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SUMMARY: 

Inflammation involves timed gene expression, suggesting that the fine-tuned onset, 

amplitude, and termination of expression of hundreds of genes is of critical importance to 

organismal homeostasis. Recent study of post-transcriptional regulation of inflammatory gene 

expression led to the suggestion of a regulatory role for pre-mRNA splicing. Here, using a 

hybrid capture approach to purify incompletely spliced, chromatin-associated pre-mRNAs, we 

use deep sequencing to study pre-mRNA splicing of the NF-kB transcriptome. By freezing 

transcription and examining subsequent splicing of complete transcripts, we find many 

introns splice tens to hundreds of times slower than average. In many cases, this is 

attributable to poor splice donor sequences that are evolutionarily conserved. When these 

introns were altered by ~2 base pairs to yield stronger splice donors, gene expression levels 

increased markedly for several genes in the context of a reporter system.  We propose that 

such splice sites represent a regulatory mechanism that determines the timing of production 

of the mRNAs from certain inflammatory genes and may also limit mRNA expression from 

these genes. Further work will be needed to understand the roles of this regulation in the 

inflammatory response. The suggestion of extensive temporal regulation of pre-mRNA 

splicing as a regulatory process in inflammation raises the question of where else in biology 

there may be timed processes with a similar underlying cause. 
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SPLICING 

INTRODUCTION 

Gene expression in response to an inflammatory stimulus begins rapidly and is tightly 

controlled by conventional means (transcription and protein turnover (Chen and Chen, 2013; Gautier 

et al., 2012; Smale et al., 2014)) and by an expanding list of modalities that have gained in 

appreciation as being general regulatory strategies (RNA stabilization, RNA deadenylation, ribosomal 
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regulation, microRNA regulation, as examples (Hao and Baltimore, 2009; Leppek et al., 2013; 

O'Connell et al., 2012; Wan et al., 2007)). We and others have recently investigated the role of RNA 

splicing kinetics – independently of alternative splicing – in gene expression (Hao and Baltimore, 

2013; Pandya-Jones et al., 2013; Rabani et al., 2011; Rabani et al., 2014). In macrophages, an 

inflammatory stimulus leads to upregulation of expression of pre-mRNAs from hundreds of genes, 

providing an experimentally favorable system to investigate whether differential kinetics of pre-mRNA 

splicing may control the timing of gene expression following an inducing stimulus.  

Pre-mRNA conversion to mRNA has been implicated in regulation of gene expression in 

diverse systems. As part of the cellular response to various environmental stressors, mRNAs for 

ribosomal proteins were shown to be downregulated due to decreased splicing efficiency in yeast 

(Bergkessel et al., 2011). Global changes in efficiency of pre-mRNA splicing have been shown to be 

a developmental prerequisite for Drosophila early embryonic development (Guilgur et al., 2014). The 

developing vertebrate embryo obeys a ‘segmentation clock’ determining body segment length whose 

very timing relies on delays attributable to control of the splicing rate of the Hes7 transcriptional 

repressor (Takashima et al., 2011).  

In certain well-studied cases, as with the cytokine TNFα, regulatory mechanisms modulating 

RNA levels exert significant physiological effects (Eissa et al., 1996; Hargreaves et al., 2009; 

Kontoyiannis et al., 1999; Mahtani et al., 2001; Mino et al., 2015; Rao et al., 2005; Ruggiero et al., 

2009; Stoecklin et al., 2003). The insight that TNFα contains AU-rich elements in its 3’ untranslated 

region that act as mRNA degradation signals (Han et al., 1990), and subsequent observations that a 

mouse in which these AU-rich elements were removed results shows a robust autoimmune 

phenotype (Kontoyiannis et al.), was an early indication of the importance of precisely tuned mRNA 

levels in the regulation of inflammation to avoid autoimmunity. Given the role of pre-mRNA splicing in 

biogenesis of mature mRNA, we and others (Bhatt et al., 2012; Cho et al., 2014; Davis-Turak et al., 

2015; Grabherr et al., 2011; Hao and Baltimore, 2013) suggested that regulation of splicing kinetics 

may influence the gene expression kinetics that define the inflammatory cascade. 

