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Abstract 17 

Genomic selection offers several routes for increasing genetic gain or efficiency of plant 18 

breeding programs. In various species of livestock there is empirical evidence of increased 19 

rates of genetic gain from the use of genomic selection to target different aspects of the 20 

breeder’s equation. Accurate predictions of genomic breeding value are central to this and the 21 

design of training sets is in turn central to achieving sufficient levels of accuracy. In summary, 22 

small numbers of close relatives and very large numbers of distant relatives are expected to 23 

enable accurate predictions. 24 

To quantify the effect of some of the properties of training sets on the accuracy of 25 

genomic selection in crops we performed an extensive field-based winter wheat trial. In 26 

summary, this trial involved the construction of 44 F2:4 bi- and triparental populations, from 27 

which 2992 lines were grown on four field locations and yield was measured. For each line, 28 

genotype data were generated for 25,000 segregating single nucleotide polymorphism 29 

markers. The overall heritability of yield was estimated to 0.65, and estimates within 30 

individual families ranged between 0.10 and 0.85. Within cross genomic prediction accuracies 31 

of yield BLUEs were 0.125 – 0.127 using two different cross-validation approaches, and 32 

generally increased with training set size. Using related crosses in training and validation sets 33 

generally resulted in higher prediction accuracies than using unrelated crosses. The results of 34 

this study emphasize the importance of the training set design in relation to the genetic 35 

material to which the resulting prediction model is to be applied.  36 

Keywords: genomic selection, wheat, population design 37 
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Introduction 39 

Genomic selection in plant breeding offers several routes for increasing the genetic gain 40 

or efficiency of plant breeding programs (e.g., Bernardo and Yu, 2007; Hickey et al., 2014; 41 

Gaynor et al., 2017). Genomic selection based strategies can achieve this by reducing breeding 42 

cycle time, increasing selection accuracy and increasing selection intensity; three of the four 43 

factors in the breeder’s equation. Genomic prediction can reduce breeding cycle time because 44 

individuals can be selected and crossed without being phenotyped. It can increase the selection 45 

accuracy because genomic data enables more powerful statistical models and experimental 46 

designs using more observations than can be phenotyped in a single trial round. By reducing 47 

the cost of evaluating individuals via reducing the numbers phenotyped and/or reducing their 48 

replication, application of genomic selection can increase selection intensity. A final advantage 49 

is that the prediction models may be cumulatively updated with data of trials from previous 50 

years and become more accurate, enabling individuals to be “evaluated” across a broader 51 

range of environments and years. 52 

In livestock there is empirical evidence of increased rates of genetic gain from the use of 53 

genomic selection to target different aspects of the breeder’s equation. For example the first 54 

seven years of genomic selection in US dairy cattle has delivered ~50 - 100% increases in rates 55 

of genetic gain (García-Ruiz et al., 2016). Much of this gain has emanated from a reduction in 56 

generation interval. In commercial pig breeding, genomic selection has driven a 35% increase 57 

in rate of genetic gain in the breeding program that supplies the genetics in 25% of the 58 

intensively raised pigs globally. This gain came from increased accuracy of selection and a 59 

better alignment of selection accuracy with the breeding goal (W. Herring, personal 60 

communication). 61 

Genomic selection uses genotype data to calculate the realised relationship between 62 

individuals, and in a standardized statistical framework uses data from phenotyped relatives 63 

to estimate genetic values of the selection candidates. The usefulness of genomic selection to 64 

a breeder is a function of its accuracy. This is affected by the relatedness between the 65 
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phenotyped individuals in the training set and the individuals that are to be predicted (Habier 66 

et al., 2007, 2010; Meuwissen, 2009; Clark et al., 2012; Hickey et al., 2014; Liu et al., 2016), 67 

which may or may not be phenotyped themselves. In addition to the level of relatedness, the 68 

sample size of the phenotyped individuals is an important factor in determining accuracy 69 

(Zhang et al., 2017). 70 

In summary, small numbers of close relatives and very large numbers of distant relatives 71 

enable accurate predictions. Small or modest numbers of distant relatives do not enable 72 

accurate predictions, as they share only a small proportion of genome with the selection 73 

candidates, and thus provide less reliable predictions (de los Campos et al., 2013). Finally, the 74 

training set should also comprise a diverse set of individuals to produce reliable predictions 75 

