










Repetitive proteins E. coli S. cerevisiae

S. paradoxus H. influenzae

BWT ST bpr ST maxrep SLT bpr SLT maxrep pruning marks ST contexts

S
ize

/N
o

pruning

Figure 3: Size and composition of our indexes on large datasets. NP: no pruning; RM: run-length encod-
ing (RLE) and maximal repeat pruning; numbers: RLE, maximal repeat pruning, and depth pruning.
Pruning marks: all data structures associated with pruning ST and SLT, including leafToMaxrep. The
two dot plots on the bottom-right panels show the size of the balanced parentheses representations of
ST and SLT, divided by their size without pruning (bitvectors context, mrSLT and mrST have similar
plots).
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Supplementary material for:
“A framework for space-e�cient variable-order Markov

models”

Fabio Cunial Jarno Alanko Djamal Belazzougui

1 IMMs and maximal repeats

We show that the IMM in [29] performs a linear combination of the emission probabilities
of just the left extensions by one character of maximal repeats. Recall from Section 2.2.1 in
the paper that such IMM assigns the following score to observing character b after context
W : P̃ (b|W ) = �(W ) · P (b|W ) + (1 � �(W )) · P̃ (b|W [2..|W |]) if |W | > 0, and f(b)/|T |
otherwise. If f(W ) is at least a given threshold, then �(W ) is set to one and recursion
stops. Otherwise, �(W ) is set to either zero or �

0(W ) = c · (1 � p(W )) · f(Wb), where c

is a constant and p(W ) is the fraction of mass of the �
2 distribution to the right of the

Pearson’s chi-squared test statistic x(W ). Such statistic uses the frequencies of Wa as
observed frequencies, and the frequencies of W [2..|W |]a as expected frequencies, for every
a 2 ⌃, i.e. x(W ) = f(W ) ·

P
a2⌃r(W [2..|W |])(P (a|W ) � P (a|W [2..|W |]))2/P (a|W [2..|W |]).

The IMM chooses between setting �(W ) to zero or to �
0(W ) by comparing 1 � p(W ) to

a positive, user-defined threshold. Note that, if W [2..|W |] if not left-maximal, P (a|W )
coincides with P (a|W [2..|W |]) for any a, thus x(W ) = 0. Similarly, if W [2..|W |] is always
followed by character b, the summation in x(W ) runs just over b, and both P (b|W ) and
P (b|W [2..|W |]) are equal to one, thus again x(W ) = 0. When x(W ) = 0, we also have that
p(W ) = 1, 1� p(W ) = 0, and �(W ) = 0.

2 Contexts as left extensions of maximal repeats

We describe how to modify the algorithm in Section 2.3 of the paper to handle contexts
that are left extensions by one character of maximal repeats. Assume again that we mark
the locus of all such contexts in the topology of ST. After taking a sequence of successful
Weiner links from the first position of S, assume that we are currently at position i of
S. We go to the locus v of the reverse of W = S[1..i] in ST and, if v is marked, we use
the emission probability from v to score S[i + 1]: this is equivalent to using the emission
probability of the context S[i�`(v0)..i], where v0 is the parent of v in ST. If v is not marked,
we move to its lowest marked ancestor v0. When we back o↵ from a node w to a node w

0
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of ST, where w does not emit S[i+1] and w
0 if the lowest marked ancestor of w that emits

S[i+1], we adapt the algorithm to take into account that now we are considering contexts
S[i� `(u)..i], . . . , S[i� `(u0)..i], where u is the parent of w and u

0 is the parent of w0.

3 Statistics on the training data

Note that, once we have built our data structures on T , we can sample a string S from the
VOMM using the scoring algorithm in Section 2.3 of the paper, with just the topology of
ST, the BWT of the reverse, and the lowest marked ancestor data structure: indeed, we
can start from a random context, and iteratively sample a Weiner link at random, based
on the emission probabilities of the current context, and then move from the locus of the
resulting extension to its lowest ancestor in ST that is a context.

