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Abstract  52 

Sensitivity to external demands is essential for adaptation to dynamic environments, but comes at 53 

the cost of increased risk of adverse outcomes when facing poor environmental conditions. Here, 54 

we apply a novel methodology to perform genome-wide association analysis of mean and 55 

variance in nine key brain features (accumbens, amygdala, caudate, hippocampus, pallidum, 56 

putamen, thalamus, intracranial volume and cortical thickness), integrating genetic and 57 

neuroanatomical data from a large lifespan sample (n=25,575 individuals; 8 to 89 years, mean 58 

age 51.9 years). We identify genetic loci associated with phenotypic variability in cortical 59 

thickness, thalamus, pallidum, and intracranial volumes. The variance-controlling loci included 60 

genes with a documented role in brain and mental health and were not associated with the mean 61 

anatomical volumes. This proof-of-principle of the hypothesis of a genetic regulation of brain 62 

volume variability contributes to establishing the genetic basis of phenotypic variance (i.e., 63 

heritability), allows identifying different degrees of brain robustness across individuals, and 64 

opens new research avenues in the search for mechanisms controlling brain and mental health.  65 
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Introduction  66 

Phenotypic variability is key in evolution, and partly reflects inter-individual differences in 67 

sensitivity to the environment 1. Genetic studies of human neuroanatomy have identified shifts in 68 

mean phenotype distributions (e.g., mean brain volumes) between groups of individuals with 69 

different genotypes 2, and have documented genetic overlaps with common brain and mental 70 

disorders 3. Despite the evolutionary relevance of phenotypic dispersion evidenced in multiple 71 

species and traits 1, 4, the genetic architecture of variability in human brain morphology is 72 

elusive.  73 

 Phenotypic variance across genotypes can be interpreted in relation to robustness, i.e., the 74 

persistence of a system under perturbations 1, 4 and evolvability, the capacity for adaptive 75 

evolution 5. High phenotypic robustness is indicated by low variation in face of perturbations, i.e. 76 

phenotypes are strongly determined by a given genotype. In contrast, lack of robustness 77 

corresponds to high sensitivity, yielding phenotypes with overall larger deviations from the 78 

population mean in response to environmental, genetic or stochastic developmental factors. 79 

Neither increased or decreased robustness confers evolutionary advantages per se 1, and their 80 

consequences for adaptation need to be understood in view of the genotype-environment 81 

congruence. Reduced robustness (and thus increased variability of trait expression) can be a 82 

conducive to adaptive change 5, and increased variability of phenotypic expression can in itself 83 

also be favored by natural selection in fluctuating environments 6. Thus, recognizing genetic 84 

markers of sensitivity can aid in identifying individuals who are more susceptible to show 85 

negative outcomes when exposed to adverse factors –either genetic or environmental– and 86 

otherwise optimal outcomes in the presence of favorable factors. Such variance-controlling 87 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 19, 2019. ; https://doi.org/10.1101/443549doi: bioRxiv preprint 

https://doi.org/10.1101/443549


 6

genotypes may be conceived as genomic hotspots for gene-environment and/or gene-gene 88 

interactions, with high relevance for future genetic epidemiology studies 7.  89 

 To provide a proof-of-principle of the hypothesis of a genetic regulation of brain volume 90 

variability, we conducted a genome-wide association study of intragenotypic variability in seven 91 

key subcortical regions and intracranial volume (ICV) using a harmonized genotype and imaging 92 

data analysis protocol in a lifespan sample (n=25,575 individuals; 8 to 89 years, mean age 51.9 93 

years; 48% male, Methods and Supplementary Information).   94 
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Materials and Methods  95 

Participants  96 

Data from 25,575 unrelated European-ancestry individuals were included (mean age 51.9 years, 97 

ranging from 8 to 89 years old; 48% male), recruited through 16 independent cohorts with 98 

available genome-wide genotyping and T1-weighted structural MRI. Extended information on 99 

each cohort reported in Supplementary Information includes recruitment center, genotyping and 100 

brain imaging data collection, sample-specific demographics, distribution of brain volumes and, 101 

when relevant, diagnoses (795 individuals had a diagnosis). Written informed consent was 102 

provided by the participants at each recruitment center, and the protocols were approved by the 103 

corresponding Institutional Review Boards.  104 

 105 

Genotypes  106 

Only participants with European ancestry (as determined by multidimensional scaling) were 107 

included in the final set of analyses, in recognition that the inclusion of subjects from other 108 

ethnicities can potentially add genetic and phenotypic confounding. Except for the UK Biobank 109 

cohort, all directly genotyped data were imputed in-house using standard methods with the 1000 110 