(Calus, 2010; Pszczola et al., 2012; Pszczola and Calus, 2015), as supported by recent research 76 

in both cattle (Jenko et al., 2017) and simulated barley (Neyhart et al., 2017). 77 

The objective of this study was to explore the effect of level of relatedness between 78 

training set and validation set on genomic prediction accuracy using data from a large set of 79 

field experiments. To do this, 44 bi-parental or three-way crosses were obtained from four  80 

commercial wheat breeders in the United Kingdom, as described for the GplusE Project 81 

(Mackay et al., 2015). The crosses had different degrees of relatedness among each other and 82 

there were many shared parents. 68 F2:4 lines from each cross were genotyped and phenotyped 83 

for yield. As this data set is of substantial size, it enabled genomic predictions while masking 84 

specific fractions to assess the impact on genomic selection accuracy of training sets: (i) of 85 

different sizes; and (ii) that comprise close or distant relatives, or combinations thereof.  86 

 87 
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Materials and Methods 88 

Germplasm 89 

Thirty-nine bi-parental and 5 triparental populations were used to develop 2992 F2:4 lines (68 90 

per cross). The parents of these populations were elite breeders’ germplasm consisting of both 91 

hard and soft winter wheat cultivars adapted to the United Kingdom. A total of 27 parents 92 

were used, of which 5 parents were used in 6 or more crosses, 6 parents were used in 3 or 4 93 

crosses, and 1 parent was used in 2 crosses. The remaining 15 parents were only used in a 94 

single cross. 95 

Genotypes 96 

The F2:4 lines were genotyped using the Wheat Breeders’ 35K Axiom array (Allen et al., 2016). 97 

The DNA for genotyping was obtained by bulking leaves from approximately 6 F4 plants per 98 

F2:4 line. Genotype calling was performed using the Axiom Analysis Suite 2.0 with a modified 99 

version of the “best practices” workflow. Quality control threshold was reduced to 95 (97 100 

normally), plate pass percent was changed to 90 (95 normally), and average call rate was 101 

changed to 97 (98.5 normally). After quality control and genotype calling, a total of 35,143 102 

markers were brought forward with 24,498 segregating in the 44 crosses. 103 

Phenotypes 104 

The F2:4 lines and agronomic checks were evaluated in 2 by 4 meter harvested plots at 2 105 

locations (Cambridge, UK and Duxford, UK) in the 2015-16 growing season, and 2 locations 106 

(Hinxton, UK, and Duxford, UK) in the 2016-17 growing season. All locations were managed 107 

for optimal yield by following best agronomic practice. All F2:4 lines were evaluated in 4 plots. 108 

Seed for eleven of the populations was unavailable in the 2015-16 growing season. To 109 

accommodate these populations and keep the number of plots per line constant, an allocation 110 

of F2:4 lines was devised that was highly unbalanced across both years and locations as 111 

described below. 112 
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In the 2015-16 growing season, 33 of the 44 populations were planted at two locations 113 

(Table 1). The experimental design for both locations was a modified α-lattice design 114 

(Patterson and Williams, 1976). The design consisted of a traditional, replicated α-lattice 115 

design with un-replicated lines added to the sub-blocks. The replicated portion of the alpha-116 

lattice design was composed of the agronomic checks and half of the lines (34) from 22 of the 117 

F2:4 populations. These lines were planted in 2 blocks split into 151 sub-blocks each containing 118 

5 lines. The remaining F2:4 lines were randomly allocated to sub-blocks, bringing the total 119 

number of lines per sub-block to either 9 or 10. Half of the F2:4 lines used for the replicated 120 

portion of the design differed between locations. Thus lines from 22 of the F2:4 populations 121 

were evaluated in 3 plots split across both locations and the lines from the remaining 122 

populations were evaluated in 2 plots split across locations. 123 

All 44 populations were planted in the 2016-17 growing season at two locations (Table 124 

1); the experimental design was similar as in the previous season. The replicated portion of the 125 

α-lattice design was composed of the agronomic checks and the F2:4 lines from the 11 126 

populations not planted in the 2015-16 growing season. These lines were planted in 2 blocks 127 

split into 156 sub-blocks each containing 5 lines. Additional F2:4 lines from the other 128 

populations were randomly allocated to sub-blocks, bring the total number of lines per sub-129 

block to 10.  130 

 131 

Yield Trial Analysis 132 

Yield phenotypes were spatially adjusted for each trial separately. An AR1 x AR1 model 133 