The same setup can be used to compute a number of global statistics on T , for example
a maximum-likelihood estimate of the order of the fixed-order Markov chain that generated
T : this is the value of k that minimizes � log P̂k(T ) + (� � 1)�k log (|T |� k + 1)/2, where
P̂k(T ) =

Q
W2⌃k,f(Wa)>0(f(Wa)/f(W ))f(Wa) [14]. To compute P̂k(T ) for a specific value

of k, it su�ces to mark as contexts just the loci of k-mers in ST, and to score T against its
VOMM. The same holds for computing the k-th order Markov predictability of T , defined
as (1/(|T |�k)) ·

P
W2⌃k

P
a2⌃\{�(W )} f(Wa), where �(W ) = argmax{a 2 ⌃ : f(Wa) > 0},

for a user-specified range of values of k [15]. This is the fraction of errors while predicting
the characters of T using contexts of fixed length k, predicting as the next character, at
each position of T , the character with largest relative frequency with respect to the current
k-mer.

4 Details on the implementation

We build the BWT with the divsufsort library1. We use the rank data structure
rank support v and the code for select operations on bitvectors select support mcl

from the SDSL library [18], and we represent the topology of ST and of SLT explicitly
with balanced parentheses, using bp support g. We build most data structures using our
own implementation of the bidirectional BWT index2, and we use portions of the lz-rlbwt
code3 from [10] for the run-length-encoded BWT. One could plug in other implementations
to build the indexes, for example [2] for the su�x tree topology; we haven’t experimented
with such alternatives since we do not try to optimize construction. The implementation
ships with comprehensive unit tests on randomized strings to ensure correctness.

When comparing our implementation to the code in [4], we turn o↵ computing and
storing statistics in the competitor’s source, and we compile it with gcc -O3.

1https://github.com/y-256/libdivsufsort
2https://github.com/jnalanko/BD BWT index
3https://github.com/nicolaprezza/lz-rlbwt
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5 Details on the datasets

Our metagenomic stool sample is file SRS301868 at https://portal.hmpdacc.org/files/
91319e642fdd8a6e3b059cfb058cc4aa, and our human reads from the Illumina Platinum
project are from run ERR194146, file ERR194146 1.fastq.gz, from
https://www.ebi.ac.uk/ena/data/view/PRJEB3381

When building each dataset, we concatenate its sequences using a separator that is not in
the alphabet, replacing runs of undetermined characters with a single occurrence of the sep-
arator. We build the dataset of repetitive proteins as follows. We sort all bacterial protein
clusters in NCBI4 (which are sets of protein sequences with high pairwise alignment scores)
by decreasing number of sequences in a cluster. For every such cluster, we concatenate all
sequences in it, in order, until we reach approximately 70 million characters.

In all datasets we select contexts using the four-thresholds criterion, with the param-
eters ⌧1 = 10�4, ⌧2 = 10�3, ⌧3 = 0.952, ⌧4 = 1.05 used for proteins in [5] (similar values
are also used in [23, 3, 22, 6]). Using di↵erent criteria does not fundamentally change our
results.

6 Index construction

We sketch some techniques that we observed are e↵ective for building VOMMs in practice.

6.1 Balanced parentheses

We build the balanced parentheses representation of the full topology of ST (without
pruning) by iterating over all left-maximal substrings of T with BWT, as described in [7,
Section 4.1]. Specifically, we compute the lexicographic range [iW ..jW ] in BWT of every left-
maximal substring W . Let open[1..|T |] (respectively, close[1..|T |]) be an array that stores
the number of substrings W such that iW = i (respectively, jW = j). Given such arrays,
one could build the balanced parentheses representation of ST by iteratively printing open[i]
open parentheses followed by close[i] closed parentheses, for all values of i. To build open

and close we could just increment open[iW ] and close[jW ] for each traversed W . Such
vectors take |T | log |T | bits of space, so it is desirable to make them smaller. The first idea to
reduce their space in practice is based on the fact that min(open[i], close[i]) < 2 for every i,
since otherwise ST would have a unary path. We can thus encode both open[i] and close[i]
in a single array of counters openClose[1..|T |], using e.g. the following encoding: a zero at
position imeans that there is no open and no closed parenthesis at i; a one means that there
is just one open parenthesis; a two that there is just one closed parenthesis; a three that
there are one open and one closed parenthesis; an even number n � 4 means that there are
n/2 open parentheses and one closed parenthesis; an odd number n � 5 means that there