To examine the timing of intron removal from 230 different transcripts induced by TNFα in 

macrophages, we have developed a method for highly enriching transcript populations for mRNAs of 

interest, which is followed by deep sequencing of the largely pre-mRNA populations we purify. The 

induction of transcripts and removal of introns can be quantified with precision, with lifetimes of 

introns determined by blocking transcription early after induction. Among genes whose mRNAs 

appear more slowly after induction, we identify ones containing introns with poor binding sites for 
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splicing factor U1, usually finding one per transcript. We call these “bottleneck” introns. Among the 

most rapidly induced genes we find no such introns. We show that in these pre-mRNAs, the 

sequence of the U1 binding site is critical for the speed of intron removal by building mini-genes with 

“repaired” introns and showing that these splice at the canonical rate (identified as about 20 seconds 

after polymerase has passed that point). We propose that bottleneck introns are important for 

determining either the rate of degradation of pre-mRNAs or the rate of appearance of mature mRNA 

or both.  

 

RESULTS 

It has been established that pre-mRNA is highly enriched in the chromatin-associated, 

polyadenylated RNA fraction (Tilgner et al.). To examine splicing events in pre-mRNAs, we performed 

time-course experiments with TNF-stimulated bone marrow-derived macrophages (BMMs), isolating 

RNA after biochemical separation of chromatin-associated material (Bhatt et al.). Using a hybrid-

capture approach, we targeted sequencing toward transcripts of 230 genes previously identified as 

TNF-induced inflammatory mRNAs (Ramirez-Carrozzi et al., 2009). Purification of cDNA 

corresponding to these inflammatory transcripts involved reverse transcription of chromatin-

associated RNA using oligo(dT), and capture of desired cDNAs using biotinylated probes 

complementary to the last exon of each gene of interest. Oligo(dT) priming and the choice of the last 

exon as a capture target enabled us to sequence complete transcripts from the standpoint of the 

splicing machinery, because all introns will have been transcribed in such transcripts. The hybrid 

capture strategy, based on a published approach (Engreitz et al., 2013), involved: (1) microarray 

printing of 12,000 150-bp ssDNAs designed from tiled fragments of the last exon of each gene of 

interest; (2) conversion to a pool of biotinylated ssRNA probes using PCR followed by in vitro 

transcription with biotinylated ribonucloetides; (3) hybridization of ssRNA pools to cDNA from each 

biological experiment, and (4) and streptavidin-coated bead-mediated capture of the transcripts of 

interest (Fig. S1). This approach resulted in a ~30-fold enrichment of genes of interest, with 70% of 

the sequenced reads corresponding to the genes of interest; RNA submitted only to poly(A) selection 

contained only 2% of such reads (Fig. S2A). In this way we could analyze 1024 introns from genes 

induced by an inflammatory stimulus (Fig S2B). 

The chromatin-associated, selected transcripts from many time points following induction were 

sequenced and are represented as a read density histogram, wherein thousands of sequencing reads 

are histogrammed along the length of the gene, illustrating the relative abundance of sequence 
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elements such as introns and exons within each gene’s total population of reads. Such a 

representation of one transcript—that of NFKBIA, the gene encoding IκB-α— is shown as a time 

course evolving over 1 hour following TNF induction in Fig. 1A; the read density histograms are 

shown on a log10 scale, accentuating differences along the gene. The data from single time points is 

normalized to the highest frequency bin from that time point to allow comparison between time points 

and to emphasize the kinetics of mRNA biogenesis apparent from the dynamics of 

appearance/disappearance of sequence elements of IκB-α. New transcription is seen at 6 minutes for 

this RNA and most others—this is particularly obvious if a linear unnormalized scale of read density 

histograms is used (Fig. S3). The corresponding log-scaled histograms permit visualization of the 

intronic signal as a function of time after induction. Furthermore, from Fig. 1A it is evident that at all 

time points following induction, the 5’-proximal introns have been totally removed from the sequenced 

transcripts, indicating that the selection against partial transcripts is quite complete. Whereas excision 

of the first intron is always observed, the middle three introns are seen at intermediate states of 

excision in all time points such that intron definition for these introns is readily observable from read 

density histograms. We attribute this first exon excision largely to cotranscriptional splicing, consistent 

with other genome-wide splicing studies (Bentley, 2014). Strikingly, the final intron deviates 

significantly in its kinetic trajectory, as its read density does not obey a similar relative reduction. This 

might be due to a lag in terminal intron splicing  (Carrillo Oesterreich et al., 2010) or a feature of 

splicing that accompanies transcript release from chromatin. 

