of G are maximal repeats except for the leaves.
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We compute MSS,T by scanning S from left to
right: we use the run-length compressed BWT to
decide whether a Weiner link is successful and to
update the BWT interval of the current match.
When a Weiner link by character c fails from the
current interval in BWT, which corresponds to a
node v in ST, we know that the lowest ancestor
of v that has a Weiner link labelled by c must
be a maximal repeat. Thus, we use bitvector
leafToMaxrep to move in constant time to the
interval of the lowest ancestor of v that is a max-
imal repeat, and we try the Weiner link again
from there. We can measure the string length of
this ancestor, and of all its ancestors, since they
are maximal repeats.

The probability of S according to the VOMM
of T can be computed in a similar way. In-
deed, we can use Lemma 1 to maintain, for
each position i of S, the value MS[i] and the
BWT interval of the matching statistics string
W = S[i � MS[i] + 1..i]. Let v be the locus of
W in ST. If contexts are maximal repeats, we
use bitvector leafToMaxrep to move to the low-
est ancestor of v that is a maximal repeat (which
might be v itself). If contexts are left extensions
of maximal repeats, we collapse leaves in G in a
slightly di↵erent way: rather than collapsing into
the same leaf all the leaves in a maximal preorder
interval with the same lowest maximal repeat an-
cestor in ST, we collapse into the same leaf all
leaves in the subtree of ST rooted at the same
locus of a left-extension of a maximal repeat.
This version of G still takes space proportional
to the number of left-extensions of maximal re-
peats. We build leafToMaxrep correspondingly,
and we build and run-length compress bitvectors
mrSLT and context

These algorithms can benefit from few addi-
tional pruning strategies. For example, when
computing MS with Lemma 1, one could further
prune the topology of ST (but not of SLT) by
keeping just the internal nodes of ST that have
a Weiner link that is not present in at least one
of their children, and by marking in a bitvec-
tor the corresponding nodes in SLT. This is be-
cause, when a Weiner link with character S[i+1]
fails from the current matching statistics string

W , the longest su�x of W that has a Weiner
link labelled by S[i + 1] corresponds to a node
of ST such that its child in the path to the lo-
cus of W does not have a Weiner link labelled by
S[i+ 1]. The internal nodes of ST that are kept
after this pruning are precisely the maximal re-
peats that are the infix of a minimal absent word
of T , where a minimal absent word (MAW) of T
is a string W that does not occur in T , but such
that every proper substring of W occurs in T
[20]. This pruning applies also to the scoring al-
gorithm, if we just score character S[i + 1] with
its emission probability from the matching statis-
tics at position i, as done e.g. by [33]. Moreover,
when contexts are left-extensions of maximal re-
peats, when the scoring function uses just the
longest context that ends at the current position,
and when the length of such context does not af-
fect the score, it is easy to see that one can avoid
storing the topology of SLT and the bitvectors to
commute between ST and SLT altogether.

A second way of reducing the size of our data
structures consists in taking advantage of upper
bounds on the length of contexts, which are fre-
quently used in applications [18, 45, 46]. We
focus here on using such constraint in match-
ing statistics, leaving the immediate application
to VOMM scores to the reader. Given an inte-
ger ⌧ , we call length-thresholded matching statis-
tics MSS,T,⌧ [1..|S|] an array such that MSS,T,⌧ [i]
equals MSS,T [i] if MSS,T [i]  ⌧ , and it equals �1
otherwise.

Lemma 2. We can compute MSS,T,⌧ using the
setup of Lemma 1, but replacing the topologies
of STT and of SLTT with subgraphs induced by
maximal repeats of T of length at most ⌧ , and by
their left extensions.

Proof. We proceed as in Lemma 1, but rather
than considering the subgraph G of ST induced
by M [ L, we consider the subgraph G0 of ST
induced by M⌧ [L, where M⌧ is the set of max-
imal repeats of length at most ⌧ , and of all their
children. We collapse onto the same leaf all the
consecutive leaves of G0 that have the same par-
ent in G0. We also consider the subgraph of SLT
induced by maximal repeats of length at most
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⌧ . We maintain the following invariant. At ev-
ery position i of S, we know the value of MS⌧ [i]
and: (1) if MS⌧ [i] 6= �1, we know the inter-
val of Wi = S[i � MS[i] + 1..i] in BWT; (2) if
MS⌧ [i] = �1, we know the interval in BWT of
a (not necessarily proper) su�x of Wi of length
greater than ⌧ . We show that we can compute
MS⌧ [i] for every i while maintaining such invari-
ant.
Assume that at some position i of S we are

in case (2), and let v be the (unknown) locus of
Wi in the full ST. If v can be extended to the
right by S[i+1], then MS⌧ [i+1] = �1, the right
extension is possible also from the BWT interval
of the su�x of Wi that we have, and performing
such extension maintains the invariant that we
know the interval in BWT of a su�x of Wi+1 of
length bigger than ⌧ . If v cannot be extended
to the right with character S[i + 1], but there
is a Weiner link labelled by character S[i + 1]
from the interval that we have, it means again
that MS⌧ [i+1] = �1, and that v is a descendant
of the locus in ST of our interval, thus taking
the Weiner link preserves the invariant that we
know the interval in BWT of a su�x of Wi+1

of length bigger than ⌧ . Finally, if v cannot be
extended to the right with character S[i+1], and
if the interval we have cannot be extended to the
right with S[i+ 1] either, we use leafToMaxrep

to convert the BWT interval that we have into
an internal node v0 of G0. Note that |`(v0)| � ⌧ ,
but v0 is not necessarily a maximal repeat. If v0

does not have a Weiner link labeled by S[i + 1]
either, then MS⌧ [i+1] 6= �1, and we issue parent
operations in the topology ofG0 that are identical
to the parent operations we would have issued
from v in the full ST, reaching eventually the
same maximal repeat w that has a Weiner link
labeled by S[i + 1] and whose length is at most
⌧ . Otherwise, if v0 has a Weiner link labeled by
S[i + 1], then MS⌧ [i + 1] = �1, v0 is necessarily
a maximal repeat, and w is either v0 itself or a
descendant of v0. Thus, by extending v0 (rather
than w) to the right by S[i+1], we maintain the
invariant that we know the interval in BWT of a
su�x of Wi+1 of length greater than ⌧ .