Genomes European reference panel. After imputation, each genotyping batch underwent a 111 

quality control stage (MAF < 0.01; Hardy-Weinberg equilibrium p < 10-6; INFO score < 0.8). 112 

When all samples were combined, over 5 million distinct markers passed quality control 113 

genome-wide. Additional filters on genotyping frequencies were applied to the final merged 114 

dataset based on statistical considerations for genotype frequency in variance-controlling 115 

detection, as described below. Genetic data analysis was conducted using PLINK 8, with R 9 116 

plugin functions when appropriate (https://www.cog-genomics.org/plink/1.9/rserve).  117 
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 118 

Brain features  119 

Three-dimensional T1-weighted brain scans were processed using FreeSurfer 10 (v5.3.0; 120 

http://surfer.nmr.mgh.harvard.edu). Mean cortical thickness and eight well-studied volumetric 121 

features were selected for analysis moving forward, as literature findings on large datasets show 122 

that their mean population value is influenced by common genetic variation 2: accumbens, 123 

amygdala, caudate, hippocampus, pallidum, putamen, thalamus and ICV. Cohort-wise 124 

distribution of values is summarized in Supplementary Information. Before the ensuing statistical 125 

analyses, outliers (+-3 standard deviations from the mean) were removed, and generalized 126 

additive models (GAM) were implemented in R (https://www.r-project.org) to regress out the 127 

effects of scanning site, sex, age, diagnosis and ICV (for subcortical volumes only). Hereafter, 128 

brain volumes correspond to residuals from those GAM fits unless otherwise specified.  129 

 130 

Statistical analyses  131 

Genome-wide association statistics were computed for genetic effects on the mean and variance 132 

of the volumetric feature distributions. For each marker, the distribution of each outcome 133 

phenotype was normalized via rank-based inverse normal transformation (INT) to prevent 134 

statistical artifacts. Scale transformations like INT have been shown to aid genetic discovery by 135 

constraining mean-effects and reducing the effect of phenotypic outliers, which reduces Type I 136 

error rates without sacrificing power 11, 12. In short, INT was applied to transform each subject’s 137 

phenotype (��) as  138 

INT���� � ��� 	rank���� � 0.5
� � 
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where rank���� is the rank within the distribution, � stands for sample size (without missing 139 

values) and ��� denotes the standard normal quantile function. Intuitively, all phenotype values 140 

are ranked and the ranks are mapped to percentiles of a normal distribution. Then, an additive 141 

genetic model was computed with  142 

INT��� � β� � β�sample � β��� � β��� � β��� � β��� � β	SNP � � 

where INT��� is the normalized phenotype variable; SNP is the relevant marker coded additively 143 

and � stands for regression residuals. Four genomic principal components (��-��) were included, 144 

to control for population stratification and cryptic relatedness, and to make the results 145 

consistent/comparable with a previous large-scale analysis of genetic variation and brain 146 

volumes 2. Results from that analysis (mean-model) were contrasted with the statistics from the 147 

variance-model. The previous residuals � were again inverse normal transformed, and used as 148 

input for the variance-model using the Brown–Forsythe test. Briefly, INT-transformed residuals 149 

were used to compute ��
 �  ��
 � �
̃ , with �
̃  as the median of group " (here, genotype) and 150 

these, in turn, to compute the # statistic:  151 

# � $���
���

% ∑ �����·����··�
��

���

∑ ∑ ��������·��
���

���

�

���

, 152 

where �
  is the number of observations in group ", & is the number of groups (2 or 3 different 153 

genotypes), and �'·
 denotes the mean in group ". To prevent increases in false positive rates 154 

arising from small groups 13, only markers with at minimum (non-zero) genotype count of at 155 

least 100 were included. This value was chosen based on literature about power and statistical 156 

considerations of genome-wide association studies for phenotypic variability 13. The data were 157 

analyzed and visualized in R with the aid of appropriate packages. When relevant, significant 158 

markers were annotated and additionally inspected using FUMA 14.   159 
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Results  160 

Genome-wide association statistics were computed for genetic effects on the variance and mean 161 

of the volumetric feature distributions. Consistent with previous large-scale analyses on genetics 162 

of neuroimaging volumetric measures 2, 15, features included bilateral (sum of left and right) 163 

amygdala, caudate nucleus, hippocampus, nucleus accumbens, pallidum, putamen and thalamus, 164 

as well as ICV and mean cortical thickness. 96.9% of the included participants were healthy 165 

controls (n=24,780); the remaining 3.1% were diagnosed with a brain disorder (n=795; including 166 

psychosis, depression, and attention deficit hyperactivity disorder, Supplementary Information). 167 