(Gilmour et al., 1997) was used to adjust spatial variation across both columns and rows as 134 

implemented in ASREML 3.0.22 (Gilmour et al., 2009). A summary of line means after 135 

adjusting for spatial effects is shown in Table 2. 136 

Best linear unbiased estimates (BLUEs) for each line were estimated collectively across all 137 

trials by fitting the following model: 138 
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 ! = #$ + & + ', (2) 139 

where ! was the response vector of spatially adjusted yield values, $ site-specific means with 140 

design matrix #, & line BLUEs to estimate, and ' the model residual.  141 

Genomic prediction 142 

This study used the genomic best linear unbiased prediction (GBLUP) model to estimate 143 

heritabilities and predict line effects. The GBLUP model used was: 144 

 ! = µ + ) + ',  (1) 145 

where ! was the response vector of yield BLUEs, µ the model intercept, ) the vector of genetic 146 

values of genotyped F2:4 and '  the model residual. We assumed that )	~	N-0,0σ234  with 147 

genomic relationship matrix calculated as 0 = 556/2∑p;(1 − p;) (VanRaden, 2008) from the 148 

centred genotype matrix 5 and allele frequencies p;  estimated in the dataset. Further, we 149 

assumed that '	~	N(0, @σA3), which was assumed uncorrelated to ). 150 

The Average-Information Restricted Maximum Likelihood (AI-REML) algorithm 151 

(Madsen et al., 1994; Johnson and Thompson, 1995), as implemented in DMU v. 5.1 (Madsen 152 

and Jensen, 2000), was used to fit the GBLUP model to a subset of the data (training set) and 153 

predict line effects ()B) in the validation set. We defined convergence of the AI-REML algorithm 154 

based on the change of variance components, CD(EFG) − D(E)C < 10IJ, where D(E) is the vector of 155 

normalised variance components estimated at step K	(Jensen et al., 1997).  156 

The heritability was calculated from the trial yield data per plot as L3 = MNO

MN
OF

P
Q

  in which n 157 

is the number of locations in which the genotype was observed  and v is the residual variance 158 

(Piepho and Mohring, 2007). 159 

Prediction accuracies 160 

We applied several cross-validation strategies for investigating prediction accuracies of 161 

genomic selection with varying training set size and grouping of training sets and validation 162 

sets, as described in detail in the following sections. In all strategies, the GBLUP model was 163 
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used as described above. The prediction accuracies were calculated as the Pearson correlation 164 

(ρ) between the yield BLUEs and its prediction from the GBLUP model. 165 

Cross-validation prediction accuracy 166 

In the first approach, we used 10-fold cross-validation and leave-one-cross-out cross-167 

validation (effectively 44-fold cross-validation; refer to Figure 1). Populations were randomly 168 

assigned to either training or validation set, without considering that some crosses are more 169 

closely related due to sharing a parent or other ancestors. The validation sets were entire 170 

populations, which means that line means of a population was confined entirely to either 171 

training set or validation set. Prediction accuracies were summarised on a per cross basis and 172 

encapsulate the within cross genomic prediction accuracy (sometimes referred to as the within 173 

family accuracy or the accuracy of predicting the Mendelian sampling term). For the 10-fold 174 

cross-validation, 10 replicates were performed where the 10 folds were re-sampled.  175 

To evaluate the effect of training set size, the two cross-validation methods described 176 

above were repeated using a subset of the total training set. For the 10-fold cross-validation, 177 

10%, 20%, …, 80%, 90% of records were randomly removed from the training set, before 178 

estimating variance components and predicting line means of the validation set. For each 179 

replicate and the proportion of training set masked, 10 repetitions were performed and the 180 

resulting prediction accuracies encapsulate the joint across and within cross genomic 181 

prediction accuracy. For the leave-one-cross-out cross-validation, 1 – 10, 15, 20, 30, 40 crosses 182 

were randomly sampled to be used as training set. For each number of crosses sampled as 183 

training sets, 10, 20, …, 60, 65 records from each cross was sampled. Again, 10 repetitions 184 

were performed. We emphasise that the validation sets were always entire populations (from 185 

