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Abstract

Fingerprinting of functional connectomes is an increasingly standard measure of reproducibility in

functional magnetic resonance imaging connectomics. In such studies, one attempts to match a sub-

ject’s first session image with their second, in a blinded fashion, in a group of subjects measured twice.

The number or percentage of correct matches is usually reported as a statistic. In this manuscript, we

investigate the statistical tests of matching based on exchangeability assumption in the fingerprint-

ing analysis. We show that a nearly universal Poisson(1) approximation applies for different matching

schemes. We theoretically investigate the permutation tests and explore the issue that the test is overly

sensitive to uninteresting directions in the alternative hypothesis, such as clustering due to familial

status or demographics. We perform a numerical study on two functional magnetic resonance imaging

(fMRI) resting state datasets, the Human Connectome Project (HCP) and the Baltimore Longitudinal

Study of Aging (BLSA). These datasets are instructive, as the HCP includes techinical replications of

long scans and includes monozygotic and dyzogotic twins as well as non-twin siblings. In contrast,

the BLSA study incorporates more typical length resting state scans in a longitudinal study. Finally, a

study of single regional connections is performed on the HCP data.

1 Introduction

Fingerprinting of functional connectomes is an increasingly standard measure of reproducibility in func-

tional magnetic resonance imaging connectomics. In such studies, one attempts to match a subject’s first

session image with their second, in a blinded fashion, in a group of twice measured subjects. The num-

ber or percentage of correct matches is reported as the statistic. In practice, often functional connectivity

profiles, correlation matrices from resting state functional magnetic resonance imaging (rs-fMRI) data,
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are matched. Under such settings, identification accuracies as high as 94% for the Human Connectome

Project (HCP) data or as high as 55% for data with more standard quality have been reported (Waller

et al., 2017; Finn et al., 2015; Van Essen et al., 2013). The moniker fingerprinting comes from the idea

of the fingerprint as a unique person-specific identifier.

Under the hypothesis of exchangeability of the labels, the number or percent of matches is then

analyzed relative to a reference permutation distribution to establish evidence of reproducibility, or lack

thereof. This area is bolstered by novel applications (Finn et al., 2015; Airan et al., 2016) and large

scale replication studies (Zuo et al., 2014; Van Essen et al., 2013) as well as general interest in fMRI

reproducibility (Choe et al., 2017; Poldrack and Poline, 2015; Choe et al., 2015; Landman et al., 2011;

Griffanti et al., 2016; Shou et al., 2013; Aron et al., 2006). This manuscript details a series of thoughts

on the statistical tests associated with matching experiments for the purposes of establishing evidence of

reproducibility and includes an analysis using the technique on benchmark datasets.

We summarize our main points as follows: a) the implied, but rarely stated, definition of the null

hypothesis for the permutation test is exchangeability of labels; b) this is a weak null which may result

in unintended high power for typical alternative hypotheses; c) the null distribution of the permutation

test, almost regardless of the permutation strategy, is well approximated by a Poisson(1); d) evidence

beyond the test result is desirable for assessing reproducibility; e) covariates can be associated with the

matching performance and require further investigation.

It is interesting to note the historic connections of fingerprinting within the field of statistics. None

other than statistical luminary Francis Galton was a seminal figure in rigorously establishing fingerprints

for identity verification (Stigler, 1995; Caplan, 1990). We do not further discuss connections with Gal-

ton’s work, or the century of work on forensic identity verification following, since our fMRI applications

only loosely correspond to identity verification as a goal. Instead, the primary concern is the use of

matching for establishing the strength of a metric. Nonetheless we continue to use the term “fingerprint-

ing” throughout, as it has been commonly used in the context of functional MRI to denote the ability of

imaging to identify a subject, which then implies inherent metric of reproducibility and uniqueness.
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2 Connectome fingerprinting mechanics

The most common form of matching tries to match one measurement, say the second, to the first. We

write our notation out generally, as our thoughts apply broadly beyond that of functional neuroimag-

ing. Let Wij be the data vector (image measurement) on session j = 1, 2 for subject i = 1, . . . , n. To

perform matching, one requires a distance or similarity metric, d(·, ·), such as a correlation or inverse

correlation over the elements of Wij. Most applications in fMRI do not demand that d formally satisfies

the mathematical requirements to be a distance metric, though it is usually symmetric in its arguments.

We assume smaller values imply greater similarity.

Let dij = d(wi1, wj2) be the distance between subject i on occasion 1 and subject j on occasion 2

given observation Wik = wik, i = 1, · · · , n, k = 1, 2. Let mi be the subject label of the best match for

subject i. Of course, the term “best” is in reference to a matching strategy and we will use mi generically

regardless of which strategy was used. As an example stategy, consider, mi = argminr dir. Under this

scheme, subjects on occasion 2 can be matched multiple times if they are the best match for more than

one subject. Because of this, we call this strategy matching with replacement (or MWR).

A matrix form is an often preferable method to represent the data. Let B be a matrix with a 1 in

position i, j if subject i on sampling occasion 1 is best matched with subject j on occasion 2. That is,

B = [bij]i,j where bij = I{mi = j} where I{a = j} is an indicator that returns 1 if a = j and 0 otherwise,

mi is the observed value of mi. It is interesting to note that matrices of these forms are exactly bootstrap

resampling matrices. Table 1 gives an example for n = 4. Recall that the first row, (0, 1, 0, 0), implies that

among the occasion 2 measurements, subject 2’s is the best match for the occasion 1 measurement of

subject 1. The second row, (0, 1, 0, 0), implies subject 2’s occasion 2 measurement is correctly matched

to the subject’s occasion 1 measurement. Thus, in this case, subject 2’s occasion 2 measurements are

matched twice, for both subject 1 and subject 2 on occasion 1. The standard statistic measurement

agreement is the number of correct matches (the trace of B, tr(B)). In our example, the statistic value

would be 3.