4https://www.ncbi.nlm.nih.gov/proteinclusters
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are (n�1)/2 closed parentheses and one open parenthesis. Note also that in practice most
counters are small, thus we use a two-level scheme, in which an array stores values of length
at most b bits, and a hash table stores all other values5. We can store approximately 2b�1

parentheses per position of the array: if we need more, we mark the position as saturated
and we add a new counter to the hash table, where keys are BWT positions and values
are 64-bit integers. We could use a similar algorithm to build the balanced parentheses
representation of the full topology of SLT (without pruning), except that now we would
iterate over all right-maximal substrings of T using BWT, incrementing counts in BWT
using the bidirectional BWT index to synchronize the two intervals. However, since the
stack of the iterator is small in practice, we just perform a preorder traversal of SLT and
append open and closed parentheses, building bitvector mrSLT at the same time.

To build bitvector mrST, we traverse the topology of ST in any order, we use the
topology to get the interval [i..j] of each node in BWT, and we check the number of ones
in the interval [i+ 1..j] inside an additional bitvector diff[1..|T |] such that diff[i] = 1 i↵
BWT[i] 6= BWT[i� 1] [11].

We build the data structures in Lemma 1 of the paper as follows. We build the balanced
parentheses representation of the topologies of ST and SLT like in the non-pruned case
by traversing SLT using the birectional BWT index, but keeping only nodes that are
maximal repeats or left-extensions of maximal repeats. We also mark the required bits in
leafToMaxrep during the traversal.

6.2 Complexity and comparison to the competitors

We can measure most quantities used in Section 2.3 of the paper to decide if a node of
ST is a context, within the same time and space budget as traversing the tree using BWT.
Thus, for most variants, construction takes O(|T | log �) time. In general, construction
takes O(v|T | log �) time, where v is the time to decide whether a node of ST is associated
with a context.

Computing the contexts for a di↵erent setting of the context selection thresholds
amounts just to a traversal of SLT, thus re-training a VOMM that was already built is
significantly faster than training one from scratch. For the same reason, storing multiple
VOMMs trained on the same dataset with di↵erent settings takes significantly less space
than the sum of the individual VOMMs.

On an Intel Xeon E7-4830v3 at 2.10 GHz with one terabyte of RAM, our sequential
construction algorithm takes approximately ten hours to index the human genome, and
between three and four days to index all bacteria, all proteins, the metagenome, and the
read set. Trie-based data structures are from 5 to more than 290 times slower to build than
our index in practice, depending on the number of contexts (Figure 1). Building the index
of [24] is approximately 3 times faster than building our non-pruned index, and 5 times

5We observe that setting b = 8 achieves a good balance between the size of the array and the number of
elements in the hash table.

4

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 14, 2018. ; https://doi.org/10.1101/443101doi: bioRxiv preprint 

https://doi.org/10.1101/443101
http://creativecommons.org/licenses/by-nd/4.0/


faster than building our pruned index, except for aggressive depth pruning (Figure 2), but
our construction algorithm uses approximately half the space of the competitor. Once our
index is built, creating one with a di↵erent context selection criterion is faster than building
the competitor from scratch, and it takes half the space required for building our index
from scratch. Building the index in [32] takes between 5 and 9 bytes per character, which
is comparable to our construction, and between 1.1 and 3.2 microseconds per character,
which is faster than or comparable to our non-pruned index.