The analyses were conducted in a two-stage protocol. For each genotype, we conducted a 168 

standard association test for the inverse-normal transformed (INT) brain volumes 11, adjusting 169 

for scanning site, sex, age, age squared, diagnosis, and ICV (for the subcortical volumes only). 170 

Residuals from that model were then INT-transformed and submitted to genome-wide Levene’s 171 

tests to investigate if specific alleles associate with elevated or reduced levels of phenotypic 172 

variability. For relevant markers, variances explained by mean and variance models were 173 

estimated from the INT-transformed volumes before fitting regression models using a previously 174 

reported approach 7.  175 

A mega-analysis of 25,575 unrelated subjects of European ancestry identified candidate 176 

loci associated with differential levels of phenotypic variability overall on four out of the nine 177 

volumetric features (pallidum, mean thickness, ICV and thalamus), including two at genome-178 

wide significance (p<5×10-8), and two with marginal significance (p<7 x 10-8) (Figure 1). 179 

Genomic inflation factors (lambda) ranged between 1.009 and 1.049 for the nine different 180 

variance-GWAS (Supplementary Information). A conventional mean phenotype GWAS with 181 

additive model on the same set of variants, with INT-transformed phenotypes, showed 56 182 
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significant loci influencing four volumetric traits after adjustment for genomic inflation 183 

(accumbens [2], amygdala [4], caudate [9], hippocampus [10], pallidum [5], putamen [6], 184 

thalamus [2], ICV [10] and mean cortical thickness [8]) (Supplementary Information). 185 

Manhattan plots for both mean- and variance-GWAS are displayed as Supplementary 186 

Information.  187 

 188 

[Insert Figure 1] 189 

 190 

In the variance analysis, the top loci included an intergenic region on 21q21.1 around 191 

rs59515793 associated with pallidum volume variance (chr21:21977114:G:A; minor allele 192 

frequency (MAF)=0.42 ; 393518 bp from NCAM2.6; p=2.4×10-11; variance explained variance 193 

model: 0.405%; variance explained mean model: 0.0005%), and a locus in chromosome 20 194 

between SNAP25, PAK7 and ANKEF1 associated with mean cortical thickness variability 195 

(rs6039642; chr20:9940475:G:A; MAF=0.17; p=2.1×10-8; variance explained variance model: 196 

0.259%; variance explained mean model: 0.005%). In addition, two loci showed borderline 197 

significance associations with variance in neuroanatomical phenotypes: thalamus variability was 198 

related to genotypes on an intergenic locus near LINC00347 (rs9543733; chr13: 75211673:C:T; 199 

MAF=0.34; p=6.4×10-8; variance explained mean model: 0.002%; variance explained variance 200 

model: 0.055%), whereas a region around rs10812921 on LINGO2 was associated with ICV 201 

variability (chr9:28995582:C:A; MAF=0.4; p=5.5×10-8; variance explained variance model: 202 

0.07%; variance explained mean model: 0.006%). Results were consistent when re-analyzing the 203 

data from healthy controls only (excluding participants with neuropsychiatric diagnoses): 204 

p=3.4×10-11 (rs59515793-pallidum), p=2.2×10-8 (rs6039642-cortical thickness), p=3.9×10-8 205 
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(rs9543733-thalamus) and p=1.4×10-7 (rs10812921-ICV). Figure 2 shows the relevant phenotype 206 

distributions for the top hits for the two models grouped by genotypes generated via the shift 207 

function 16. In short, the adopted shift function procedure was implemented in three stages: 208 

deciles of two phenotype distributions were calculated using the Harrell-Davis quantile 209 

estimator, followed by the computation of 95% confidence intervals of decile differences with 210 

bootstrap estimation of deciles’ standard error, and multiple comparison control so that the type I 211 

error rate remained close to 5% across the nine confidence intervals. Decile-by-decile shift 212 

function analysis confirmed reduce pallidum volume variance among homozygotes for the major 213 

rs59515793 allele (GG) in relation to the other two genotypes (GA, AA). Similarly, major allele 214 

homozygous subjects for rs6039642 (GG genotype) showed lower cortical thickness variance 215 

than carriers of the minor allele A. The rs10812921 heterozygotes and major allele homozygotes 216 

(AA, AC) had lower ICV variance than the participants with CC genotypes, whereas TC 217 

heterozygotes displayed higher thalamus variance than rs9543733 homozygotes (TT, CC).  218 