Finally, assume that at some position i of S we
are in case (1). As long as Wi can be extended to

Figure 1: Size of trie representations of VOMMs
as a function of ⌧1 (the minimum empirical prob-
ability of a context) in the four-thresholds con-
text selection criterion of Section 2.2.2, over
ten non-repetitive concatenations of proteins of
length one million each. Decreasing ⌧1 implies
increasing the number of contexts. Blue circles:
the probabilistic su�x tree code in [5]; orange
circles: the SPST code in [31]. Our implementa-
tion has a small variance, so it is represented just
as a green line (averages) rather than as circles.

the right by S[i + j], we take a Weiner link and
we update the value of MS⌧ [i+ j] for increasing
j. Note that at each step we know the interval of
MS[i+j], even when, for some j, a right extension
leads to a string that is longer than ⌧ . Finally, for
some j, a right extension might not be possible.
If MS[i+j�1] > ⌧ we do the same operations as
in case (2), preserving the invariant. If MS[i+j�
1]  ⌧ , the current interval contains a range of
leaves of G0: we use leafToMaxrep to reach the
lowest common ancestor of such leaves, which is
necessarily a maximal repeat, and we continue
from there.

Since frequency decreases monotonically with
tree depth on a su�x tree, Lemma 2 can be
adapted to compute the frequency-thresholded
matching statistics MSS,T,⌧ [1..|S|], which is an
array such that MSS,T,⌧ [i] equals MSS,T [i] if
fT (S[i �MSS,T [i] + 1..i]) � ⌧ , and it equals �1
otherwise.
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4 Variants and extensions

We sketch the main ideas for supporting the va-
riety of VOMMs and IMMs in Sections 2.2.1 and
2.2.2, omitting some technical details for brevity.
We are not interested in achieving the fastest al-
gorithm for each variant, but in showing that
all variants can be implemented with just minor
modifications to the non-pruned data structures
of Section 2.3, and possibly to the pruned data
structures of Section 3.
We already described in Section 3 how to sup-

port the scoring of [33]. To support the scoring
scheme that uses the shortest right-deterministic
su�x of Wi as a context for position i [59, 19], it
su�ces to mark as contexts all nodes of ST that
are not maximal repeats, and such that their
parent is a maximal repeat, and to proceed as
in the case in which contexts are left-extensions
of maximal repeats. Thus, this strategy can be
implemented also with maximal repeat pruning.
Recall that one of the statistical criteria used in
Section 2.2.2 to mark a substring W as a con-
text, checks whether the entropy of the emission
probabilities from W is significantly larger than
the entropy from the left-extensions of W . To
support the symmetrical criterion of using the
shortest stable su�x of Wi, i.e. the shortest suf-
fix that has small entropy compared to its left-
extensions [61], it su�ces to mark the loci of all
stable substrings without a stable ancestor in ST,
and to jump to one such locus from the locus of
a matching statistics string Wi. This strategy
can thus be implemented with maximal repeat
pruning as well. To enforce that no su�x of a
context is itself a context [31, 54, 15], we can just
unmark all nodes with a marked ancestor in ST.
Enforcing that all prefixes of a context must be
contexts (e.g. to make the Markov model mem-
oryless: see e.g. [34]) does not guarantee that
contexts are a subset of maximal repeats or of
their left extensions. However, we can enforce
that all prefixes of a context are su�xes of a con-
text, by just adding leftmost maximal repeats or
their left extensions to the set of contexts.
During construction we can compute the num-

ber of distinct characters in the BWT interval of
every context, and we can store such numbers in

an array of O(m log �) bits, where m is the num-
ber of contexts. Given a query S, we can then
compute the average number of right-extensions
of all contexts that are used for scoring a position
of S [37], by just accessing the array. The same
approach can be used to access �`(W ), �r(W )
or �r(W, 1) for a context W at query time: to-
gether with f(W ) and with the total frequency of
single characters, such quantities are enough to
implement a number of probability smoothings.
The recursive interpolation schemes of Section

2.2.1 can be implemented by iteratively taking
parent operations in ST, as described in Section
2.3. If the user provides an arbitrary weight func-
tion based on string length, we can implement
the weighted mixing of su�x contexts by stor-
ing an array of prefix sums of log-weights: such
array might not take too much space in prac-
tice if the string length of the longest edge of ST
is small. If weights are constant, or if they are
just a function of frequency and of the number
of distinct characters to the right of a su�x of a
context, they don’t change along an edge of ST.
If they are a function of the length of a su�x
of a context, and if such function is known in
closed form [23], the contribution of all weighted
probabilities along any edge of ST might even
be computable in constant time. If we need the
maximum emission probability among all su�xes
of the longest context that are themselves con-
texts [37], we can just iterate calls to the lowest
marked ancestor data structure. We can imple-
ment the IMM in Section 1 of the supplement in
a similar way, by computing the values of p(W )
during construction, and storing them in an ar-
ray with one entry per left extension of a max-
imal repeat. We can then mark as context the
locus v in ST of all strings aW such that f(aW )
is smaller than the given threshold and W is a
maximal repeat. During scoring, we iteratively
move from one context to the other using the
lowest marked ancestor data structure.
To compute the backo↵ function �(W,a)

of Section 2.2.1, we need to compute
�`(W [2..|W |]a) for a context W [29]. Since
contexts are maximal repeats, or left-extensions
by one character of maximal repeats, we can
decide whether W [2..|W |] ends in the middle of
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o