Alternatively, one could match without replacement (or MWOR). That is, find the best permutation

of subjects on the second occasion to match up with the first. As an example, let Γ be the collection of

3

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 15, 2018. ; https://doi.org/10.1101/443556doi: bioRxiv preprint 

https://doi.org/10.1101/443556
http://creativecommons.org/licenses/by-nc-nd/4.0/


Time 2
Time 1 1 2 3 4 Total

1 0 1 0 0 1
2 0 1 0 0 1
3 0 0 1 0 1
4 0 0 0 1 1

Total 0 2 1 1 4

Table 1: Example resampling matrix from matching with replacement. Here the statistic value is 3.

Time 2
Time 1 1 2 3 4 Total

1 0 1 0 0 1
2 1 0 0 0 1
3 0 0 1 0 1
4 0 0 0 1 1

Total 1 1 1 1 4

Table 2: Example resampling matrix from matching without replacement. Here the statistic value is 2.

n× 1 vectors of permutations of the integers 1, . . . , n. Then consider

M = (m1 . . .mn)′ = argminπ∈Γ

n∑
i=1

diπi .

The Hungarian algorithm allows that this optimization can be performed in polynomial time (Pentico,

2007). This is a harder optimization problem, because the optimization is conducted simultaneously and

not sequentially, as in the matching with replacement. It is possible to have a non-unique best match.

However, given the size and noise of neuroimaging, data the best match is usually unique for the best

permutation. If this result is put into a matrix with bij = I{mi = j}, then B is a permutation matrix (a

0,1 matrix with row and column totals all equal to one). Again, the relevant statistic is the trace. Table

2 shows an example with n = 4 that has statistic value equal to 2.

3 Inference

Permutation-based inference is the norm in this area. One typically repeatedly permutes the subject

labels at occasion 2 and re-performs the matching at each iteration to obtain a null distribution. Given

the dimension of the characteristics being matched on, it is typical for no ties to exist in the dij, so that

the best matches are all unique at each iteration.

This permutation test is motivated by an implicit exchangeability assumption. That is, the underlying
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null distribution of the statistic is the same for any permutation. Alternatively, the null hypotheses can

be developed under stronger iid sampling assumptions.

Despite the apparent simplicity of the permutation procedure, the implementation, hypothesis spec-

ification, and inferential interpretation is far from being straightfoward. One of our main results is to

show that under nearly all sampling strategies the null distribution of the test statistic is well approxi-

mated by a Poisson with a mean of one. The implication of this result is both simple and widespread:

the use of the permutation test is unnecessary, as the null hypothesis will be rejected under the same

conditions, when tr(B) is larger than 3 or 4, say, depending on the desired Type I error rate. Thus,

computation time and costs can be systematically reduced using this simple, slightly unexpected, but

powerful statistical result. Below we provide details on the implicit assumptions associated with the

permutation test and the interpretation given these results.

3.1 Exchangeability and the null hypothesis

A difficult task in permutation tests is strictly defining the null hypothesis under consideration. We focus

on exchangeability as perhaps the most general and useful form of the null hypothesis in this setting.

This hypothesis is defined as irrelevance of the labels in the form of an identical distribution being

obtained under permutations. We formalize the concepts below.

Recall that Wij is the l dimensional feature vector of subject i on occasion j where i = 1, · · · , n

and j = 1, 2. Denote W(j) as the l × n data matrix for occasion j = 1, 2 with columns W1j, · · · ,Wnj. Let

W = [W(1),W(2)] be the l×2n combined data matrix with columns W11,W21, · · · ,Wn1,W12,W22, · · · ,Wn2.

Let W = w be the observed data. Recall also, in matching with replacement, the best match for

subject i’s occasion 1 image is mi = argminr d(wi1, wr2). In matching without replacement, the best

match for subject i’s occasion 1 image is mi, where M = (m1, · · · ,mn)′ = argminπ∈Γ

∑n
i=1 diπi =

argminπ∈Γ

∑n
i=1 d(wi1, wπi2), Γ is the collection of permutation vectors of (1, · · · , n)′. In both scenarios,

the test statistic is defined as T (w) =
∑n

i=1 I{mi = i}, the number of correct matches.

The exchangeable null hypothesis, HE, is defined as the invariant distribution of test statistic when

permuting the labels of occasion 2 images. That is,

P{T (W ) = t} = P{T (WP ) = t}
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for all t ∈ {0, · · · , n}, P ∈ P, where P is the collection of n×n permutation matrices,WP = {W(1),W(2)P}

is the n× 2 data matrix obtained after permuting occasion 2 labels.

3.2 Exact permutation tests

Following Hoeffding (1952), under HE, the permutation test can be executed to have an exact α type I

error rate if a randomized test function is defined as:

φ(w) =


1, T (w) > T (k)(w)

a(w), T (w) = T (k)(w)

0, T (w) < T (k)(w)

.

Here, φ(w) is the probability of rejecting the null given observation W = w. The variables, T (k)(w), for

k = 1, . . . , n! is the ordered list of all permuted test statistics. The index k determines the closest quantile

less than or equal to α of the permuted test statistics level, i.e. k = n! − bn!αc where b·c is the floor

function. This is equivalently, the inverse, F̂−1(1 − α), of the distribution function of the permuted test

statistics:

F̂ (t) =
1

n!

∑
P∈P

I{T (wP ) ≤ t}.