Note that, once our indexes are built, the user can also discard the training data and
use the index itself to reconstruct T if needed. Note also that all construction algorithms
could be parallelized, by performing parallel traversals of ST and of SLT (see e.g. [1]).

7 Scoring time

We implement just basic versions of each scoring criterion, paying attention only at mini-
mizing the number of conversions between node identifier in a topology and corresponding
BWT interval. Clearly the query S does not need to be kept in memory but can be
streamed from disk.

7.1 Comparison to the competitors

As mentioned, our non-pruned index is between 60 and 35 times slower than the trie-based
index in [4] (Figure 3). Contrary to the competitors, however, scoring time decreases when
the number of contexts increases: this is likely due to the fact that, when only few contexts
are selected, most matching statistics strings need to issue a lowest marked ancestor query
to jump to their context, whereas when many contexts are selected, it is more likely for
a matching statistics string to already be a context, and thus to avoid a lowest marked
ancestor query.

Recall that the implementation in [24] cannot index strings longer than approximately
80 million characters. Thus, we compare the speed of scoring with our index and with the
competitor, by using the following small datasets as indexes: (1) a random subset of all
NCBI proteins, of length 80 million; (2) the set of repetitive proteins described above; (3)
a random subset of bacterial genomes, of length 80 million; (4) a prefix of the H. influenzae
file, of length 80 million. We use such datasets to cover the cases of repetitive and non-
repetitive indexes. We use as queries ten random subsets of all NCBI proteins, and ten
random subsets of all bacterial genomes, of length 500 million each. Recall also that the
competitor does not allow one to use contexts to score a query; instead, it just computes the
ratio between the frequency of S[i�MS[i]+1..i] and the frequency of S[i�MS[i]+1..i�1]
for each i. We implement such criterion using an even smaller data structure, since we don’t
need to measure string depths. Results are in Figure 5. We don’t compare scoring time to
[32], since the latter supports just one scoring function which is significantly di↵erent from
the ones we consider.
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7.2 Recursive scoring

It is interesting to compare recursive and non-recursive scoring time when the number of
contexts increases. As before, we decrease threshold ⌧1 in the four-thresholds selection
criterion of Section 2.2.2 in the paper. When ⌧1 is large, recursive and non-recursive scores
take similar time, since we are likely selecting very short contexts, which are probably
followed by most characters of the alphabet, and thus recursion stops soon (see Figure 5).
As expected, when ⌧1 decreases, the recursive score becomes slower, since more substrings
are marked as contexts, thus the matching statistics string at each position of the query
tends to match a longer context, which is more likely to emit just few characters, and thus
recursion is more likely to continue upwards in ST. We observe the recursive score being
up to 3.5 times slower than the non-recursive score, and the gap widens as ⌧1 decreases.

7.3 Speeding up scoring

Slower query times could be mitigated in practice by applying optimizations from matching
statistics (like those in [9], some of which are implicitly enabled by our pruned topologies
already), by precomputing counts that are too expensive to evaluate at query time (as
done e.g. in [21, 30, 31, 32]), and by taking advantage of the large number of cores that are
standard in current servers. Scoring is indeed embarrassingly parallel in most applications,
where the dataset to be queried is a large number of short strings, like sequencing reads
or proteins. If S is one long string, one can still split it in uniform blocks and parallelize
matching statistics.

8 Explicit storage of string depths

Figure 6 shows the advantages of a naive explicit encoding of the lengths of maximal
repeats. Alternatively, we could use a multilevel scheme like directly addressable codes [12],
which have already been used e.g. by [32] for storing precomputed counts. Specifically,
a first array could contain one byte for every maximal repeat in preorder, and the first
bit in such byte could mark whether the length of the maximal repeat is longer than 27.
A second array stores again one byte for every maximal repeat of length greater than 27,
and uses again the first bit to mark whether the length is greater than 214. A third array
contains the remaining log d � 14 bits that encode the length of every maximal repeat of
length greater than 214, where d is the maximum length of a maximal repeat. To move
from one array to the other, we could store partial rank information every few bytes.