Figure 2: The size of our index compared to
the size of [33], for strings of length at most 80
million. Orange circles: non-repetitive datasets;
blue circles: repetitive datasets. See the text for
more details. Note that the vertical axis has a
logarithmic scale. Circles of the same color trace
multiple curves because they belong to di↵erent
datasets.

an edge of ST or not. If W [2..|W |] ends in the
middle of an edge, then �`(W [2..|W |]a) is either
one or zero, depending on whether a Weiner
link with character a exists from the locus of
W [2..|W |] in ST. If W [2..|W |] ends at a node of
ST, and if a Weiner link exists from such node
with label a, then we need to count the number
of distinct characters to the left of W [2..|W |]a,
i.e. the number of children of the locus of
W [2..|W |] that have a Weiner link by character
a. A similar method can be used to implement
the Kneser-Ney smoothings in [52, 53, 51, 30].
Section 3 in the supplement describes how to
compute some globals statistics on T using the
same setup of data structures.

5 Experimental results

Our C++ implementation is based on the SDSL
library [26] and is sequential: engineering it to
use parallel threads falls outside the scope of this
paper, and is discussed in Section 7 of the supple-
ment. See Section 4 in the supplement for more

implementation details.

We study the size and composition of our in-
dexes in a number of datasets whose content
and scale approximate current and possibly fu-
ture applications of VOMMs. We focus on
large datasets that were never tackled in previ-
ous works, and specifically: (1) The concatena-
tion of all sequences in the latest reference as-
sembly of the human genome in NCBI (5.9 bil-
lion characters). (2) The concatenation of all
the approximately 8600 bacterial genomes cur-
rently in NCBI (34 billion characters). (3) The
repetitive collections of bacterial genomes in the
Pizza&Chili corpus1: these files range from ap-
proximately 100 to 400 million characters, and
contain the concatenation of 23 genomes of E.
coli, of approximately 35 genomes of S. para-
doxus and of S. cerevisiae, and of approximately
78 thousand genomes of H. influenzae. (4) The
concatenation of all non-redundant protein se-
quences in the NCBI RefSeq database ([41], 29
billion characters). (5) A repetitive dataset of
proteins, built from the bacterial protein clusters
in NCBI as described in Section 5 of the supple-
ment (70 million characters). (6) The concate-
nation of all Illumina reads in a WGS metage-
nomic stool sample from the Human Microbiome
Project ([36], 28 billion characters). (7) A prefix
of the concatenation of all reads from a human
individual in the Illumina Platinum project2 (33
billion characters). See Section 5 in the supple-
ment for additional details on the datasets. The
strings we use are long, but they are far from
the longest ones that can be indexed by our im-
plementation on a standard server with e.g. one
terabyte of RAM (approximately 80 billion char-
acters). For each string, we build: (1) the plain
version of our index, with no pruning; (2) a ver-
sion of the index in which topologies are pruned
based on maximal repeats, and the BWT and the
bitvectors are run-length encoded; (3) a version
of (2), further pruned at depths that are powers
of two. For concreteness, we select contexts us-
ing just the four-thresholds criterion of Section
2.2.2: see Section 5 in the supplement for details.

1http://pizzachili.dcc.uchile.cl/repcorpus.html
2https://emea.illumina.com/platinumgenomes.html
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The size and composition of our indexes are
summarized in Figure 3. The plain index takes
approximately three bytes per character, with
data structures for ST taking up the largest frac-
tion of the total size, and bitvector context tak-
ing up approximately 16% of the total. Compres-
sion by maximal repeats saves between 30% and
50% of the size of the index in datasets that are
not very repetitive, but it saves approximately
90% in repetitive collections like S. cerevisiae.
In repetitive collections, bitvector leafToMaxrep
takes approximately between 15% and 30% of
the total size of the compressed index. Note that
leafToMaxrep consists mostly of zeros, or mostly
of ones, if there is little pruning or a lot of prun-
ing, so it compresses well with run-length encod-
ing. If there is a moderate amount of pruning,
the distribution of zeros and ones is more even,
and compression does not work as well. Further
pruning by context length can shrink the com-
pressed index to half of its size and beyond, but
the the depth at which significant space reduc-
tion occurs depends on the dataset.
In large collections of short strings, like pro-

teins or reads, or in datasets that are not very
repetitive, maximal repeats are short and poten-
tially few: rather than storing the topology of
SLT and the bitvectors to move from ST to SLT,
it might be more space-e�cient in practice to en-
code the length of every maximal repeat in pre-
order. We experiment with the simplest possi-
ble scheme, i.e. storing each depth with a fixed
number of bits that is just large enough to repre-
sent the largest length of a maximal repeat; we
discuss more advanced methods in Section 8 of
the supplement. Even with our simple encod-
ing, explicit storage takes always less space than
storing SLT, except in the human genome and in
the concatenation of all bacterial genomes from
NCBI (Figure 6 in the supplement). In the col-
lection of E. coli genomes, explicit storage takes
space comparable to the compressed SLT; other-
wise, it allows one to save from 12% to 40% of
the space of the compressed SLT.
Our VOMM implementation has marked ad-

vantages with respect to existing ones. As ex-
pected, the size of the index built by [5] de-
pends on the number and length of contexts, so