To better quantify the observed dynamics, we adapted the Coefficient of Splicing (CoSI) 

(Figure 1B), which quantifies the extent of splicing as a ratio of spliced to total (spliced and unspliced) 

junction reads such that CoSI values of ~1 and ~0 imply near-complete splicing and virtually 

unspliced states, respectively (Tilgner et al., 2012b). Though we observed a decrease in read density 

as a function of distance from the 3’ of the gene (Fig. S3), presumably as a consequence of 

premature termination of the reverse transcriptase during copying of the pre-mRNA, the use of CoSI 

allows for an intron-specific splicing score regardless of read densities at neighboring introns. Using 

the CoSI metric, a time course plotting of the extent of splicing showed a dip in CoSI at ~6 minutes 

(Fig. 1C) corresponding to the aforementioned accumulation of new, unspliced transcripts. The 

splicing dynamics of each NFKBIA intron can be inferred from the CoSI dynamics, and the notable 

difference in splicing between the 5’ and 3’ introns is demonstrated by the amplitude of the ‘dip’ at 6 

minutes and the time required for each intron to return to Co-SI of 1. 

 A surprising heterogeneity in CoSI was observed among all inflammatory introns (Fig 2A), 

implying diversity in their propensity to be spliced (Fig. 2). When considering all 1,024 introns in the 
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chromatin-associated TNF time course we find most introns very near to CoSI ~1 relatively soon after 

induction, indicating that most introns do not remain unspliced long after induction begins at 6 

minutes (Fig. 2A). Unexpectedly, although the median CoSI value remains high, we identified 

considerable heterogeneity among introns, some at and remaining near CoSI values <0.5, indicating 

relatively poor splicing, found very late into the time course.  

As an example of a poorly spliced intron, chemokine CXCL10 intron 2 (Fig. 2A) is notable as it 

remains poorly spliced despite clear excision of neighboring introns, remaining quite unspliced even 

~30 minutes after induction. It is possible that this intron undergoes splicing after its nascent 

chromatin-associated state, as is likely the case for the 3’-terminal intron of NFKBIA. It is also 

possible that this intron targets CXCL10 transcripts for degradation and the relatively fixed nature of 

intron 2’s splicing status throughout the time course is a function of a constant rate of degradation. 

Introns with low CoSI at late time points post-TNF induction were considered putative ‘bottleneck 

introns’– borrowing from the language that accompanied the discovery and characterization of slowly 

splicing U12-type introns (Patel et al., 2002). These introns were so slow to splice that they may 

intrinsically delay gene expression. Notably, the distribution of CoSI values of the entire dataset 

(Figure 2A and 2C) was very broad, and though most introns spliced immediately, many introns 

showed evidence of splicing bottlenecks, noticeable by their significant deviation from mean CoSI. At 

10 and 60 minutes post-induction, 14% and 11% of introns, respectively, had CoSI values below one 

standard deviation of the mean (0.86±0.25 and 0.91±0.19, respectively). Shown as examples are 

CD40, DAXX, and IRF7 (Fig. 2B), genes whose immunological and inflammatory importance is well-

established in studies with knockout mice (Honda et al.; Lei et al.; Michaelson et al.).  

To quantify splicing kinetics, we used Actinomycin D (actD) to freeze transcription and followed 

the loss of intron and accumulation of splice junctions. In these experiments, splicing was analyzed at 

many time points immediately following actD treatment on the same 230 transcripts of interest and 

selected using hybrid capture from the total pool of cellular RNA rather than chromatin-associated 

RNA. Fitting the accumulation of spliced transcripts (as measured by CoSI) with an exponential 

distribution, we were able to extrapolate intron excision half-lives (Fig. 3). Because total cellular RNA 

was used, observed rates were independent of chromatin localization. We find intron half-lives that 

range from 20-40s (56% of introns splicing in this timing window) to several minutes, reflecting the 

considerable heterogeneity that is observed from CoSI differences. 