A randomized test with exact level α occurs if one rejects HE when φ(w) is 1, i.e. the test statistic lies

strictly in the upper α area of the permutation distribution, fails to reject when φ(w) is 0, and rejects

with probability a(w) otherwise. In the latter case, a uniform random variable is simulated and the test

is rejected if it is less than a(w).

Hoeffding (1952) showed that a(w) defined as {n!α − M+(w)}/M0(w) yields an α level random-

ized test. Here, M+(w) and M0(w) are the counts of permuted statistics larger than or equal to T (k),

respectively. These are formally defined as: M+(w) = |{j ∈ {1, · · · , n!} : T (j)(w) > T (k)(w)}| and

M0(w) = |{j ∈ {1, · · · , n!} : T (j)(w) = T (k)(w)}| (see Appendix Section 1).

Since having an ancillary coin flip determine rejection is not desirable, the more conservative non-
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randomized test simply uses the non-randomized test function:

φ′(w) =


1, T (w) > T (k)(w)

0, T (w) ≤ T (k)(w)

.

This yields a test with a type I error rate guaranteed to be less than α, though cannot yield an exact α

level test, except in rare cases, such as when n!α is an integer.

Note that with the matrix representation we have T (w) = tr(B) as the total number of correct

matches and hence T (wP ) = tr(BP ) = tr(PB) is the total number of correct matches after permut-

ing occasion 2 labels according to some P ∈ P. Therefore an alternative expression for permutation

distribution function is:

F̂ (t) =
1

n!

∑
P∈P

I{tr(PB) ≤ t},

the CDF from the traces of all the row permutations of B.

Thus, the CDF arising from placing equal (discrete uniform) probability on all permutations is derived

equivalently from permuting either the occasion 1 or occasion 2 labels.

3.3 Poisson approximation

3.3.1 Matching without replacement

In matching without replacement, each occasion 1 image is matched to a distinct occasion 2 image. This

implies each column and row of B sums to 1, as B is a permutation matrix, since the vector of matches is

a permuted version of (1, · · · , n)′. In this case, permuting occasion 1 labels and then calculating tr(ΠB)

is equivalent to shuffling a batch of ordered cards and counting the number of cards still in its original

order, which follows Montmort’s matching distribution (Barton, 1958). Hence

P{tr(ΠB) = t} =
1

t!

n−t∑
j=0

(−1)j

j!
.

As n goes to infinity, for any fixed t, P{tr(ΠB) = t} → 1
t!

∑∞
j=0

(−1)j

j!
= e−1

t!
and tr(ΠB) converges to a

Poisson(1) distribution.

This is the distribution of correct matches under permutations, famously originally derived in a letter
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between Montmort and Nicolaus Bernoulli. This distribution and matching setting is often used in

probability courses to illustrate the law of total probability. It is interesting to note that the Poisson

approximation has an upper 95th percentile of 3, 99th percentile of 4 and 99.9th percentile of 5. Therefore,

relatively few matches need be made to reject this null hypothesis and that number is fairly static with n,

since convergence occurs quite quickly. The reason the p-value is robust to large changes in n is because

although the number of possible matches increases with n, the probability of a match decreases in a

balanced way.

3.3.2 Matching with replacement

Suppose we observed combined data matrix W = w and its representation matrix B in a matching with

replacement process. Each occasion 1 image will be matched to exactly one occasion 2 image whereas

some occasion 2 images may get matched multiple times and some occasion 2 images may not get

matched at all. In this case the sum of any row of B will still be 1 but column sums of B can vary.

Without loss of generality, suppose only the column sums of first k columns of B are nonzero. Denote

the column sums as c1, · · · , ck. Then
∑k

i=1 ci = n. For h ⊂ {1, · · · , k}, denote the size of h as |h|. By the

inclusion-exclusion formula we have (see Appendix Section 2)

P{T (ΠB) = t} =
∑

u∈{h⊂{1,··· ,k}:|h|=t}

k−t∑
s=0

(−1)s
∑

v∈{J⊂{1,··· ,k}\u:|J |=s}

(∏
i∈u

ci

)(∏
j∈v

cj

)
(n− t− s)!

n!
.

When k = n and c1 = · · · = cn = 1, the distribution coincides with the matching without replacement

distribution:

P{T (ΠB) = t} =

(
n

t

) n−t∑
s=0

(−1)s
(
n− t
s

)
(n− t− s)!

n!

=
n−t∑
s=0

(−1)s
1

s!t!
.

Via Stein-Chen’s method (see Appendix Section 3), the total variation between T (ΠB) and a Poisson(1)
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for matching with replacement is:

dTV {T (ΠB),Poisson(1)} =
1

n− 1
+

(n− 2)

n2(n− 1)

k∑
i=1

c2
i

≤ 1

n− 1
+
n− 2

n− 1

∑k
i=1 Cci
n2

=
1

n− 1
+
n− 2

n− 1

C

n
,

where C is the number of matches of the occasion 2 image with the most matches, that is, C =

maxi∈{1,··· ,k} ci. Thus the permutation distribution will be approximated by a Poisson(1) if C is small

and n is large. Specifically, C
n
→ 0 as n → ∞ is sufficient for the distribution of T (ΠB) to converge to a

Poisson(1).

3.4 Power of the Poisson test

Consider an exchangeability permutation test for matching with replacement of level 0.05 approximated

by a Poisson(1) distribution having test function:

φpoi(w) =


1, if T (w) > 3

0, otherwise
.