it produces smaller indexes than ours for restric-
tive settings of the thresholds. However, con-
trary to our data structure, index size blows up
when thresholds are set to less restrictive val-
ues, becoming 10 times bigger than ours, or more
(Figure 1): the limited scalability of pointer-
based representations is the very motivation for
research on space-e�cient VOMMs. The code
of [33], based on the su�x array, cannot index
strings of length bigger than 80 million char-
acters in practice, so we have to study its be-
havior on substrings of such length of all our
datasets. Specifically, we take random sub-
strings of the human genome, of the concate-
nation of all bacterial genomes, and of the con-
catenation of all non-redundant proteins, yield-
ing non-repetitive strings; we use the full repet-
itive proteins dataset; and we take prefixes of
the Pizza&Chili repetitive strings, which should
still yield repetitive strings (albeit possibly less
repetitive than the original). For non-repetitive
strings, our index is between 3 and 4 times
smaller than the competitor, and it becomes up
to 11 times smaller after length pruning (Figure
2). In repetitive strings, our compressed index
is from 10 to 60 times smaller than the competi-
tor, and it becomes up to 500 times smaller af-
ter depth pruning (Figure 2). We remark again
that such space savings should not be taken as
upper bounds, since we are experimenting with
short strings that might be less repetitive than
the original datasets. We also note that, in addi-
tion to being larger, [33] supports just one type
of score. The index in [53]3 takes from 3 to 3.3
bytes per character, regardless of the compress-
ibility of the input. After removing precomputed
counts used to speed up queries, the index takes
between 2.6 and 3.1 bytes per character, which
should approximate the size of the index in [52]
and is comparable to our non-pruned data struc-
ture. Recall, however, that the competitor sup-
ports just an IMM with Kneser-Ney smoothing.

Optimizing index construction is outside the
scope of this paper. However, our sequential
construction algorithms are reasonably fast and
space-e�cient in practice: see Section 6 in the

3https://github.com/eehsan/cstlm
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supplement for details and for a comparison to
the competitors. Maximizing the speed of scor-
ing functions is also outside the scope of this pa-
per. Studying scoring time is interesting, how-
ever, since we expect to be paying our space sav-
ings in this currency. We report a detailed analy-
sis of scoring time in Section 7 of the supplement.
Here we just mention that non-recursive scoring
on our index with maximal repeats pruning is
indeed approximately 5-6 times slower than the
same scoring with our non-pruned index; how-
ever, pruning the compressed index further by
maximum length of a context makes scoring up
to 2 times faster. Our non-pruned index is be-
tween 60 and 35 times slower than the trie-based
index in [5], and it is between 3 and 12 times
slower than [33] to compute the specific score of
the competitor, depending on the dataset.
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Figure 3: Size and composition of our indexes on large datasets. NP: no pruning; RM: run-length encod-
ing (RLE) and maximal repeat pruning; numbers: RLE, maximal repeat pruning, and depth pruning.
Pruning marks: all data structures associated with pruning ST and SLT, including leafToMaxrep. The
two dot plots on the bottom-right panels show the size of the balanced parentheses representations of
ST and SLT, divided by their size without pruning (bitvectors context, mrSLT and mrST have similar
plots).

Page 14

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 14, 2018. ; https://doi.org/10.1101/443101doi: bioRxiv preprint 

https://doi.org/10.1101/443101
http://creativecommons.org/licenses/by-nd/4.0/
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lissées pour la détection de domaines
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[36] Barbara A Methé, Karen E Nelson, Mihai
Pop, Heather H Creasy, Michelle G Giglio,
Curtis Huttenhower, Dirk Gevers, Joseph F
Petrosino, Sahar Abubucker, Jonathan H
Badger, et al. A framework for human mi-
crobiome research. Nature, 486(7402):215,
2012.

[37] Hasan Oğul and Erkan Ü Mumcuoğlu.
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Supplementary material for:
“A framework for space-e�cient variable-order Markov

models”

Fabio Cunial Jarno Alanko Djamal Belazzougui

1 IMMs and maximal repeats

We show that the IMM in [29] performs a linear combination of the emission probabilities
of just the left extensions by one character of maximal repeats. Recall from Section 2.2.1 in
the paper that such IMM assigns the following score to observing character b after context
W : P̃ (b|W ) = �(W ) · P (b|W ) + (1 � �(W )) · P̃ (b|W [2..|W |]) if |W | > 0, and f(b)/|T |
otherwise. If f(W ) is at least a given threshold, then �(W ) is set to one and recursion
stops. Otherwise, �(W ) is set to either zero or �

0(W ) = c · (1 � p(W )) · f(Wb), where c

is a constant and p(W ) is the fraction of mass of the �
2 distribution to the right of the

Pearson’s chi-squared test statistic x(W ). Such statistic uses the frequencies of Wa as
observed frequencies, and the frequencies of W [2..|W |]a as expected frequencies, for every
a 2 ⌃, i.e. x(W ) = f(W ) ·

P
a2⌃r(W [2..|W |])(P (a|W ) � P (a|W [2..|W |]))2/P (a|W [2..|W |]).

The IMM chooses between setting �(W ) to zero or to �
0(W ) by comparing 1 � p(W ) to

a positive, user-defined threshold. Note that, if W [2..|W |] if not left-maximal, P (a|W )
coincides with P (a|W [2..|W |]) for any a, thus x(W ) = 0. Similarly, if W [2..|W |] is always
followed by character b, the summation in x(W ) runs just over b, and both P (b|W ) and
P (b|W [2..|W |]) are equal to one, thus again x(W ) = 0. When x(W ) = 0, we also have that
p(W ) = 1, 1� p(W ) = 0, and �(W ) = 0.

2 Contexts as left extensions of maximal repeats

We describe how to modify the algorithm in Section 2.3 of the paper to handle contexts
that are left extensions by one character of maximal repeats. Assume again that we mark
the locus of all such contexts in the topology of ST. After taking a sequence of successful
Weiner links from the first position of S, assume that we are currently at position i of
S. We go to the locus v of the reverse of W = S[1..i] in ST and, if v is marked, we use
the emission probability from v to score S[i + 1]: this is equivalent to using the emission
probability of the context S[i�`(v0)..i], where v0 is the parent of v in ST. If v is not marked,
we move to its lowest marked ancestor v0. When we back o↵ from a node w to a node w

0
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of ST, where w does not emit S[i+1] and w
0 if the lowest marked ancestor of w that emits

S[i+1], we adapt the algorithm to take into account that now we are considering contexts
S[i� `(u)..i], . . . , S[i� `(u0)..i], where u is the parent of w and u

0 is the parent of w0.