A delay in splicing at certain sites could simply confer a delay in gene expression (by ~5 

minutes in the slow case shown in Figure 4, IκBε), or, as is seen in yeast studies, it could result in 

both gene expression delay and gene expression diminution due to degradation of slowly splicing 
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pre-mRNA (Koodathingal et al., 2010). Prior studies placed IκBε in a delayed splicing category (Hao 

and Baltimore), suggesting a pronounced splicing delay relative to rapidly induced genes. To 

understand a potential mechanistic basis for these differences in splicing time, each intron within our 

dataset was assessed computationally for the concurrence of its 5’ splice donor sequence to a 

consensus sequence (Pessa et al., 2006). The 5’ splice donor is a highly conserved sequence that 

directly base pairs with splicing factor U1 (Freund et al., 2005); deviation from consensus sequence 

confers a significantly reduced ability to engage the splicing machinery.  

A maximum entropy model was used to calculate an intron quality score measuring extent of 

deviation from consensus splice sequence (Fig. S4). Among the inflammatory transcripts studied, 

many examples of introns with poor 5’ donor scores were identified such as IRF7 and IL12b, where 

lower scores indicate significant deviation from consensus. We suggest that having non-consensus 

splice sites may be a regulatory mechanism affecting gene expression. We considered that splicing 

might show profound differences in the previously defined categories of induction 

(immediate/early/intermediate/late) characteristic of the inflammatory gene expression kinetics (Bhatt 

et al., 2012).  We found that the ‘immediate’ genes showed consistently fast splicing (highest CoSI 

values) at all of their introns but the most 3” but that the other three groups shared similar CoSI 

distributions (Fig. S6). Using the bioinformatics “intron quality score” we also found that the introns of 

the later gene classes have significantly higher scoring 5’ splice donor sequences (Fig. S4). 

Therefore, from experimental measurement of splicing and sequence-based prediction, genes 

expressed immediately following inflammatory stimulus are spliced faster, whereas all other 

inflammatory genes have a complex and heterogeneous distribution of splicing efficiency that does 

not stratify cleanly into the later kinetic categories (early/intermediate/late). Slowly splicing introns are 

found throughout these later kinetic categories in similar abundance, perhaps playing very gene-

specific roles in diverse kinetic categories.  

To test whether delays in splicing result in changes to gene expression, we identified a set of 

introns with the following criteria: (1) introns that splice poorly as defined by RNA-Seq, (2) introns that 

contain a low-scoring (non-consensus) 5’ splice donor, and (3) introns whose weak 5’ splice donor is 

evolutionarily conserved across many mammalian species. These introns were tested in the context 

of a splicing reporter expressed on a bidirectional promoter (Mukherji et al.). For each intron of 

interest, the reporter construct consists of a single transcript containing: (1) the 5’ neighboring exon 

from the gene of interest, the intron of interest, and the 3’ neighboring exon; (2) a 2A ‘self-cleaving’ 

peptide; and (3) the GFP gene. In the opposite orientation but from the same promoter, a blue 

fluorescent protein (BFP) mRNA is made in equal amounts to the intron-GFP construct ,GFP 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 15, 2018. ; https://doi.org/10.1101/443796doi: bioRxiv preprint 

https://doi.org/10.1101/443796


7 

 

fluorescence of cells transfected with this reporter is a readout of splicing efficiency of the intron-GFP 

construct, when normalized to BFP fluorescence levels. Transfected into HEK293T cells and 

expressed for 24 hours, this bidirectional reporter enabled us to understand, at steady state, whether 

gene expression is affected by slow splicing introns. Measured using flow cytometry, the slope of the 

line corresponding to BFP:GFP ratios provides a relative metric of splicing efficiency, where slopes 

~.9 and ~0.1 imply efficient and inefficient splicing, respectively. 

To test the effect of a poor splice donor, we ‘rescued’ some poorly splicing introns in the 

context of the reporter by mutation to consensus splice donor ‘GTAAG.’ For instance, for IL12 intron 

3, the splice donor sequence of “GTAAT” that is conserved among many mammalian species, was 

altered to “GTAAG” (Fig. S5). Expression levels of the reporter construct with the wild-type IL12 intron 

were found to be about half (57%) of the levels of the same construct with a single base pair 

alteration to make the stronger splice donor. IRF7 intron 5 was tested against a ‘fixed’ intron as well 

as a wild-type intron from an actin gene, both resulting in two-fold improvements of gene expression. 

In one case, expression of TFEC (transcription factor EC) was not altered by splice site repair, 

suggesting that other mechanisms beyond 5’-splice site deficiencies may be involved in mediating 

slow splicing. Generally, when the BFP:GFP slopes of wild-type and mutated introns were compared 

by taking a ratio of their slopes, a change of ~2 nucleotides dramatically altered the slope of the line 

(Fig. 5a).  