For i, j ∈ {1, · · · , n} let the random variables Bij = I{mi = j} , Bi = (Bi1, · · · ,Bin)t and matrix B =

(B1, · · · ,Bn) be unrealized version of B. Thus, for a realized observation, W = w we have B = B and

T (w) = tr(B). Assume Bij follows a Bernoulli distribution with mean pij. Then, for any sequence of

distributions {θn}∞n=1 the power of the test is:

lim
n→∞

Eθnφpoi(W ) = lim
n→∞

P{T (W ) > 3}

= lim
n→∞

P{tr(B) > 3}

= lim
n→∞

P

{
n∑
i=1

Bii > 3

}
.

Consider an alternative hypothesis, HA1, where for all θn we have that: (i) Bii (i = 1, · · · , n) are iid

with a Bernoulli distribution and a mean pn >
1
n

so that each subject will be more likely matched to
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themself than by chance, and (ii) λ =
∑n

i=1 pii = npn ∈ (1,∞). Then,

dTV

{
n∑
i=1

Bii,Poisson(λ)

}
≤ min(

1

λ
, 1)

n∑
i=1

p2
ii =

np2
n

npn
= pn,

where pn = λ/n→ 0. It follows that

lim
n→∞

Eθnφpoi(W ) = P (U > 3),

where U ∼ Poisson(λ).

Consider a more realistic alternative hypothesis, say HA2, where for all θn: (i) pii >
1
n

for all

i = 1, · · · , n, (ii) λ =
∑n

i=1 pii ∈ (1,∞) and (iii) |cor(Bii,Bjj)| are small enough so that
∑n

i=1 Bii
D−→

Poisson(λ). Such test will as well lead to a power of P (U > 3) where U ∼ Poisson(λ).

Figure 1 displays power, P (U > 3), against λ. Recall, λ/n can be interpreted as the average chance

of getting a correct match. The test has a power greater than 80% when λ is roughly larger than 6. It

also demonstrates a potential scenario of the test being under-powered, for example when subjects are

guaranteed to be matched to themselves with a probability as large as three times of that by chance (pii >

3
n
, λ > 3). The test would end up with a power under 0.4, no matter how many subjects are recruited.

However, unintended high power might occur if a higher λ is achieved due to the existence of twins,

family or covariate structures. This is potentially problematic, as then the measure of reproducibility

is highly sensitive to sample demographics and other factors that are generally not thought of as a

component of reproducibility.

3.5 Alternative justifications of the permutation test

Matching with replacement with common permutations represents the most popular form of permuta-

tion test for assessing reliability in fMRI. An often cited rationale behind this permutation scheme is to

address potential correlations between subjects. As an example, consider if there are twins in the study.

The null distribution still specifies that every second occasion match is equally likely, but that the twins

are more likely to match to the same image. That is, for some pairs of subjects, under the null

P (mi = k) = P (mj = l) =
1

n
but P (mi = k,mj = l) 6= 1

n2
.
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Figure 1: The power of the Poisson approximated permutation test with the alternative hypothesis HA2

(see Section 3.4) as λ changes.

This permutation strategy addresses this potential correlation by conditioning on observed matching

concordance. If any two subjects agree on a match, then will agree on all permutations and similarly

any two subjects that disagree.

However, note that such tolerance of inter-subject correlation could be limited depending on the

observed matches. For example, after permuting rows of the representation matrix, B, from a matching

with replacement procedure, we have the covariance of two distinct subjects both getting correct matches

to be:

cov(Ii, Ij) = P (Ii = 1)P (Ij = 1|Ii = 1)− P (Ii = 1)P (Ij = 1) =
ci
n

cj
n− 1

− cicj
n2

=
cicj

n2(n− 1)
,

where Ii denotes an indicator that subject i gets a correct match after permutation. Thus,

cor(Ii, Ij) =

cicj
n2(n−1)√

ci(n−ci)cj(n−cj)

n2

=

√
cicj

(n− 1)
√

(n− ci)(n− cj)
.

Therefore, a potentially small positive correlation is enforced by the permutation, no matter what the

actual correlation is.
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An alternative justification of this strategy lies in a conditioning argument. First, note that our per-

muted statistic satisfies: tr(PB) = tr(BP ). Therefore, the null distribution is the same regardless of

whether rows or columns are permuted. However, the row sums are all 1 and thus permuting the rows

results in selecting a random table with fixed row and column sums. This is the same distribution

obtained when considering generalizations of Fisher’s exact test of equality of the mulitinomial probabil-

ities across rows, though the statistic in that case is usually a Chi-squared statistic or deviance, whereas

we are simply considering the trace.

As is well known, this null distribution can be arrived at via conditioning on sufficient statistics.

Consider a null hypothesis where the rows of B are assumed to be independent multinomial(π, 1)

where π is an n× 1 vector of probabilities. If one conditions on the sufficient statistics for π, which is the

column sums (recall that the row sums are all 1), the resulting null distribution is then uniform on the

space of tables satisfying the margins. The uniformity arises over the central hypergeometric distribution

by virtue of all of the row margins being 1. This way of thinking is potentially useful for specification of

the hypothesis being testing using this permutation scheme.

4 Numerical experiments

4.1 Poisson approximation of the null distribution

We will now demonstrate numerically how the permutation distribution under the null hypothesis HE is

approximated by Poisson(1) in both matching without replacement and matching with replacement.

Consider n = 10, 25, 100, 500 samples each with measurements on visits j = 1, 2. The permutation

distribution Ftr(ΠB)(t) is decided by the column sums of the representation matrix B. For MWOR, such

column sums are all 1’s. For MWR, we simulated a matrix B for each sample size n following the

rule that each subject would get matched to all subjects with equal probabilities, in which case, C, the

number of maximum matches a subject could get would increase with a slow rate logn
log logn

{1 + o(1)} so

that C/n → 0 with probability 1 − o(1) (Raab and Steger, 1998). Both data generating distributions

satisfied the exchangeability assumption HE.