3 Statistics on the training data

Note that, once we have built our data structures on T , we can sample a string S from the
VOMM using the scoring algorithm in Section 2.3 of the paper, with just the topology of
ST, the BWT of the reverse, and the lowest marked ancestor data structure: indeed, we
can start from a random context, and iteratively sample a Weiner link at random, based
on the emission probabilities of the current context, and then move from the locus of the
resulting extension to its lowest ancestor in ST that is a context.

The same setup can be used to compute a number of global statistics on T , for example
a maximum-likelihood estimate of the order of the fixed-order Markov chain that generated
T : this is the value of k that minimizes � log P̂k(T ) + (� � 1)�k log (|T |� k + 1)/2, where
P̂k(T ) =

Q
W2⌃k,f(Wa)>0(f(Wa)/f(W ))f(Wa) [14]. To compute P̂k(T ) for a specific value

of k, it su�ces to mark as contexts just the loci of k-mers in ST, and to score T against its
VOMM. The same holds for computing the k-th order Markov predictability of T , defined
as (1/(|T |�k)) ·

P
W2⌃k

P
a2⌃\{�(W )} f(Wa), where �(W ) = argmax{a 2 ⌃ : f(Wa) > 0},

for a user-specified range of values of k [15]. This is the fraction of errors while predicting
the characters of T using contexts of fixed length k, predicting as the next character, at
each position of T , the character with largest relative frequency with respect to the current
k-mer.

4 Details on the implementation

We build the BWT with the divsufsort library1. We use the rank data structure
rank support v and the code for select operations on bitvectors select support mcl

from the SDSL library [18], and we represent the topology of ST and of SLT explicitly
with balanced parentheses, using bp support g. We build most data structures using our
own implementation of the bidirectional BWT index2, and we use portions of the lz-rlbwt
code3 from [10] for the run-length-encoded BWT. One could plug in other implementations
to build the indexes, for example [2] for the su�x tree topology; we haven’t experimented
with such alternatives since we do not try to optimize construction. The implementation
ships with comprehensive unit tests on randomized strings to ensure correctness.

When comparing our implementation to the code in [4], we turn o↵ computing and
storing statistics in the competitor’s source, and we compile it with gcc -O3.

1https://github.com/y-256/libdivsufsort
2https://github.com/jnalanko/BD BWT index
3https://github.com/nicolaprezza/lz-rlbwt
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5 Details on the datasets

Our metagenomic stool sample is file SRS301868 at https://portal.hmpdacc.org/files/
91319e642fdd8a6e3b059cfb058cc4aa, and our human reads from the Illumina Platinum
project are from run ERR194146, file ERR194146 1.fastq.gz, from
https://www.ebi.ac.uk/ena/data/view/PRJEB3381

When building each dataset, we concatenate its sequences using a separator that is not in
the alphabet, replacing runs of undetermined characters with a single occurrence of the sep-
arator. We build the dataset of repetitive proteins as follows. We sort all bacterial protein
clusters in NCBI4 (which are sets of protein sequences with high pairwise alignment scores)
by decreasing number of sequences in a cluster. For every such cluster, we concatenate all
sequences in it, in order, until we reach approximately 70 million characters.

In all datasets we select contexts using the four-thresholds criterion, with the param-
eters ⌧1 = 10�4, ⌧2 = 10�3, ⌧3 = 0.952, ⌧4 = 1.05 used for proteins in [5] (similar values
are also used in [23, 3, 22, 6]). Using di↵erent criteria does not fundamentally change our
results.

6 Index construction

We sketch some techniques that we observed are e↵ective for building VOMMs in practice.

6.1 Balanced parentheses

We build the balanced parentheses representation of the full topology of ST (without
pruning) by iterating over all left-maximal substrings of T with BWT, as described in [7,
Section 4.1]. Specifically, we compute the lexicographic range [iW ..jW ] in BWT of every left-
maximal substring W . Let open[1..|T |] (respectively, close[1..|T |]) be an array that stores
the number of substrings W such that iW = i (respectively, jW = j). Given such arrays,
one could build the balanced parentheses representation of ST by iteratively printing open[i]
open parentheses followed by close[i] closed parentheses, for all values of i. To build open

and close we could just increment open[iW ] and close[jW ] for each traversed W . Such
vectors take |T | log |T | bits of space, so it is desirable to make them smaller. The first idea to
reduce their space in practice is based on the fact that min(open[i], close[i]) < 2 for every i,
since otherwise ST would have a unary path. We can thus encode both open[i] and close[i]
in a single array of counters openClose[1..|T |], using e.g. the following encoding: a zero at
position imeans that there is no open and no closed parenthesis at i; a one means that there
is just one open parenthesis; a two that there is just one closed parenthesis; a three that
there are one open and one closed parenthesis; an even number n � 4 means that there are
n/2 open parentheses and one closed parenthesis; an odd number n � 5 means that there

4https://www.ncbi.nlm.nih.gov/proteinclusters
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are (n�1)/2 closed parentheses and one open parenthesis. Note also that in practice most
counters are small, thus we use a two-level scheme, in which an array stores values of length
at most b bits, and a hash table stores all other values5. We can store approximately 2b�1

parentheses per position of the array: if we need more, we mark the position as saturated
and we add a new counter to the hash table, where keys are BWT positions and values
are 64-bit integers. We could use a similar algorithm to build the balanced parentheses
representation of the full topology of SLT (without pruning), except that now we would
iterate over all right-maximal substrings of T using BWT, incrementing counts in BWT
using the bidirectional BWT index to synchronize the two intervals. However, since the
stack of the iterator is small in practice, we just perform a preorder traversal of SLT and
append open and closed parentheses, building bitvector mrSLT at the same time.