 

DISCUSSION 

In this study we sought to understand splicing kinetics of the large number of genes that 

comprise the inflammatory response and to assess whether splicing itself might play a regulatory role 

in inflammation. We developed a targeted sequencing strategy, purifying transcripts containing each 

gene’s terminal exon. This approach allowed us to sequence the 1,024 introns within inflammatory 

genes and permitted direct assessment of the structures of nearly-completed transcripts. We found 

considerable heterogeneity in splicing efficiency among these introns. In studying evolutionarily 

conserved weak 5’ splice donors, we have isolated one cause of slow appearance of mRNA following 

a pulse of stimulus; many other slowly spliced introns without such sequences were also identified in 

this study and suggest other regulatory mechanisms may be responsible. 

Crucially, the hybrid capture approach averts a common ambiguity in analyzing splicing 

kinetics of not being able to differentiate completed pre-mRNA from nascent transcripts during an 

induction pulse – this often leads to an overestimation of the unspliced status of early introns and 
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complicates quantification of splicing kinetics. To the contrary, we rarely found genes containing 

unspliced first introns. This was true of chromatin-associated RNA and of whole cell RNA after actD 

stalling. These effects are consistent with the emerging model of co-transcriptional pre-mRNA 

splicing, where the splicing machinery has been suggested to lag 3-5kb behind the polymerase. 

Indeed, several recent global studies of RNA splicing bolster the claim that much pre-mRNA is 

spliced co-transcriptionally: 74% (yeast) or 75-84% (human) of introns are found to be at least 50% 

spliced by the time of transcription termination in several other studies (Ameur et al., 2011; Brugiolo 

et al., 2013; Carrillo Oesterreich et al., 2010; Girard et al., 2012; Khodor et al., 2011; Tilgner et al., 

2012a). Surprisingly, this ~80% figure remains constant whether total RNA or chromatin-associated 

RNA is measured, implying that our choice to analyze chromatin-associated RNA does not 

significantly overrepresent splicing intermediates. 

We found that most introns are spliced very efficiently, appearing and disappearing as a rapid 

dip of CoSI immediately following induction, returning to a CoSI of ~0.95 within minutes after 

induction. Notably, the distribution of CoSI values of the entire dataset (Figure 2) was very broad. 

Though most introns spliced immediately, there were several ‘bottleneck introns’.  In order to 

determine more specifically the rates of slowly splicing introns, studies employing actD to stall 

transcription and examine intron splicing half-lives corroborated the idea that there is tremendous 

intron-to-intron heterogeneity. Whereas most introns spliced within 20-40s, some were delayed 

significantly (upwards of 5 minutes). Of note, however, is that our 20-40s rate of splicing is somewhat 

at odds with other figures in the literature of 8-10 minutes for intron excision after a washout of the 

drug D-ribofuranosylbenzimidazole. There is some debate as to the perturbative role of actD in 

splicing, with one report observing that splicing intermediates in the context of the MS2 reporter 

system are prematurely liberated from chromatin upon actD treatment. Even in this case, the rapid 

actD-based rates, are likely underestimating even faster kinetics if one considers that the co-

transcriptional splicing machinery targets chromatin mRNA faster than released mRNA (Martin et al.). 

However, even in the absence of actD, stimulation revealed that most of IKBα’s introns are spliced in 

less than two minutes when one takes into account the ‘dip’ in CoSI due to induction and the time to 

reach steady CoSI levels (Figure 2). While the terminal intron of IKBα appears to have a longer half-

life, this unique feature of terminal introns is consistent with prior studies (Carrillo Oesterreich et al., 

2010). 

In testing gene expression differences in bottleneck introns among introns with poor splice 

sites that are also evolutionarily conserved, we found that steady state levels of reporter proteins 

were upregulated when the 5’ splice donor sequence was mutated to the consensus sequence 
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‘GTAAG’ in all cases but one. Attenuated U1 binding provides a mechanistic insight for bottleneck 

introns that were chosen for their weak 5’ splice donors. This implies that at the level of splicing, 

either due to delays in expression or perhaps degradation due to delayed expression, significant 

differences in gene expression arise from small differences in nucleotide sequence. We also find 

many slowly spliced introns not explained by weak 5’ splice donors. In some cases, we find multiple 

bottlenecks introns per gene, as in the case of IRF7, where one bottleneck (intron 5) was attributable 

to an evolutionarily conserved weak 5’ splice donor while another (intron 7) was observed 

experimentally but of unknown cause. This may be due to any of a number of potential mechanisms 

that may also serve in tuning the speed of splicing: cis-regulatory protein recruitment, 3’ splice 

acceptor sequence or other sequence elements, or alterations of RNA polymerase speed or 

chromatin marks or three-dimensional gene structure. 