 219 

[Insert Figure 2] 220 

  221 
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Discussion  222 

To our knowledge, this is the first evidence of genetic loci influencing variability of brain 223 

volumes beyond their mean value. A conceptually and methodologically similar approach 224 

revealed genetic control of the variance in body height and body mass index 12. Adding to the 225 

notion that phenotypic spread in a population is related to genetic variability, the current results 226 

show that the population variance of subcortical and intracranial volumes is partly under genetic 227 

control. Importantly, our findings on brain structure and the previous work on body mass index 228 

12 provide converging evidence supporting the notion that common genetic variants affecting the 229 

mean and the variance of a trait need not be correlated and may influence phenotypes through 230 

complementary mechanisms.  231 

 Most variants associated with volumetric dispersion where at loci that have previously 232 

been linked to neuropsychiatric traits. Pallidum variability was related to a genotype near the 233 

neural cell adhesion molecule 2 gene (NCAM2), which has a documented role in 234 

neurodevelopment and has associations with Alzheimer’s disease and other neuropsychiatric 235 

phenotypes 17-19. Similarly, the significant variance locus for cortical thickness on chromosome 236 

20 was located next to PAK7 - a gene conferring risk for psychosis and involved in oxytocin 237 

gene networks of the brain 20, 21 - and the synaptosome associated protein 25 gene (SNAP25) -238 

which participates in synaptic function and increases susceptibility for severe psychiatric 239 

conditions 22, 23. Moreover, the locus related to ICV variance was on LINGO2, which has been 240 

implicated in Parkinson disease and other psychiatric conditions 24-26.  241 

 Variance-controlling alleles can be interpreted as underlying distinct degrees of 242 

organismic robustness 1. Relevance to medical genetics also comes from the observation that 243 

several disease phenotypes emerge beyond a phenotypic threshold, which could be reached by 244 
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the influence of high variability phenotypes 27. It is thus important to understand how the 245 

identified markers relate to brain variability under changing environments (robustness), how they 246 

interact with other genetic loci (epistasis) and how they relate to the clinical manifestation of 247 

disease. Similarly, variance-controlling loci can underlie variability from other genetic factors, 248 

potentially affecting evolutionary dynamics 4. Identifying the mechanisms by which variance-249 

controlling genotypes influence gene expression variance in relevant brain structures may 250 

provide a proof of principle for the functional relevance of the identified genotypes. This type of 251 

effect on expression has been shown in model organisms 28, and the genomic loci identified here 252 

represent suitable candidates for targeted gene expression analysis in the human brain. The 253 

identification of specific genes involved in neural evolution and mental disorders suggests that 254 

brain variability in human populations is mediated by genetic factors. In so doing it also 255 

underscores the validity of gene-gene and gene-environment interactions in explaining 256 

heritability of complex human traits.  257 

 In summary, the results indicate that beyond associations with mean volumetric values, 258 

genotypic architecture modulates the variance of subcortical and intracranial dimensions across 259 

individuals. The lack of overlap between genetic associations detected by the standard additive 260 

genetic model and variance-controlling loci indicate independent mechanisms. These findings 261 

contribute to establish the genetic basis of phenotypic variance (i.e., heritability), allow 262 

identifying different degrees of brain robustness across individuals, and open new research 263 

avenues in the search for mechanisms controlling brain and mental health.   264 
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Figure 1. Common genetic variants regulate the distribution variance of human subcortical and intracranial volumes  
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Figure 2. Shift function plots for the top genome-wide significant associations in mean and variance model GWAS results  

The results corresponding to the top four mean models associations (conventional GWAS) are shown on the top rows (“A”, “B”), those 

corresponding to the top four variance model associations are displayed on the lower sections (“C”, “D”). A: Jittered marginal distribution 
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scatterplots for the top four mean model associations, with overlaid shift function plots using deciles. Genotypes with the minor (effect) allele are 

shown as a single group. 95% confidence intervals were computed using a percentile bootstrap estimation of the standard error of the difference 

between quantiles on 1000 bootstrap samples. B: Linked deciles from shift functions on row “A”. C: Jittered marginal distribution scatterplots for the 

top four variance model associations, grouped by reference allele(s) versus effect allele(s) carriers. 95% confidence intervals were computed as in 

“A”. D: Linked deciles from shift functions on row “C”. For the mean model associations (“A” and “B”), variances explained by mean and variance 

parts of the model were 0.535% and 0.0006% (hippocampus, rs77956314), 0.444% and 0.0028% (putamen, rs715732), 0.211% and 0.0005% (ICV, 

rs986696979) and 0.254% and 0.0001% (caudate, rs10909901).  
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