To build bitvector mrST, we traverse the topology of ST in any order, we use the
topology to get the interval [i..j] of each node in BWT, and we check the number of ones
in the interval [i+ 1..j] inside an additional bitvector diff[1..|T |] such that diff[i] = 1 i↵
BWT[i] 6= BWT[i� 1] [11].

We build the data structures in Lemma 1 of the paper as follows. We build the balanced
parentheses representation of the topologies of ST and SLT like in the non-pruned case
by traversing SLT using the birectional BWT index, but keeping only nodes that are
maximal repeats or left-extensions of maximal repeats. We also mark the required bits in
leafToMaxrep during the traversal.

6.2 Complexity and comparison to the competitors

We can measure most quantities used in Section 2.3 of the paper to decide if a node of
ST is a context, within the same time and space budget as traversing the tree using BWT.
Thus, for most variants, construction takes O(|T | log �) time. In general, construction
takes O(v|T | log �) time, where v is the time to decide whether a node of ST is associated
with a context.

Computing the contexts for a di↵erent setting of the context selection thresholds
amounts just to a traversal of SLT, thus re-training a VOMM that was already built is
significantly faster than training one from scratch. For the same reason, storing multiple
VOMMs trained on the same dataset with di↵erent settings takes significantly less space
than the sum of the individual VOMMs.

On an Intel Xeon E7-4830v3 at 2.10 GHz with one terabyte of RAM, our sequential
construction algorithm takes approximately ten hours to index the human genome, and
between three and four days to index all bacteria, all proteins, the metagenome, and the
read set. Trie-based data structures are from 5 to more than 290 times slower to build than
our index in practice, depending on the number of contexts (Figure 1). Building the index
of [24] is approximately 3 times faster than building our non-pruned index, and 5 times

5We observe that setting b = 8 achieves a good balance between the size of the array and the number of
elements in the hash table.
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faster than building our pruned index, except for aggressive depth pruning (Figure 2), but
our construction algorithm uses approximately half the space of the competitor. Once our
index is built, creating one with a di↵erent context selection criterion is faster than building
the competitor from scratch, and it takes half the space required for building our index
from scratch. Building the index in [32] takes between 5 and 9 bytes per character, which
is comparable to our construction, and between 1.1 and 3.2 microseconds per character,
which is faster than or comparable to our non-pruned index.

Note that, once our indexes are built, the user can also discard the training data and
use the index itself to reconstruct T if needed. Note also that all construction algorithms
could be parallelized, by performing parallel traversals of ST and of SLT (see e.g. [1]).

7 Scoring time

We implement just basic versions of each scoring criterion, paying attention only at mini-
mizing the number of conversions between node identifier in a topology and corresponding
BWT interval. Clearly the query S does not need to be kept in memory but can be
streamed from disk.

7.1 Comparison to the competitors

As mentioned, our non-pruned index is between 60 and 35 times slower than the trie-based
index in [4] (Figure 3). Contrary to the competitors, however, scoring time decreases when
the number of contexts increases: this is likely due to the fact that, when only few contexts
are selected, most matching statistics strings need to issue a lowest marked ancestor query
to jump to their context, whereas when many contexts are selected, it is more likely for
a matching statistics string to already be a context, and thus to avoid a lowest marked
ancestor query.

Recall that the implementation in [24] cannot index strings longer than approximately
80 million characters. Thus, we compare the speed of scoring with our index and with the
competitor, by using the following small datasets as indexes: (1) a random subset of all
NCBI proteins, of length 80 million; (2) the set of repetitive proteins described above; (3)
a random subset of bacterial genomes, of length 80 million; (4) a prefix of the H. influenzae
file, of length 80 million. We use such datasets to cover the cases of repetitive and non-
repetitive indexes. We use as queries ten random subsets of all NCBI proteins, and ten
random subsets of all bacterial genomes, of length 500 million each. Recall also that the
competitor does not allow one to use contexts to score a query; instead, it just computes the
ratio between the frequency of S[i�MS[i]+1..i] and the frequency of S[i�MS[i]+1..i�1]
for each i. We implement such criterion using an even smaller data structure, since we don’t
need to measure string depths. Results are in Figure 5. We don’t compare scoring time to
[32], since the latter supports just one scoring function which is significantly di↵erent from
the ones we consider.
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7.2 Recursive scoring

It is interesting to compare recursive and non-recursive scoring time when the number of
contexts increases. As before, we decrease threshold ⌧1 in the four-thresholds selection
criterion of Section 2.2.2 in the paper. When ⌧1 is large, recursive and non-recursive scores
take similar time, since we are likely selecting very short contexts, which are probably
followed by most characters of the alphabet, and thus recursion stops soon (see Figure 5).
As expected, when ⌧1 decreases, the recursive score becomes slower, since more substrings
are marked as contexts, thus the matching statistics string at each position of the query
tends to match a longer context, which is more likely to emit just few characters, and thus
recursion is more likely to continue upwards in ST. We observe the recursive score being
up to 3.5 times slower than the non-recursive score, and the gap widens as ⌧1 decreases.

7.3 Speeding up scoring

Slower query times could be mitigated in practice by applying optimizations from matching
statistics (like those in [9], some of which are implicitly enabled by our pruned topologies
already), by precomputing counts that are too expensive to evaluate at query time (as
done e.g. in [21, 30, 31, 32]), and by taking advantage of the large number of cores that are
standard in current servers. Scoring is indeed embarrassingly parallel in most applications,
where the dataset to be queried is a large number of short strings, like sequencing reads
or proteins. If S is one long string, one can still split it in uniform blocks and parallelize
matching statistics.