 

Central to our inquiry is the enigmatic nature of these bottlenecks remaining in physiologically 

critical genes, often evolutionarily conserved, and yet intrinsically mediating an inefficiency in gene 

expression. We posit that the gene expression changes that are shown in bone marrow-derived 

macrophages offer a regulatory strategy to slow up and maybe restrict expression of genes in a 

manner dependent on the composition of mRNA processing factors in the cell (‘the splicing 

landscape’), the cell type, or the stimulus type in question. Recent studies have demonstrated global 

changes in intron retention preferences in B cell lymphomagenesis and granulocyte differentiation 

(Koh et al., 2015). In a similar manner, we suggest that selection of splicing and kinetics of splicing 

might allow a previously unappreciated level of specificity to gene expression decisions in cells 

presented with an inflammatory stimulus. Juneau (Juneau et al., 2006), Brinster (Brinster et al., 1988), 

Shabalina (Shabalina et al., 2010), Paretneu (Parenteau et al., 2008), Furger (Furger et al., 2002), 

Kornbliht (Kornblihtt et al., 2004), Kroun {Damgaard, 2008 #241},  

Induction with TNF is a particularly favorable situation because many of the genes we 

examined were up-regulated in their transcription within 4-6 minutes of adding inducer (Supplemental 

Fig. 2B), allowing examination of large numbers of pre-mRNA transcripts. This, in concert with the 

hybrid capture approach that provides a large number of junctional sequencing reads, has permitted 

unique insight into the kinetics of splicing of mature transcripts and revealed surprising heterogeneity. 

We suggest that this methodology and analysis could have wider applicability for other gene induction 

situations.  

EXPERIMENTAL PROCEDURES: 
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Cells. C56BL6/J mice were sacrificed via CO2 euthanasia and sterilized with 70% ethanol. Femur and 
tibia bones harvested and stripped of muscle tissue. Bone marrow cells were resuspended in 20mL of 
fresh DMEM. 2.5e6 bone-marrow cells plated in a 15-cm dish in 20mL of BMDM Media (DMEM, 20% 
FBS, 30% L929 condition media, and 1% Pen/Strep) and grown at 5% CO2 and 37°C. BMDM media 
completely replaced on day 3 as well as a supplemental addition of 5mL L929 condition media on day 
5.   
 
RNA. Total RNA was prepared with Trizol (ThermoFisher) as per manufacturer instructions. 
Isolation of cytoplasmic, nucleoplasmic and  chromatin-associated RNA fractions isolated used a 
modification of a previously published method (Bhatt et al., 2012). Full methods available in 
supplement.  
 
cDNA Pulldown. cDNA is added biotinylated RNA probes, generated by Ampliscribe T7-Flash Biotin 
Kit (Epicentre), and incubated at 74°C for 4.5min to denature followed by addition of 1 volume of 2X 
hybridization (HYB) buffer (1M LiCl, 40mM Tris-HCl (pH 7.5), 20mM EDTA (pH 8.0), 4M Urea, 0.5% 
Triton X-100, 1% SDS, 0.2% Na-deoxycholate). Reaction incubated at 70°C for 30min. 0.3mg BioMag 
streptavidin beads (Bang Laboratories Inc.), washed 3 times in 1X HYB buffer, added and reaction 
incubated at 70°C and 1100rpm for 20min to capture cDNA-probe complex. Beads pelleted on 
magnet, followed by 2 washes of 150µL with preheated 1X HYB at 70°C, 1 wash of 150µL with wash 
#4 (160mM LiCl, 20mM Tris-HCl (pH 7.5), 10mM EDTA (pH 8.0), 2M Urea, 0.25% Triton X-100, 0.5% 
SDS, 0.1% Na-deoxycholate), and 1 final wash with wash #5 (40mM LiCl, 20mM Tris-HCl (pH 7.5), 
10mM EDTA (pH 8.0), 2M Urea, 0.25% Triton X-100, 0.5% SDS, 0.1% Na-deoxycholate). Beads 
resuspended in 35µL of base elution buffer (125mM NaOH, 10mM EDTA (pH 8.0), 10mM Tris-HCl 
(pH 7.5) and incubated at 74°C and 1100rpm for 5min. Beads pelleted and 30µL cDNA containing 
supernatant removed to a new tube. Solution neutralized with 6.25µL neutralization buffer (800mM 
HCl, 160mM Tris-HCl (pH 7.5), 20mM EDTA (pH 8.0)). Immediately after neutralization, cDNA 
purified by 1.0X Sera-Mag treatment as described previously above and eluted in 45µL and stored at 
-80°C.   
 