Within each iteration, we randomly permuted the columns of the simulated B matrices once and then

recorded the observed traces. The total number of iterations was 1,000. We plotted the simulated per-
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mutation distributions for sample sizes n = 10, 25, 100, 500 and for MWOR and MWR with a comparison

against the density of Poisson(1) distribution in Figure 2.

Figure 2: The simulated permutation distributions for MWOR and MWR after 1,000 iterations under the
null hypothesis HE with sample sizes n = 10, 25, 100, 500 compared with Poisson(1) distribution (see
Section 4.1). The permutation distributions are in red and the Poisson(1) distributions are in blue.

4.2 Poisson approximation on BLSA and HCP datasets

For the Baltimore Longitudinal Study of Aging (BLSA) dataset, 277 older participants (151 females, age

55 to 96) were included from the neuroimaging substudy of the BLSA (Resnick et al., 2000) who got

rs-fMRI scans on multiple visits. The first and last available images of each participant, 554 scans in total

were used in the dataset for matching. The time intervals between the first and last available images of

the subjects ranged from 310 days to 1, 799 days.

For the Human Connectome Project (HCP) dataset, 466 participants (273 females, age 22 to 36),

each with two separated resting state fMRI sessions on consecutive Day 1 and Day 2, were included

from the HCP (Van Essen et al., 2013) S500 release. Preprocessing was conducted following the minimal

preprocessing pipelines (Glasser et al., 2013). For each participant, the rs-fMRI scan with the left-to-right

phase encoding direction in each session was used so that we had 932 scans in total for matching.
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On both datasets, the atlas with 268 nodes partitioned into eight networks defined with the Shen’s

functional parcellation method on the independent health controls (Shen et al., 2013; Finn et al., 2015)

was applied to each rs-fMRI image. The feature vector Wij for subject i on the first (j = 1) or the

last (j = 2) visit was taken as the upper triangular of the Pearson correlation (z transformed) matrix

calculated for all the nodes using their time series during the corresponding scan. The distance, d(·, ·),

was defined as one minus the Pearson correlation between the two feature vectors.

Within each iteration, we took random subsamples with numbers of subjects n = 10, 25, 100, and all

subjects for both datasets. Matching with replacement was conducted. The test statistic was the number

of total matches or the trace of the representation matrix B. A permutation test and a Poisson test at level

0.05 then followed. For each of the eight scenarios (which are the combinations of the four subsample

sizes and the two datasets), 1,000 permutation p-values and 1,000 Poisson p-values were obtained after

1,000 iterations.

The Poisson and permutation tests agreed on rejection of the null in all but five iterations, all of

which were at size n = 10 from the BLSA dataset. When sample size n = 25, 100, or all subjects, reported

p-values and distances between the two types were less than 0.001 in all iterations (see Table 3).

Table 3: Illustrating the accuracy of the Poisson(1) approximations. Distribution of the distances be-
tween the Poisson and permutation p-values in Section 4.2 are given. Tests were conducted on random
subsamples with sizes n = 10, 25, 100, an all of the subjects from the BLSA or the HCP datasets. Matching
with replacement was conducted. The total number of iterations was 1,000 for all scenarios.

n = 10 n = 25 n = 100 full data
BLSA HCP BLSA HCP BLSA HCP BLSA HCP

[0,0.001) 899 995 1000 1000 1000 1000 1000 1000
[0.001,0.01) 91 5 0 0 0 0 0 0

[0.01,0.1) 10 0 0 0 0 0 0 0

4.3 Sensitivity to uninteresting directions of the alternative given existence of

clustering structures

In this section, it is demonstrated that the fingerprinting permutation test may produce undesired signif-

icance when clustering structures exist.

Consider a one dimensional measurement, Wij, with a categorical covariate, Yi, defined as follows

for subject i on visit j, i = 1, · · · , n = 300, j = 1, 2. The n subjects are partitioned by K clusters, each

with size n
K

. Let Yi = k if subject i belongs to the k-th cluster and Wij = Yi · 100 + rij where rij ’s are iid
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variables uniformly distributed on [−50, 50]. Therefore subjects are exchangeable within clusters with a

probability of matching to themselves as K
n

.

According to the power analysis for alternative hypothesis in the previous section, a permutation

test of level 0.05 with Poisson approximation on such data will lead to a power of P (U > 3) where

U ∼ Poisson(K).

We simulated the distribution of the statistic, the number of matches T , with B = 1,000 iterations

for K = 2, 4, 6, 10. Within each iteration, subjects were partitioned into K clusters, Wij, rij ’s were

then simulated and matching with replacement was conducted accordingly. We plotted the simulated

distribution of T for different clustering settings (Figure 3). One will observe that the test could reject

the null hypothesis HE with probabilities as high as 80% or 99% with as few as K = 6 or K = 10 clusters.

Figure 3: Simulated distributions of the numbers of matches (T ) with the clustering settings in Section
4.3. K = 2, 4, 6, 10 were the numbers of clusters. Matching with replacement was conducted. For a
Poisson test at level 0.05 it would reject the HE when T > 3, which was colored in red, otherwise in
blue. Powers of the Poisson tests calculated from Section 3.4 were also labeled for all scenarios.

However we argue that such high power is hardly desirable due to the fact that observations are

iid within clusters for all subjects and visits. This demonstrates that one might reject the null simply

because of the demographics of the sample or clustering factors not generally thought of as related to

reproducibility. In such settings, the fingerprint test can strongly reject the null, despite the fact that
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there contains nothing identifying in the measurement other than covariate information. To relate this

to a practical setting, an fMRI study with varying ages will be more likely to reject than the same measure

in a study with constant ages.