8 Explicit storage of string depths

Figure 6 shows the advantages of a naive explicit encoding of the lengths of maximal
repeats. Alternatively, we could use a multilevel scheme like directly addressable codes [12],
which have already been used e.g. by [32] for storing precomputed counts. Specifically,
a first array could contain one byte for every maximal repeat in preorder, and the first
bit in such byte could mark whether the length of the maximal repeat is longer than 27.
A second array stores again one byte for every maximal repeat of length greater than 27,
and uses again the first bit to mark whether the length is greater than 214. A third array
contains the remaining log d � 14 bits that encode the length of every maximal repeat of
length greater than 214, where d is the maximum length of a maximal repeat. To move
from one array to the other, we could store partial rank information every few bytes.

Another alternative could be to simply store the di↵erence between the string depths of
maximal repeats that are consecutive in preorder, using two bitvectors add and subtract,
each containing exactly a number of ones equal to the number of maximal repeats: if the
di↵erence between the string depths of node i and i�1 in preorder is equal to d, we append
d zeros followed by a one to add, and if it is equal to �d we append d zeros followed by a
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one to subtract.
Note that storing depths explicitly might reduce query time, since fewer operations are

needed to access the length of a maximal repeat. In practice we observe negligible speedups
in all datasets, even with recursive scores, suggesting that string depth retrieval is not a
bottleneck of score computation.

9 Background on string indexes

We briefly summarize here some background notions on data structures that are required
for understanding the paper.

Let T 2 [1..�]n�1# be a string. A rank query rank(T, a, i) returns the number of
occurrences of character a in T up to position i, inclusive. A select query select(T, a, i)
returns the position of the i-th occurrence of a in T . See e.g. [17]. The su�x array
SAT [1..|T |] of T is the vector of indices such that T [SAT [i]..|T |] is the i-th smallest su�x of
T in lexicographic order. The Burrows-Wheeler transform of T is the string BWTT [1..|T |]
satisfying BWTT [i] = T [SAT [i]� 1] if SAT [i] > 1, and BWTT [i] = # otherwise [13]. While
SAT takes |T | log |T | bits, BWTT takes |T | log � bits, i.e. the same number of bits needed
to store T . A substring W of T can be represented as a lexicographic interval [i..j] of
su�xes in both SAT and BWTT . Array C[0..�] stores in C[a] the number of occurrences in
T of all characters strictly smaller than a, i.e. the sum of the frequency of all characters in
set {#, 1, ..., a� 1}. Clearly C[0] = 0, and C[a] + 1 is the position in SAT of the first su�x
of T that starts with character a. The wavelet tree is a data structure that represents a
string T in |T | log �(1 + o(1)) bits and supports rank, select, and access operations on its
characters in O(log �) time (see e.g. [19]). The combination of BWT with rank support
and C array is known as FM-index, and it enables a backward step, i.e. moving from the
interval [i..j] of a substring W of T , to the interval [i0..j0] of its left extension aW , where
a is a character [16].

We also require familiarity with the notion and usages of the su�x tree STT = (V,E)
of T# [33]: see e.g. [20] for an overview. We denote by STT the su�x tree of T#, and we
denote by `(v) the string label of a node v 2 V , i.e. the string obtained by concatenating
the labels of all edges in the path from the root of the tree to v. Here we just recall
that a substring W of T is right-maximal (respectively, left-maximal) i↵ W = `(v) for
some internal node v of STT (respectively, for some internal node v of STT ), and that a
node v 2 V with `(v) = aW for some character a 2 [0..�] points to a node w 2 V with
`(w) = W by a su�x link labeled by a. Su�x links and internal nodes of STT form a trie,
called the su�x-link tree of T and denoted by SLTT . Inverting the direction of all su�x
links yields the so-called explicit Weiner links. Given an internal node v and a symbol
a 2 [0..�], it might happen that string a`(v) occurs in T , but is not right-maximal, i.e.
it is not the label of any internal node of ST: all such left extensions of internal nodes
that end in the middle of an edge are called implicit Weiner links. An internal node v of
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ST can have more than one outgoing Weiner link, and all such Weiner links have distinct
labels: in this case, `(v) is a maximal repeat. We call SLT⇤

T a version of SLTT augmented
with implicit Weiner links and with nodes corresponding to their destinations. A maximal
repeat W of T is called leftmost if it is not the proper su�x of any other maximal repeat
of T . Since taking the su�x of a string preserves right-maximality, the set of all maximal
repeats coincides with the set of all ancestors in ST of leftmost maximal repeats. It is easy
to see that there is a bijection between the set of branching nodes of SLT⇤ and the nodes
of ST that correspond to maximal repeats, in which the leaves of SLT are mapped to the
nodes of ST that correspond to leftmost maximal repeats. The su�x-link tree (a trie) is
thus a subdivision of the subgraph of ST induced by maximal repeats (a compact tree). See
Section 2.1 in [8] for a more thorough explanation.

The topology of an ordered tree with n nodes can be represented using 2n+ o(n) bits,
as a sequence of 2n balanced parentheses built by opening a parenthesis, by recurring on
every child of the current node in order, and by closing a parenthesis [25]. Let id(v) be
the rank of a node v in the preorder traversal of the tree. Given the balanced parentheses
representation of the tree encoded in 2n + o(n) bits, one can build a data structure that
takes 2n+o(n) bits, and that supports the following operations in constant time [26, 28, 27]:

• child(id(v), i): returns id(w), where w is the ith child of node v (i � 1), or ; if v
has less than i children;

• parent(id(v)): returns id(u), where u is the parent of v, or ; if v is the root of T ;

• lca(id(v), id(w)): returns id(u), where u is the lowest common ancestor of nodes v
and w;

• leftmostLeaf(id(v)), rightmostLeaf(id(v)): returns one plus the number of leaves
that, in the preorder traversal of T , are visited before the first (respectively, the last)
leaf that belongs to the subtree of T rooted at v;

• selectLeaf(i): returns id(v), where v is the i-th leaf visited in the preorder traversal
of T ;

• depth(id(v)), height(id(v)): returns the distance of v from the root or from its
deepest descendant, respectively.