Sequence data was acquired using a HiSeq 2500 instrument (Illumina) at 50bp single-end resolution. 
We will deposit data in NCBI GEO. All code will be made freely available on GitHub. 
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Fig. 1. Sequencing of complete, chromatin-associated pre-mRNA during inflammatory stimulus 
reveals differential splicing dynamics among introns of IKBα. (A) Histogram of reads corresponding to 
the TNF-induced expression and splicing of IKBα pre-mRNA of BMDMs. RNA-Seq was performed on 
chromatin associated RNA, enriched for NFkB genes as a function of a TNF stimulation timecourse, 
time shown in minutes after stimulation. Reads are histogrammed in log10 scale and normalized to 
each time point’s maximum value. (B) The Coefficient of Splicing (CoSI) metric quantifies extent of 
splicing as a function of time, expressed as a ratio of reads from each splice junction to total 
junctional reads.  Dynamics of IKBα splicing as a function of each intron’s CoSI is shown (C), where 
1=spliced and 0=unspliced, with corresponding introns highlighted in sample timepoint. 
 
Fig. 2. Heterogeneity of splicing at each intron reveals splicing ‘bottlenecks.’ The Co-SI of each intron 
per timepoint is shown as a function of the entire inflammatory mRNA dataset as box-whisker plot (A). 
Each point represents an intron of one of 230 genes, revealing high rates of splicing (median Co-SI 
indicated by bar near 1.0 for each timepoint) for most genes with significant outliers. As an example, 
CXCL10 intron 2 (red arrowhead) is represented by the datapoint with arrowhead, and a histogram of 
reads is shown to demonstrate relative unspliced nature of this intron, which is not involved in 
alternative splicing. (B) Several similar introns that are relatively unspliced are found throughout the 
inflammatory transcriptome; shown are bottleneck introns within CD40, DAXX, and IRF7 as examples 
in the context of their neighboring introns. 

Fig. 3. Splicing kinetics of inflammatory introns are heterogeneous, ranging from seconds to minutes. 
CoSI of introns representing various splicing rates are measured and fit to half-lives. Cells were 
treated with Actinomycin D-treated, from which hybrid capture of genes of interest and sequencing 
was performed on total (unfractionated) RNA. Shown are four representative samples of splicing 
kinetics. 

Fig. 4. Bottleneck introns can be repaired, and account for significant alterations to gene expression. 
(A) Intron-GFP splicing reporters for each wild-type intron (red) and modified intron (green) are shown 
as BFP:GFP ratio. (B) Ratio of WT:Fixed slopes is shown; whereas Tfec expression is not altered by 
improved 5’ sequence, Malt1 intron sequence is significantly impaired owing to its 5’ donor sequence, 
exhibiting a roughly 5-fold impairment in gene expression due to the 5’ splice donor. 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 15, 2018. ; https://doi.org/10.1101/443796doi: bioRxiv preprint 

https://doi.org/10.1101/443796


 

 

  

15 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 15, 2018. ; https://doi.org/10.1101/443796doi: bioRxiv preprint 

https://doi.org/10.1101/443796


 

16 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 15, 2018. ; https://doi.org/10.1101/443796doi: bioRxiv preprint 

https://doi.org/10.1101/443796


 

  

17 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 15, 2018. ; https://doi.org/10.1101/443796doi: bioRxiv preprint 

https://doi.org/10.1101/443796


 

 

18 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 15, 2018. ; https://doi.org/10.1101/443796doi: bioRxiv preprint 

https://doi.org/10.1101/443796