Another alternative could be to simply store the di↵erence between the string depths of
maximal repeats that are consecutive in preorder, using two bitvectors add and subtract,
each containing exactly a number of ones equal to the number of maximal repeats: if the
di↵erence between the string depths of node i and i�1 in preorder is equal to d, we append
d zeros followed by a one to add, and if it is equal to �d we append d zeros followed by a
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one to subtract.
Note that storing depths explicitly might reduce query time, since fewer operations are

needed to access the length of a maximal repeat. In practice we observe negligible speedups
in all datasets, even with recursive scores, suggesting that string depth retrieval is not a
bottleneck of score computation.

9 Background on string indexes

We briefly summarize here some background notions on data structures that are required
for understanding the paper.

Let T 2 [1..�]n�1# be a string. A rank query rank(T, a, i) returns the number of
occurrences of character a in T up to position i, inclusive. A select query select(T, a, i)
returns the position of the i-th occurrence of a in T . See e.g. [17]. The su�x array
SAT [1..|T |] of T is the vector of indices such that T [SAT [i]..|T |] is the i-th smallest su�x of
T in lexicographic order. The Burrows-Wheeler transform of T is the string BWTT [1..|T |]
satisfying BWTT [i] = T [SAT [i]� 1] if SAT [i] > 1, and BWTT [i] = # otherwise [13]. While
SAT takes |T | log |T | bits, BWTT takes |T | log � bits, i.e. the same number of bits needed
to store T . A substring W of T can be represented as a lexicographic interval [i..j] of
su�xes in both SAT and BWTT . Array C[0..�] stores in C[a] the number of occurrences in
T of all characters strictly smaller than a, i.e. the sum of the frequency of all characters in
set {#, 1, ..., a� 1}. Clearly C[0] = 0, and C[a] + 1 is the position in SAT of the first su�x
of T that starts with character a. The wavelet tree is a data structure that represents a
string T in |T | log �(1 + o(1)) bits and supports rank, select, and access operations on its
characters in O(log �) time (see e.g. [19]). The combination of BWT with rank support
and C array is known as FM-index, and it enables a backward step, i.e. moving from the
interval [i..j] of a substring W of T , to the interval [i0..j0] of its left extension aW , where
a is a character [16].

We also require familiarity with the notion and usages of the su�x tree STT = (V,E)
of T# [33]: see e.g. [20] for an overview. We denote by STT the su�x tree of T#, and we
denote by `(v) the string label of a node v 2 V , i.e. the string obtained by concatenating
the labels of all edges in the path from the root of the tree to v. Here we just recall
that a substring W of T is right-maximal (respectively, left-maximal) i↵ W = `(v) for
some internal node v of STT (respectively, for some internal node v of STT ), and that a
node v 2 V with `(v) = aW for some character a 2 [0..�] points to a node w 2 V with
`(w) = W by a su�x link labeled by a. Su�x links and internal nodes of STT form a trie,
called the su�x-link tree of T and denoted by SLTT . Inverting the direction of all su�x
links yields the so-called explicit Weiner links. Given an internal node v and a symbol
a 2 [0..�], it might happen that string a`(v) occurs in T , but is not right-maximal, i.e.
it is not the label of any internal node of ST: all such left extensions of internal nodes
that end in the middle of an edge are called implicit Weiner links. An internal node v of
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ST can have more than one outgoing Weiner link, and all such Weiner links have distinct
labels: in this case, `(v) is a maximal repeat. We call SLT⇤

T a version of SLTT augmented
with implicit Weiner links and with nodes corresponding to their destinations. A maximal
repeat W of T is called leftmost if it is not the proper su�x of any other maximal repeat
of T . Since taking the su�x of a string preserves right-maximality, the set of all maximal
repeats coincides with the set of all ancestors in ST of leftmost maximal repeats. It is easy
to see that there is a bijection between the set of branching nodes of SLT⇤ and the nodes
of ST that correspond to maximal repeats, in which the leaves of SLT are mapped to the
nodes of ST that correspond to leftmost maximal repeats. The su�x-link tree (a trie) is
thus a subdivision of the subgraph of ST induced by maximal repeats (a compact tree). See
Section 2.1 in [8] for a more thorough explanation.