4.4 Matching on a contaminated HCP dataset

We will demonstrate the issue of being over-sensitive or over-powered by a matching example on the

HCP dataset where we deliberately contaminate different proportions of the scans on one occasion with

irrelevant scans from the BLSA dataset.

Recall our HCP dataset with 466 participants and 932 scans. Within each iteration, we took random

subsamples with numbers of subjects n = 25 or 100. Then we randomly chose 50%, 75%, 90%, 95%, or

100% (rounded to the closest integer) of the occasion 1 scans from the selected subsamples, where we

replaced them with scans randomly chosen (without replacement) from the 554 BLSA scans. Matching

with replacement was conducted. The permutation test and the Poisson test at level 0.05 then followed

for all 1,000 iterations.

According to the Bland-Altman plots (Bland and Altman, 1986, 1999) (Figure 4), the two types of

tests simultaneously rejected the null during 42.5% of the iterations with contamination ratio 90% when

n = 25, and did so during 88.2% of the iterations with contamination ratio 95% when n = 100. Thus,

one rejects the null hypothesis with high probabilities, even if over 90% of the scans on a visit are

contaminated with irrelevant data.

4.5 Matching for comparing connectome similarities between twins or non-twin

siblings

Our HCP dataset included 53 families with monozygotic (MZ) twins and other 24 families with dizygotic

(DZ) twins, all verified by genotyping. There were another 68 families with genotyping data available

that had at least two siblings but no twins (NotTwin), which added up to 157 non-twin siblings.

Within each iteration, from each of the three types of families above (MZ, DZ or NotTwin), we

randomly selected 20 families. Then from each of the selected families, we randomly chose an ordered

pair of twins (for families with MZ and DZ twins) or non-twin siblings (for families with no twins but at

least two siblings and with genotyping data available). We also randomly selected 20 ordered pairs of
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Figure 4: Bland-Altman plots for Poisson and permutation p-values in Section 4.4. Random subsamples
of sizes n = 25 or 100 were taken from the HCP dataset during each iteration. 50%, 75%, 90%, 95%,
or 100% (rounded to the closest integer) of the occasion 1 scans were replaced with randomly selected
BLSA scans. Matching with replacement was conducted. The total number of iterations was 1,000 for all
scenarios. Differences were plotted against the mean; 95% limits of agreement were plotted as dotted
lines; mean levels were plotted as solid lines; overlapping dots were sized according to the counts. Points
are color-coded as red if the two types of tests agreed on rejection of the null, otherwise as blue.

subjects from all the 466 participants (labeled Random).

For each selected ordered pairs, we took the measurement of the first experiment session for the

first subject and that of the second experiment session for the second subject. Then for each of the four

scenarios (MZ, DZ, NotTwin and Random), we had two groups of 20 measurements from totally distinct

subjects.

If different levels of similarities between siblings existed, then the distributions of the total number of

matches for siblings could diverge not only from that when siblings were no closer than random people

and the exchangeability assumption held, i.e. a Poisson(1) distribution, but between those of different

sibling types as well.

After 1,000 iterations the empirical distributions were plotted (Figure 5). An empirical distribution of

1,000 iid Poisson(1) samples was also plotted as comparison. It shows that the total number of matches
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followed a similar distribution for completely random samples and the Poisson(1) samples, with the

proportions of rejecting the null at level 5% in the Poisson tests being 1.1% and 1.4% respectively, which

coincided with the probability 1.9% of being greater than 3 for Poisson(1). We also observed similar

distributions for DZ twins and non-twin (NotTwin) siblings, with the proportions of rejecting the null

at level 5% being 54.1% and 54.2% respectively. For MZ samples the numbers of matches were greater

than 3 in all iterations. These results could also be seen as supportive evidence in terms of the brain

connectivity for the genetic assumption that MZ twins having greater similarity than DZ twins or non-

twin siblings, which were all closer than random pairings.

Such matching experiments between distinct subjects demonstrated how the fingerprint test when

specially designed can serve as a test for the existence of similarity among people with certain social or

genetic relations. According to the experiment results, the power of such a test could be relatively low

(around 50% for the level of similarity between DZ twins or non-twin siblings) or very high (close to

100% for the level of similarity between MZ twins) for brain connectivity measurements depending on

the (usually unspecified) alternative hypothesis. The empirical distributions of the test statistic demon-

strated a way of comparing the levels of brain connectome similarities for different genetic or social

relations.

4.6 Covariates associated with matching in BLSA and HCP datasets

On the HCP dataset, matching with replacement on the 466 participants resulted in 350 people (75.11%)

getting matched to themselves. Let 1 represent that a subject got correctly matched and 0 otherwise.

Using a logistic regression model, we regressed the matches against demographic covariates, including

years of education, age, sex, race (having levels “Asian/Native Hawaiian/Other Pacific Islander”, “Black

or African American”, “White”, “More than one” and “Unknown or Not Reported”; “Asian/Native Hawai-

ian/Other Pacific Islander” as the baseline), income and whether the participant is still in school. Two

variables were marginally interesting: age with estimated odds ratio 1.06, 90% CI [1.01, 1.12], Wald z

statistic 1.80 and p-value 0.073; the race category for black or African American, having an estimated

odds ratio 0.15, 90% CI [0.02, 0.94], Wald z statistic −1.70 and p-value 0.088. Though these variables

show weak evidence for associations with matching, recall that the ages, ranging from 22 to 36 on the

HCP dataset, were all health healthy and younger.