This data structure can be built in O(n) time and in O(n) bits of working space.
Note that such operations allow converting in constant time between an interval in

BWTT and the corresponding node identifier in the balanced parenthesis representation of
STT (by selecting the corresponding leftmost and rightmost leaves and taking their lowest
common ancestor), and vice versa (by counting the number of leaves under a node).
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[22] Christine Largeron-Leténo. Prediction su�x trees for supervised classification of se-
quences. Pattern Recognition Letters, 24(16):3153–3164, 2003.

[23] Florencia G Leonardi. A generalization of the PST algorithm: modeling the sparse
nature of protein sequences. Bioinformatics, 22(11):1302–1307, 2006.

[24] Jie Lin, Donald Adjeroh, and Bing-Hua Jiang. Probabilistic su�x array: e�cient
modeling and prediction of protein families. Bioinformatics, 28(10):1314–1323, 2012.

[25] J Ian Munro and Venkatesh Raman. Succinct representation of balanced parentheses
and static trees. SIAM Journal on Computing, 31(3):762–776, 2001.

[26] Gonzalo Navarro. Compact data structures: A practical approach. Cambridge Univer-
sity Press, 2016.

[27] Gonzalo Navarro and Kunihiko Sadakane. Fully functional static and dynamic succinct
trees. ACM Transactions on Algorithms, 10(3):16:1–16:39, 2014.

10

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 14, 2018. ; https://doi.org/10.1101/443101doi: bioRxiv preprint 

https://doi.org/10.1101/443101
http://creativecommons.org/licenses/by-nd/4.0/


[28] K. Sadakane and G. Navarro. Fully-functional succinct trees. In Proc. ACM-SIAM
Symposium on Discrete Algorithms (SODA 2010), pages 134–149, Austin, Texas, USA,
2010. ACM-SIAM.

[29] Steven L Salzberg, Arthur L Delcher, Simon Kasif, and Owen White. Microbial gene
identification using interpolated Markov models. Nucleic Acids Research, 26(2):544–
548, 1998.

[30] Ehsan Shareghi, Trevor Cohn, and Gholamreza Ha↵ari. Richer interpolative smooth-
ing based on modified Kneser-Ney language modeling. In Proceedings of the 2016
Conference on Empirical Methods in Natural Language Processing, pages 944–949,
2016.

[31] Ehsan Shareghi, Matthias Petri, Gholamreza Ha↵ari, and Trevor Cohn. Compact,
e�cient and unlimited capacity: language modeling with compressed su�x trees. In
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 2409–2418, 2015.

[32] Ehsan Shareghi, Matthias Petri, Gholamreza Ha↵ari, and Trevor Cohn. Fast, small
and exact: infinite-order language modelling with compressed su�x trees. Transac-
tions of the Association for Computational Linguistics, 4:477–490, 2016.

[33] P. Weiner. Linear pattern matching algorithm. In Proc. 14th Annual IEEE Symposium
on Switching and Automata Theory, pages 1–11, 1973.

11

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 14, 2018. ; https://doi.org/10.1101/443101doi: bioRxiv preprint 

https://doi.org/10.1101/443101
http://creativecommons.org/licenses/by-nd/4.0/


Figure 1: Time for building trie representations of VOMMs as a function of ⌧1 in the four-
thresholds context selection criterion. The figure follows the conventions of Figure 1 in the
paper.
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Figure 2: Peak space and total running time of our construction programs (blue circles),
compared to [24]. Orange lines: average of the competitor. Green lines: average of our
reconstruction program. Dataset: random substrings of the concatenation of all bacterial
genomes.
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Figure 3: Scoring time: comparison between our index (grey) and the implementations in
[4] (blue) and [23] (orange). Query datasets: ten nonrepetitive concatenations of proteins
of length 500 million each. Index datasets: the same as in Figure 1 of the paper.
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Figure 4: Recursive (blue circles) and non-recursive (orange circles) scoring in our imple-
mentation, as a function of ⌧1 in Section 2.2.2. of the paper (horizontal axis, logarithmic
scale). Queries: ten non-repetitive concatenations of proteins of length 500 million. In-
dex: one non-repetitive concatenation of proteins of length 80 million. Experiments with
repetitive proteins yield similar results.
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Figure 5: Scoring time: comparison between our index and the implementation in [24].
LIN: score function defined by the competitor. NP: context-based scoring, no pruning.
RM: context-based scoring, run-length encoding and maximal repeat pruning. Unlabeled
points correspond to RM with decreasing maximum context length (from left to right).
Each configuration is tested with ten random substrings, whose measurements are highly
overlapping. Memory improvements do not reflect those in Figure 3 of the paper, since the
datasets used here are subsets of length at most 80 million of the full datasets.

16

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 14, 2018. ; https://doi.org/10.1101/443101doi: bioRxiv preprint 

https://doi.org/10.1101/443101
http://creativecommons.org/licenses/by-nd/4.0/


bytes per character
0 0.2 0.4 0.6

Human genome

Bacterial genomes

E. coli

Proteins

Human reads

Metagenome

Repetitive proteins

S. cerevisiae

S. paradoxus

H. influenzae

Figure 6: Size of the explicit storage of string depths (orange), compared to the size of the
uncompressed (blue) and compressed (green) SLT. Topologies are not pruned.
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