3-4  crosses in 10-fold cross-validations, from single cross in leave-one-cross-out) and no 186 

records of the validated populations were included in the training set. 187 

Prediction accuracy with related or unrelated crosses 188 

In the second approach, we evaluated the prediction accuracies under different levels of 189 

relatedness between validation and training sets. The 6 crosses of the 4 most frequently used 190 
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parents were targeted as validation crosses and tested separately. In summary, the training 191 

sets consisted of varying proportions of sister-lines and half-sibs from offspring of either one 192 

or both parents or unrelated crosses. Specifically, for each validation cross, training sets were 193 

designed to consist of either one or several crosses of one parent, an equal number of crosses 194 

from each parent, nominally unrelated crosses, or equal number of related and unrelated 195 

crosses. To reduce computation time, for each training set of crosses, 5 combinations were 196 

sampled from the large number of possible combinations. For each training set, the validation 197 

cross contributed with 0, 1, 2, or 3 quarters of its lines. The prediction accuracies were 198 

evaluated for the fourth quarter of lines that were not used in the training set. For each 199 

combination of training set, 10 replicates were performed as well as cycling through all four 200 

quarters of the validation cross as training set. 201 
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Results 202 

44 bi- and tri-parental crosses from 27 parents were analysed for yield with a GBLUP model 203 

(1), using BLUEs from 4 trials (2 trials in 2016, and 2 trials in 2017). 204 

Trait heritability 205 

The overall heritability of yield for all populations over all four trial locations was estimated at 206 

0.65.  Heritabilities estimated on single crosses were highly variable, ranging from as low as 207 

0.1 to as high as 0.85 (Figure 2).  208 

Cross-validation prediction accuracy 209 

Within cross prediction accuracies were 0.125 – 0.127 using two different cross-validation 210 

approaches (Table 3). In these two approaches, all lines of the crosses used for validation were 211 

absent from the training set. Using a 10-fold cross-validation approach where individual lines, 212 

not all lines of a cross, were selected for validation sets, the prediction accuracy was slightly 213 

higher (0.142) when calculated on a per-cross basis (’10-fold, random’, Table ). Lastly, the 214 

prediction accuracy was higher when calculated across all crosses in the validation set, due to 215 

capturing variation within and between crosses (0.289 and 0.543, Table 3). 216 

The prediction accuracy was found to increase with training set size. Figure 3 displays 217 

the average prediction accuracy across all crosses with 10th and 90th percentile range shown as 218 

the greyed area. The prediction accuracy varied greatly between the crosses (Supplemental 219 

figure 1) with some accuracies as high as 0.45 (cross 7), as low as -0.20 (cross 30). For 31 220 

crosses out of 44, significant positive prediction accuracies were found (Wald’s test,  p<0.05). 221 

Crosses with higher phenotypic variance generally yielded higher predictions; in 222 

Supplemental figure 1, prediction accuracy plots for individual crosses are sorted with 223 

decreasing phenotypic variance. Finally, the two cross-validation approaches generally 224 

produced similar results (Supplemental figure 1), but when the training sets were small, the 225 

accuracy of predictions from leave-one-cross-out were less stable than from 10-fold cross 226 
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validation. The leave-one-cross-out sampled entire crosses in contrast to the 10-fold cross-227 

validation, where lines across all crosses except the validated cross were sampled. 228 

The prediction accuracy increased with an increasing number of crosses in training set 229 

or increasing number of lines per cross in training set. Figure  displays the average prediction 230 

accuracy when sampling a number of lines from a number of crosses (x-axis). Adding an 231 

additional 10 or 15 lines to a training set of 50 lines per cross generally led to a low increase in 232 

prediction accuracy as compared to adding them to training sets of ≤ 40 lines per cross, 233 

irrespective of the number of crosses included in the training set. 234 

Prediction accuracies with related or unrelated crosses 235 

Using related crosses as a training set generally resulted in higher prediction accuracies 236 

compared to using unrelated crosses. This is shown in Figure 5, where the green lines (related 237 

training sets) are above the purple lines (unrelated training sets). Using both related and 238 

unrelated crosses in equal proportions (blue lines, Figure 5) led generally to similar 239 

correlations to those for related crosses. At approximately 7oo to 800 lines in the training set, 240 

the prediction accuracy using both related and unrelated crosses plateaued; this was where 241 

additional crosses in the training set were unrelated to the validation cross. The level of 242 

prediction accuracy of the training set comprising both related and unrelated crosses (lower 243 

blue line, Figure ) was higher than that in Figure because results in Figure are averages over 244 

just 6 crosses rather than over all crosses as in Figure 3. 245 

Using only 1, 2, or 3 quarters of the validation cross as training set (grey, horizontal lines, 246 