We further investigated if any similarity in terms of resting state connectivity existed among people
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Figure 5: The simulated distributions of the total number of matches when matching two groups of
distinct people (each of size 20) from the HCP dataset. For each person selected in the first group, there
was another monozygotic twin/dizygotic twin/non-twin sibling/random person in the second group for
the MZ/DZ/NotTwin/Random scenarios, respectively (see Section 4.5). Matching with replacement was
conducted. The empirical distribution of a Poisson(1) random variable after 1,000 iterations is also
plotted as comparison.

with the same age and race category. Within each iteration, from each of the 208 families we randomly

selected one subject so that no sibling structure existed. We then partitioned the 208 subjects by age and

race categories. We randomly chose 20 combinations of age and race categories that contained more

than one subject in the 208 samples. From subjects with each of the selected age and race combination,

we then randomly chose an ordered pair of subjects. For the first subject of a pair we took the measure-

ment of the first experiment session and for the second subject we took that of the second experiment

session. We then conducted matching with replacement on the two groups of 20 measurements, now

having totally distinct participants on the two session. After 1,000 iterations the empirical distribution

was plotted for the total matches with an empirical distribution from the previous iid Poisson(1) sam-

ples as comparison. From Figure 6 a slight right shift from the Poisson(1) was observed for the age and

race matched simulated samples with a proportion of rejecting the null at level 0.05 in the Poisson tests

being 6.3%, which was larger than that in the Poisson(1) samples as 1.4% and probability 1.9% of being

greater than 3 for Poisson(1) distribution; these were substantially smaller than those in the dizygotic
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twins (54.1%) or non-twin siblings (54.2%).

Figure 6: The simulated distribution of the total number of matches when matching two groups of
distinct people (each of size 20) who were randomly selected from different families and were matched
in age and race in the HCP dataset (see Section 4.6). Matching with replacement was conducted.
The empirical distribution of a Poisson(1) random variable after 1,000 iterations was also plotted as
comparison.

On the BLSA dataset, matching with replacement on the 277 participants resulted in 110 people

(39.71%) getting matched to themselves. We again applied a logistic regression model for match status

against demographic covariates including: years of education, age on the first scan, sex, race (with 3

levels as “Black or African American”, “White” and “Other”) and the time interval between the two scans

in days. At level 0.05 two variables were potentially related to matching status: years of education

with estimated odds ratio 1.12, 95% CI [1.00, 1.25], Wald z statistic 2.02 and p-value of 0.043; sex with

estimated odds ratio 1.80, 95% CI [1.09, 2.98], Wald z statistic 2.28 and p-value of 0.023. It is important to

emphasize the ages in the BLSA dataset ranged from 55 to 96 (far different from that of the HCP dataset)

and there was a much larger time span between scans.

We could visualize such observation by comparing matching on random subsamples from the whole

dataset and matching on those from a subgroup of participants whose years of education were higher

than the dataset average and sex codes were 1’s (Figure 7). Such subgroup included 69 participants out
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of the total 277 participants. Within each iteration, we took 20 random samples from such subgroup

and from the whole dataset, respectively. Matching with replacement was then performed among their

first and second scans. After 1,000 iterations, total numbers of matches were plotted for subsamples

from the subgroup and those from the whole population. All observed numbers of matches exceeded 3

so we ended up with a proportion 100% of rejecting the exchangeability assumption in both scenarios.

However the mean of the simulated numbers of matches in the subgroup was 13.73 (with SD 1.84)

which was greater than that in the whole dataset (mean 12.74, SD 2.07).

Figure 7: The simulated distribution of the total number of matches when matching with replacement
on random subsamples of size 20 from the whole BLSA dataset or from the subgroup of participants
whose years of education were higher than the dataset average and sex codes were 1’s (see Section 4.6).

4.7 Comparison of matching on the BLSA and the HCP datasets

The identification accuracy on the BLSA dataset was relatively low (39.71%) compared to that on the

HCP dataset (75.11%). Such a drop in identification accuracy might partially be explained by the differ-

ence in the temporal resolutions and scan durations (HCP: TR/TE 720/33.1 ms, frames per run 1200,

run duration 14 min 33 sec; BLSA: TR/TE 2000/30 ms, frames per run 180, run duration 6 min). A

similar drop in identification accuracy has been reported previously when comparing matching with re-
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placement on the data with more standard quality to that on the HCP data (Waller et al., 2017). It is

also possible that the long time span between scans and more advanced ages of the BLSA participants

is evidence of actual biological aging so that subjects are less like their previous selves, thus correctly

having fewer matches.

However, at least two factors can make such comparison of identification rates suboptimal. First, the

sample size could have an impact on the identification accuracy (Waller et al., 2017) and sample size

differences exist (HCP dataset: 466; BLSA dataset: 277). Secondly, existing family structures such as

the MZ twins could produce many matches, even between two group of totally distinct participants (see

Section 4.5).

4.8 Brain maps of identifying pairs of nodes by network

Consider evaluating how well a single pair of nodes can identify people by conducting matching with

replacement with only the single inter-node z-transformed correlations. Since the measurements are one

dimensional we use the absolute difference as distance and randomly choose a match when ties appear.

We use the Poisson approximation to the number of matches. An FDR adjustment follows for multiple

testing. The Poisson approximation is useful in this setting, as the number of matching experiments

grows with the order of the number of nodes squared.

On the HCP dataset using the sample of 466, 106 identifying pairs of nodes were discovered out of

35, 778 =
(

268
2

)
pairs (268 nodes). The total matches on those identifying pairs ranged from 7 to 10.

For simplicity, we combined the eight networks into five and then counted the identifying pairs be-

tween the following five combined networks: FP (the combination of Medial Frontal and Frontoparietal

networks), DMN (Default mode network), SC (Subcortical-cerebellum network), Motor (Motor network)

and Visual (the combination of Visual I, Visual II and Visual Association networks). FP was the network

with most identifying pairs (20).