The topology of an ordered tree with n nodes can be represented using 2n+ o(n) bits,
as a sequence of 2n balanced parentheses built by opening a parenthesis, by recurring on
every child of the current node in order, and by closing a parenthesis [25]. Let id(v) be
the rank of a node v in the preorder traversal of the tree. Given the balanced parentheses
representation of the tree encoded in 2n + o(n) bits, one can build a data structure that
takes 2n+o(n) bits, and that supports the following operations in constant time [26, 28, 27]:

• child(id(v), i): returns id(w), where w is the ith child of node v (i � 1), or ; if v
has less than i children;

• parent(id(v)): returns id(u), where u is the parent of v, or ; if v is the root of T ;

• lca(id(v), id(w)): returns id(u), where u is the lowest common ancestor of nodes v
and w;

• leftmostLeaf(id(v)), rightmostLeaf(id(v)): returns one plus the number of leaves
that, in the preorder traversal of T , are visited before the first (respectively, the last)
leaf that belongs to the subtree of T rooted at v;

• selectLeaf(i): returns id(v), where v is the i-th leaf visited in the preorder traversal
of T ;

• depth(id(v)), height(id(v)): returns the distance of v from the root or from its
deepest descendant, respectively.

This data structure can be built in O(n) time and in O(n) bits of working space.
Note that such operations allow converting in constant time between an interval in

BWTT and the corresponding node identifier in the balanced parenthesis representation of
STT (by selecting the corresponding leftmost and rightmost leaves and taking their lowest
common ancestor), and vice versa (by counting the number of leaves under a node).
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Figure 1: Time for building trie representations of VOMMs as a function of ⌧1 in the four-
thresholds context selection criterion. The figure follows the conventions of Figure 1 in the
paper.
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Figure 2: Peak space and total running time of our construction programs (blue circles),
compared to [24]. Orange lines: average of the competitor. Green lines: average of our
reconstruction program. Dataset: random substrings of the concatenation of all bacterial
genomes.
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Figure 3: Scoring time: comparison between our index (grey) and the implementations in
[4] (blue) and [23] (orange). Query datasets: ten nonrepetitive concatenations of proteins
of length 500 million each. Index datasets: the same as in Figure 1 of the paper.

14

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 14, 2018. ; https://doi.org/10.1101/443101doi: bioRxiv preprint 

https://doi.org/10.1101/443101
http://creativecommons.org/licenses/by-nd/4.0/


Figure 4: Recursive (blue circles) and non-recursive (orange circles) scoring in our imple-
mentation, as a function of ⌧1 in Section 2.2.2. of the paper (horizontal axis, logarithmic
scale). Queries: ten non-repetitive concatenations of proteins of length 500 million. In-
dex: one non-repetitive concatenation of proteins of length 80 million. Experiments with
repetitive proteins yield similar results.
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Figure 5: Scoring time: comparison between our index and the implementation in [24].
LIN: score function defined by the competitor. NP: context-based scoring, no pruning.
RM: context-based scoring, run-length encoding and maximal repeat pruning. Unlabeled
points correspond to RM with decreasing maximum context length (from left to right).
Each configuration is tested with ten random substrings, whose measurements are highly
overlapping. Memory improvements do not reflect those in Figure 3 of the paper, since the
datasets used here are subsets of length at most 80 million of the full datasets.
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Figure 6: Size of the explicit storage of string depths (orange), compared to the size of the
uncompressed (blue) and compressed (green) SLT. Topologies are not pruned.
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