Figure 5) generally led to prediction accuracies that were higher than using a few unrelated or 247 

related crosses as the training set. Adding three quarters of the validation cross to the training 248 

sets of other crosses generally increased the prediction accuracy, as shown with the upper thick 249 

lines in Figure . The gradual increase in prediction accuracy when adding 1, 2, or 3 quarters of 250 

the validation cross to the training set is shown in the inserted plot in Figure 5. 251 
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Discussion 252 

In this study, we have demonstrated the impact of training set size and relatedness on 253 

genomic prediction in wheat, using F2:4 lines from 44 bi- and tri-parental crosses. The results 254 

were consistent with expectations from existing literature (as discussed in the next sections). 255 

Specifically, we found that increasing the size of the genomic prediction training set increased 256 

accuracy. We also found that training sets composed of lines more closely related to the 257 

validation set produce higher prediction accuracies than equivalently sized training sets of 258 

more distantly related lines. 259 

It is important for genomic prediction of a complex trait that it displays a reasonable 260 

heritability. Our estimate of broad sense heritability for yield (0.65) is well within range of 261 

similar studies in wheat (Poland et al., 2012; Combs and Bernardo, 2013; Michel et al., 2016; 262 

Schopp et al., 2017; Norman et al., 2017). We note that the heritability values within individual 263 

families (Figure ) cover the whole range of heritability for this trait reported in the literature.  264 

The various strategies of data subset masking applied in this study has enabled us to 265 

demonstrate both training set size and relatedness as parameters that influence successful 266 

genomic prediction. Generally, increasing the training set size increased the prediction 267 

accuracy, as expected from existing theory  (Daetwyler et al, 2008, Goddard, 2009, Hickey et 268 

al., 2014) and field reports (Liu et al., 2016; Zhang et al., 2017). However, we can add three 269 

observations that put some nuance to this general conclusion. First (1), with a fixed training 270 

set size, it is better to increase the number of populations (crosses) rather than number of lines 271 

per population (cross). Second (2), the prediction accuracy plateaus when adding additional 272 

crosses that are unrelated to the predicted cross (Figure ). Third (3), prediction accuracies vary 273 

greatly between individual crosses and this could not be explained by neither the crosses’ 274 

phenotypic variance nor heritability. 275 

For item 1), we showed that, for example, using 10 crosses with 40 lines per cross gave 276 

prediction accuracy of ≈ 0.06, while 40 crosses with 10 lines per cross gave prediction accuracy 277 

of ≈ 0.075 (Figure ). We assume that in both strategies different processes increase the 278 
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accuracy with the addition of extra lines: In the first case, entire crosses were masked 279 

simulating the future prediction of an unphenotyped cross. In comparison, increasing the 280 

number of lines instead of number of crosses (while constraining the training set size) did not 281 

necessarily improve the prediction accuracy. The lines capture the crosses’ variance, and there 282 

will be a limit to how much more variance that additional lines will capture, hence no 283 

additional gain. The exception to this was adding fractions of the validation cross’ lines to the 284 

training set (Figure ).  285 

For item 2), we saw in Figure  that using training sets comprised of exclusively unrelated 286 

crosses resulted in lower prediction accuracies than training sets that included related crosses. 287 

Using training sets comprised of either exclusively related crosses or related and unrelated 288 

crosses (half-and-half) both resulted in approximately the same prediction accuracy. The 289 

comparison between these three sets stops at about 800 lines in the training set, because 290 

beyond this point, additional crosses were no longer distinctively related or unrelated. 291 

Therefore, after this point the slope of increase in prediction accuracy is less steep, as the 292 

crosses added to the training set are less related. 293 

For item 3), there was no observable connection between how well the cross could be 294 

predicted and the cross’ heritability or the observed phenotypic variance. Likewise, these 295 

values did not correspond to how well the data from the cross could be used to predict breeding 296 

values in other crosses. 297 

 298 

One of the major practical implications of this study is that increased prediction 299 

accuracies can be obtained by balancing the training set for genomic selection with phenotypic 300 

and genomic data of multiple related crosses, which could be taken into account in advance 301 

when designing the training population, as previously proposed by Rincent et al., 2012. For 302 

existing data sets, a strategy may be applied of supplementing these with phenotypic data from 303 

previous trials (provided genotype-by-environment interaction is limited or can be accounted 304 

for by use of trait data for control lines). Although such data might be present within the 305 
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context of a rolling breeding program, obtaining genomic data presents a bottleneck as this 306 

requires genotyping of (old) biological material that might not be readily available, and will 307 

require investment in at least low-density genotyping. In case high density genotype data sets 308 

are available for the parental lines, high density genotype information for their offspring 309 

populations can subsequently be obtained by imputation, as reported by Hickey et al. (2015),  310 