We further conducted matching with replacement only using the pairs between any two selected

networks. It led to similar results that the identification rate on FP was the highest (90.6%). The 20

identifying pairs within the FP network are visualized (see Figure 8) on the ICBM 152 template brain

(Mazziotta et al., 2001) with the rgl and misc3d packages in R (Adler et al., 2018; Feng et al., 2008;

Muschelli et al., 2014).

The matching performance over individual nodes mirrors neuroscientific intuition that frontal net-
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FP DMN SC Motor Visual
FP 20 6 14 11 9

DMN 1 3 3 4
SC 6 6 5

Motor 2 10
Visual 4

Table 4: Numbers of the identifying pairs between the five combined networks on the HCP dataset (see
Section 4.8). The pairs of nodes were selected by the Poisson approximated permutation test on the
total matches from matching with replacement using only the z transformed correlations between each
single pair.

FP DMN SC Motor Visual
FP 90.6 80.7 70.0 61.2 66.7

DMN 50.0 56.7 33.7 45.5
SC 44.6 45.7 53.6

Motor 42.3 45.7
Visual 58.8

Table 5: Identification rates (in %) from matching with replacement using only the z transformed corre-
lations of the pairs between the five combined networks on the HCP dataset (see Section 4.8).

works are more idiosyncratic and personal, while motor and visual networks are more common across

individuals.

5 Discussion

In this manuscript we considered matching permutation tests for so-called fMRI fingerprinting. We

found that, regardless of the permutation strategy, the tests results in a Poisson(1) null distribution for

the number of correct matches. When matching with replacement, the maximum number of matches for

a subject must go to 0 with n for convergence. In matching without replacement, Montmort’s famous

result also implies a Poisson(1) distribution. Finally, (not discussed) if one were to permute after each

match with replacement, the number of correct matches would be Binomial(n, 1/n), which clearly limits

to a Poisson(1) as well.

Thus, one can compare the number of matches to the relevant upper quantile of a Poisson(1) without

further computing. This is particularly useful for studies of individual brain locations, or pairs of loca-

tions. In these settings, the lack of need for calculating a permutation based null distribution dramati-

cally reduces computing time. In addition, the high power of the test mitigates the need for elaborate

multiple comparison procedures and simpler more conservative variations would likely suffice.
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Figure 8: The 20 identifying pairs of nodes within the FP network visualized on the ICBM 152 brain
template (see Section 4.8). Nodes were labeled by their orders on the atlas and were plotted at the
center. Pairs of nodes were colored from blue to red depending on the number of matches when matching
with replacement was conducted with only the z transformed correlations between each single pair.

While nearly any reasonable permutation and matching strategy yields a Poisson(1) null distribution

for the number of correct matches, there are differences between the strategies. For example, matching

with replacement yields a different answer whether occasion 1 or 2 is used as the reference group.

In addition, poor matching without replacement strategies can be dependent on the original subject

ordering. Matching with replacement more easily generalizes to multiple measurements per subject.

The exchangeability test was seen to be very highly powered and sensitive to assumptions towards

a greater propensity to reject. Most notably, any correlation of the measurement with a demographic

or clustering variable will aid in matching. This is intuitive. If one had pairs of outfits from several
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people and had to match them up in the absence of the owners, the task would be much harder if

everyone was the same size, gender, etc. This has implications for the use of fingerprinting as a measure

of reproducibility. For example, it is well known that resting state fMRI data changes with age. For the

same experimental protocol measures of reproducibility would change depending on the age variation

of the study subjects.

In addition, it is not clear, even in the absence of covariate or clustering variables, that matching

performance is a reasonable estimate of reproducibility. At the minimum, it must be combined with other

metrics (such as the I2C2 Shou et al., 2013) and a study of matching performance and its associations.

We suggest the use of logistic regression on whether or not subjects were correctly matched for this task.

Subject identification is also an incomplete measure of the performance of a metric. It is worth

remembering that ones actual fingerprint itself is a very good identifier, but is otherwise biologically

meaningless, whereas gender, sex, medication usage, etc. are all poor subject identifiers but scientifically

useful.

The data analysis yielded several interesting findings. The percentage of correct matches varied

quite a bit between the two studies. This is sensible, as the HCP data included technical, one day

separated, replicates, with a narrow age range of healthy subjects and long scanning sessions, hence

well measured resting state data, collected in part to study resting state reproducibility and narrow

down optimal acquistion protocols. In contrast, with a lower percentage of correct matches, the BLSA

data is longitudinal, with a year or more between scans, considering an age range where resting state

phenotypes may be longitudinally changing from normal aging and early stage disease and the resting

state data was acquired using a shorter protocol as part of a larger battery of scans to study many facets

of brain aging.

The HCP data included twins and it interesting that matching performance followed the appropriate

order (from best performance): self, monozygotic twin, dizygotic twin, non-twin sibling and stranger.

Among the basic demographics, age, education and race showed some association with matching per-

formance. Various numeric experiments showed that one can obtain a more significant result by making

the distribution of the significant demographics more variable, even when matching to strangers.

The final analysis considered all pairs of regions separately. It was primarily frontal cortical regions

that were the most fingerprint-like (i.e. idiosyncratic). This mirrors both intuition and general results

in this area. Intuition would suggest, for example, that intra-motor or intra-visual, connections would
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be similar across a collection of typical subjects simply because of the consistency of motor and visual

function.

For future research, it is perhaps worthwhile considering ranking rather than matching. The current

style of analysis treats a person being their own second best match identically to being the worst match.

A rank sum styled test called “discriminability” (Vogelstein et al., 2015; Airan et al., 2016) avoids this

complication, but has a harder null distribution to consider.
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