Gorjanc et al. (2017) and others.  311 
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Conclusions  312 

Genomic predictions of yield across 44 populations resulted in modest correlations between 313 

observed and predicted values. The correlations did increase with training set size, but by 314 

selecting training sets that comprised related crosses improved the correlation more than 315 

increasing training set size. The results also showed that if the training set size is fixed, using 316 

few lines from more crosses, rather than many lines from few crosses, resulted in higher 317 

correlations. 318 
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Figures 460 

Table 1: Trial design summary showing number of plots per tested line per location  461 

 

# Lines 

2015/2016 

Cambridge 

 

Duxford 

2016/2017 

Duxford 

 

Hinxton 
367 2 1 1 0 
381 2 1 0 1 
381 1 2 1 0 
367 1 2 0 1 
748 1 1 1 1 
748 0 0 2 2 
Total plots 2992 2992 2992 2992 

 462 

Table 2: Summary of line means per location after adjusting for spatial effects. 463 

  No. lines Avg. value Coef. Variation Correlation† 
2016 Cambridge 2,247 8.58 6.1% 0.63 
2016 Duxford 2,248 10.82 6.3% 0.81 
2017 Hinxton 2,249 4.64 10.3% 0.71 
2017 Duxford 2,235 8.24 6.6% 0.62 

†: Correlation between moisture corrected yield values and spatially adjusted values. 464 

Table 3: Prediction accuracies using the largest training sets by cross-validation 465 

approach. 466 

 Correlation 
metric 

Training set size Correlation† 

Leave-one-cross-
out 

By cross 2,787 0.127 0.222 

10-fold, crosses  By cross 2,563 0.125 0.193 
10-fold, random‡ By cross 2,567 0.142 0.195 
10-fold, crosses  Across all ‽ 2,567 0.289 0.259 

10-fold, random ‡ Across all ‽ 2,567 0.543 0.009 

†: Average across all replicates. Small font displays inter-quantile range for correlations. 467 

‡: 10-fold cross-validation where validation and training sets were grouped by lines instead of crosses. 468 

‽: Correlations were calculated across multiple crosses in validation set. 469 

  470 
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Figure 1: Resampling strategies applied to assess the impact of training set design. Leave-471 

one-cross out strategy (left) tests the impact of inclusion of the amount of crosses as well as 472 

training set size, while the ten-fold cross validation (right) tests training set size only. 473 

 474 
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  475 

Figure 2: Yield heritabilities when estimated per cross. Crosses (blue bars) are ordered by 476 

heritability value, overall heritability for this trait is shown in red. 477 
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 478 

Figure 3: Increasing training set size increased prediction accuracy (correlation). Solid 479 

line shows average of all leave-one-cross-out cross-validations with 10th and 90th percentile range shown 480 

by greyed area. 481 

 482 

 483 

Figure 4: Prediction accuracies increased with the increasing number of crosses or the 484 

increasing number of lines per cross in training set. Right-hand numbers show number of lines 485 

per cross in training set. 486 
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Figure 5: Prediction accuracies increased when the validation cross was partly in training set or had its related crosses in training set. 489 

Results show average prediction accuracies for 6 validation crosses. Lines show prediction accuracies when training set comprised of related crosses (green solid 490 

line), unrelated crosses (purple dashed line), or a mix of both (blue dotted line). Lower set of lines show prediction accuracies when validation crosses were not 491 

included on the training set; upper set of lines show prediction accuracies when validation crosses were included in the training set with 3/4 of lines. Grey 492 

horizontal lines show average prediction accuracy using only 1/4, 2/4, or 3/4 of validation cross as training set. Inserted figure shows the increase in accuracy 493 

when adding 1/4, 2/4, and 3/4 of the validation group to the training set. The thick lines in the inserted figure denote the lines of the main figure. 494 
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Supplemental figure 1: Per-cross correlation under two approaches (A), ordered by 497 

decreasing variance of crosses’ BLUEs (B). Grey, horizontal lines are guides for zero correlation 498 

(dashed) and overall average correlation of 0.127 (solid). Crosses in A) are ordered with decreasing 499 

variance of their BLUEs, same order as in B). 500 
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